
Architecting Health Management into Software Component Assemblies: Lessons
Learned from the ARINC-653 Component Model

Nagabhushan Mahadevan Abhishek Dubey Gabor Karsai

Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN 37212, USA

Abstract—Complex real-time software systems require an
active fault management capability. While testing, verification
and validation schemes and their constant evolution help
improve the dependability of these systems, an active fault
management strategy is essential to potentially mitigate the
unacceptable behaviors at run-time. In our work we have
applied the experience gained from the field of Systems Health
Management towards component-based software systems. The
software components interact via well-defined concurrency
patterns and are executed on a real-time component framework
built upon ARINC-653 platform services. In this paper, we
present the lessons learned in architecting and applying a two-
level health management strategy to assemblies of software
components.

I. INTRODUCTION

Software is used heavily in modern systems - both to

implement the core functionality as well as to integrate func-

tions across various subsystems [22]. It is well known that

software can contain latent defects that escape the existing

rigorous testing and verification regimes and manifest only

under exceptional circumstances. These circumstances may

comprise faults in the hardware system, including both the

computing and non-computing hardware. Often, systems are

not prepared for such faults, which have led to a number

of incidents in the past, including but not limited to those

referred to in these reports: [19], [5], [6], [14].

Software Health Management (SHM) is an extension of

software fault tolerance using techniques borrowed from

System Health Management of complex engineering systems

[28]. The goal of SHM is to make systems self-managing

such that they exhibit resilience to faults by adaptively

mitigating the effects of those faults. Recent work in this

area includes [21], [27], [18], [4].

We have developed an architecture and approach for

implementing software health management functions for

component-based software systems [12]. Foundation of the

architecture is a real-time component framework (built upon

an ARINC-653 platform) that defines a specific model of

computation for software components [11]. This framework

brings the concept of temporal isolation, spatial isolation,

and strict deadlines from ARINC-653 and merges these

with the well-defined interaction patterns described by the

CORBA Component Model [30]. The health management

function in the framework is performed at two levels, see

figure 2. The Component-level Health Manager (CLHM)

provides localized and limited service for managing the

health of individual software components. A System-Level

Health Manager (SLHM) manages the health of the overall

system.

SLHM includes a diagnosis engine that uses a Timed

Failure Propagation (TFPG) [2], [3] model that is automati-

cally synthesized from the component assembly. Note the

distinction between diagnosis and detection. Diagnosis is

the process of identifying and isolating the root cause(s)

of a detected anomaly. In our work, the diagnosis engine

reasons about fault effect cascades in the system, and iso-

lates the fault source components. This is possible because

the data and behavioral dependencies and hence the fault

propagation across the assembly of software components

can be deduced from the well-defined and restricted set of

interaction patterns supported by the framework. Once the

fault source is isolated, the necessary system level mitigation

action is taken. Similar approaches can be found in [10],

[29]. The key difference between these and our work is that

we apply an online diagnosis engine coupled with a two-

level mitigation scheme.

This paper summarizes our current work along these

lines - component model & design tools (section I-A),

component & system level health managers (section II),

diagnosis scheme (section III). Finally section IV discusses

the lessons learned in adapting and applying a system-

level diagnosis approach to software health management.

The lessons learned are discussed from the perspective of

improving the quality and correctness of diagnosis and we

do not delve into assessing the performance of the current

strategy (CLHM/SLHM) through quantitative measures.

A. Overview of the ARINC-653 Component Model (ACM)

In our approach to Software Health Management we

assume that software is built as an assembly of components,

where the individual components comply with a specific

component model. The component model defines the com-

ponent ports that facilitate interactions among components.

The ARINC-653 Component Framework is the runtime

code that implements the ARINC-653 Component Model

(ACM), and it was introduced in [11]. ACM is built upon the

services of the ARINC-653 platform; an avionics standard

2012 15th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing

1555-0885/12 $26.00 © 2012 IEEE

DOI 10.1109/ISORC.2012.19

79

for safety critical operating systems [1]. ARINC-653 sys-

tems group processes into spatially and temporally separated

partitions, with one or more partitions assigned to each

module (i.e. a processor), and one or more modules forming

a system. Spatial partitioning ensures the exclusive use of a

(virtual) memory region by a partition. Temporal partitioning

ensures the exclusive use of the processing resources by

a partition. Partitioning also ensures that rogue and faulty

processes do not corrupt the memory or hog the CPU

resource in other partitions. In a multi-processor system,

the runtime framework provides facilities to synchronize the

start and end of the hyper periods of all processors.

The ARINC-653 component model allows the developers

to group a number of ARINC-653 processes into a reusable

component. At the component level, the role of a process

is based on the type of the component port it is attached

to. The component model defines the following component

port types: publishers, consumers, facets (a.k.a. provided

interfaces1), receptacles (a.k.a. required interfaces), and

methods (methods are internal to the component). Each

component port is mapped to one active ARINC-653 process

that is used to execute some business logic.

Inter-component interactions are based on well-defined in-

teraction patterns borrowed from other software component

frameworks, notably from the CORBA Component Model

(CCM) [30]. Components can interact with other compo-

nents through synchronous call/return interfaces (associ-

ated with facets or receptacles), and/or via asynchronous
publish/subscribe event connections (assigned to publisher

and consumer ports), facilitated by ports. While the facet

and receptacle ports are associated with an interface type (a

named collection of methods), the publisher and consumer

ports are associated with an event type (a data structure).

B. Design and Generation of the Software Component As-
sembly

Supporting tools accompanying the ARINC-653 Compo-

nent Framework enable the specification of components,

their ports with types. Additional real-time properties of

the port (corresponding to the ARINC-653 process) such

as periodicity, deadline, worst case execution time etc. can

also be specified. Further data and control flow dependency

between the ports of a component can be modeled using a

graphical tool.

Once a library of components has been created, these can

be used to put together the design of a sub-system or a

system assembly. The integrator can create the assembly

model by instantiating and connecting components or sub-

system models, thereby capturing the interaction across the

assembly. The design constraints enforced by the modeling

tool ensure that all ports are properly connected e.g. the type

of publisher matches the subscriber.

1An interface is a collection of related methods.

Deployment details can be specified by modeling the plat-

form (i.e. the ARINC-653 modules), the partitions associated

with each module, and then specifying the partitions where

each component in the assembly is to be deployed. Note that

even though ACM assemblies are multi module, ACM does

not specify any particular networking implementation to be

used.

Thereafter the code generators included in the modeling

tool suite2 generate the glue code that creates partitions,

ARINC-653 processes, bindings between the component

ports and the ARINC-653 processes, code to map the

developer provided business logic to the ARINC-653 APIs,

configuration files for the schedule information for each

module, and additional details to facilitate the inter-partition

communication.

II. TWO-LEVEL SOFTWARE HEALTH MANAGEMENT

A nominal assembly without any fault management sup-

port can be modeled, deployed, and executed to achieve

functional goals using a design- and run-time framework

that follow the concepts discussed in the previous sections.

This section describes the additional support in the design,

generated code and runtime framework to support a two-

level health management strategy as discussed in the intro-

duction. However, we must first discuss the execution states

and various faults that can occur in each component.

A. Component Execution States, Faults, and Anomalies

Any component, once deployed in the system can be

in one of the following three states: active (all ports are

operational), inactive (no port is operational) and semi-
active (only consumer and requires port are operational).

Typically, a component is in active state under nominal

operation, semi-active when it serving as a passive replica,

inactive when it is faulty or not required currently. Note

that components are equipped with a lock that ensures that

at most one thread (process) can be active in a component

at any time.

Failure Sources While the component is executing, i.e.

it is in active or semi-active state, anomalies detected in

component ports can indicate faults in the larger system.

We consider two cases : (a) faults related to the environment

of the component that manifests itself as an anomaly with

acquiring the component lock (this can be related to schedul-

ing problems, etc.), and (b)a latent defect in the developer-

supplied, functional code implementing the business logic

of the component port.

Both these fault sources can lead to anomalies in either

the same component or in a connected component. In our

framework, the design tools allow the system designer to

deploy monitors which can be configured to detect devi-

ations from expected behavior, violations of specifications:

2These tools can be downloaded from https://wiki.isis.vanderbilt.edu/
mbshm/

80

Partition 1

Partition 2

Partition 3

Partition 4

HYPERPERIOD = 2.0 Sec, Partition2_SCHEDULE = 0.5, 0.5, Partition1_SCHEDULE = 0, 0.5
Partition3_SCHEDULE = 1.0, 0.5,Partition4_SCHEDULE = 1.5, 0.5

Figure 1. GPS Software Assembly - Unit of time is seconds.

conditions and constraints associated with an interaction port

or component. Based on these monitors, following anomalies

can be detected:

• Lock timeout: The framework implicitly generates mon-

itors to check for process starvation. Each component

has a lock (to avoid interference among callers), and

if a caller does not get access to the lock within a

specified time, an anomaly is generated. The value for

the timeout is either set to a default value equal to the

deadline of the process associated with component port

or can be specified by the system designer.

• Data validity violation (only applicable to consumer

ports): Any event data token consumed by a consumer

port has an associated expiration age. This is known as

the validity period in ARINC-653 sampling ports. We

have extended this to be applicable to all types of com-

ponent consumer ports, both periodic and aperiodic.

• Pre-condition violation: Developers can specify condi-

tions that are evaluated before executing the functional

code. These conditions can be expressed over the

current value or the historical change in the value, or

rate of change of values of function call parameters of

the and the state variables of the component.

• User-code failure: Any error or exception raised in the

user code can be treated by the software developer as

an error condition which can then be reported to the

framework. Any unreported error is recognized as a

potential unobservable anomaly.

• Post-condition violation: These are similar to pre-

condition violations, but the conditions here are

checked after the execution of the functional code

associated with the component port.

• Deadline violation: Detected when a process does not

finish its execution within a specified deadline.

Figure 1 shows an assembly model with redundant GPS

systems. This model shows the connection between the

components and their deployment on four different parti-

tions. Partition 1 contains the Sensor Component. Partition

2 contains the GPS, Partition 3 contains the redundant GPS

(GPS2) component and Partition 4 contains the Navigation

Display component. The Sensor component publishes an

event every 4 sec. The GPS component consumes the event

published by sensor at a periodic rate of 4 sec. Afterwards it

publishes an event, which is sporadically consumed by the

Navigation Display (abbreviated as NavDisplay or Display).

Thereafter, the display component updates its location by

using getGPSData facet of the GPS Component.

B. Component Level Health Manager

In ACM, each component can be equipped with a Com-

ponent Level Health Manager (CLHM). During component

design, the CLHM is modeled as a hierarchical timed state

machine. It captures the reactions or mitigation actions

for the component anomalies (discussed above), given the

current state of the CLHM. The health manager model

can also include one or more observer automata that are

parallel state machines that track the state-evolution and /or

the sequence of operations executed in the component and

report violations to the health manager. Basic component

level mitigation commands enable a component developer

to ignore the anomaly, abort the current operation, use

previoues data, or completely stop the execution of the

component. In all cases, the default action is to report the

anomaly and the local mitigation action to the System Level

Health Manager (SLHM), discussed next.

C. System Level Health Manger

In ACM the infrastructure to support system level health

management is created through automated code synthesis

involving additional dedicated components and architectural

extensions to integrate the new components with the existing

functional component assembly. The customized mitigation

strategy that is hosted in the SLHM is auto-generated from

state machine models designed by the system integrator.

These hierarchical state machine models capture the reactive

mitigation action(s) in response to component failure(s), and

aim to restore functionality by cold/warm reset of com-

ponents, activating redundant component(s), de-activating

faulty component(s), rewiring(i.e. instructing components to

use alternate facet providers) etc. Due to space restrictions,

a full list of system mitigation actions is not included here.

Runtime instrumentation of the SLHM strategy captured

in the hierarchical state machines requires additional services

than those offered by the ACM runtime framework. These

additional services include:

1) Instrumentation to communicate the anomalies ob-

served in the components and the local mitigation

action by the CLHM.

2) Aggregation of these component level anomalies/ mit-

igation action to support a system level analysis.

3) System level diagnosis, i.e. identification of the faulty

component that is the root cause of the observed

anomalies.

81

Figure 2. Hierarchical Layout of Component-Level and System-Level
Health Managers

4) Execution platform for the SLHM strategy based on

the identification of the faulty component.

5) Instrumentation to communicate the mitigation com-

mands to components in the assembly.

6) Instrumenting the components to receive the system

level commands and execute them as needed.

Three special, dedicated components (described below)

are automatically added to the assembly to implement the

System Level Health Manager shown in figure 2. These

components are:

• the Alarm Aggregator : Responsible for collecting and

aggregating anomalous events and the corresponding

mitigation actions from the components and reporting

these events to the Diagnosis Engine component.

• the Diagnosis Engine: Hosts an instance of a diagnosis/

reasoning engine that can isolate the most plausible

fault-source component based on the information ob-

tained by the Alarm Aggregator.

• the SystemHM Mitigation Engine : Receives the diag-

nosis results: the set of faulty components and responds

with an appropriate system-level command(s) to miti-

gate the fault. It executes the code corresponding to

the SLHM strategy captured in the hierarchical state-

machine model.

Interconnections of these components to support data-flow

(information/ command) in support of SLHM, are auto-

matically synthesized by a code generator that operates on

models. The only input required from system integrator is

the fault mitigation specification as a hierarchical timed

state-machine model.

The following sections delve more into the internals of the

SLHM runtime mechanism, the current diagnosis approach

adopted in SLHM and the lessons learned in adapting it to

a software system.

III. DIAGNOSIS IN SLHM

The diagnosis engine in SLHM is a model-based reasoner

that relies on a Timed Failure Propagation Graph (TFPG)

[2], [3] model of the entire component assembly. The TFPG-

based diagnosis engine implements a real-time incremental

reasoning approach that can handle multiple failures includ-

ing sensor/alarm faults. In addition, the underlying TFPG

model can represent a general form of temporal and logical

dependency that directly incorporates the dynamics of multi-

modal systems.

A TFPG is a labeled directed graph where nodes repre-

sent either failure modes (i.e. the fault causes) or discrep-

ancies (i.e. the off-nominal conditions that are the effects of

failure modes). Edges between nodes in the graph capture

the failure propagation effect. While the failure modes are

always the root nodes in the graph, the discrepancy nodes

always have one or more parent nodes which could be

failure mode(s) or other discrepancies. A discrepancy could

be of type OR or AND. The discrepancy type determines

the conditions that need to be satisfied for the discrepancy

(anomaly) to occur. An AND discrepancy (anomaly) could

occur only if the failure effect propagated from all of its

parent nodes, while an OR discrepancy (anomaly) could

occur if the failure propagated from at least one parent

node. Further, some discrepancies are observable as the

associated anomalies can be detected through a monitor,

others are unobservable. To represent failure propagation

in multi-modal (switching) systems, edges in the graph can

be activated or deactivated based on the current operation

mode of the system. The temporal constraints of failure

propagation is captured in the edges as a time interval, where

the lower and upper bound of the time interval represent

the minimum and maximum time for the failure effect to

propagate along the edge when it is active.

A. Creating TFPG Model from a Component Assembly

The TFPG model of the entire system is automatically

synthesized from the ACM assembly model. The synthesis

follows the component hierarchy, starting with the TFPG

model of the component ports, using these port TFPG model

to build the component TFPG models which are then used

to build the TFPG model of the entire assembly. The well-

defined sequence of operations in every component port

implementation provides a default failure propagation path

across the anomalies that could potentially be observed

within a port’s operation. This is useful in building a

template TFPG model for each component port type. An

earlier version of these templates and how they are used

to build component and then system level TFPG models

was discussed in [12]. Figure 3 shows a portion of the

TFPG model of the GPS Assembly captured in figure 1.

It shows parts of the TFPG of the Sensor component (and

its publisher port: data out), the GPS component (and its

consumer port: data in) and the failure propagation across

these components and their ports.

During the construction of the TFPG model new fail-

ure propagation links are added at each stagem, within a

82

Figure 3. TFPG model for Sensor-Publisher and GPS-Consumer

component TFPG model and within the assembly TFPG

model. These additional failure propagation links are based

on the failure cascades within a component and across the

component boundaries. The properties governing these new

failure propagation links are discussed in the next section.

B. Failure cascades in ACM Component Assemblies

The anomalies observed within a component port can be

caused by a local component failure (i.e. a latent defect

in the component code) or problems from the component’s

environment (e.g., related to resource sharing) or can be the

result of failure effects cascading from other components in

the assembly. The discussion below summarizes the contexts

that have been considered for failure cascades captured in

the TFPG model of the component assembly.

Correctness contracts and dataflow dependency: For

each component (or component port), the pre- and post-

conditions capture the required guarantees on the input

data and the provided guarantees on the output data. This

relationship across the dataflow in the assembly model leads

to an understanding that for the nominal operation of the

software assembly, the output/contract guarantees (i.e. post-

condition) of the supplier component port must satisfy the

input contract guarantees (i.e. pre-condition) of the receiver

component. Stated otherwise, when a system integrator is

building a component assembly, care should be taken that

the pre-conditions evaluated on the data should be able

to accommodate the post-conditions verified on the data.

This type of reasoning is critical in achieving modular

certification of software components [26].

This implies that if the rules were followed correctly,

when a pre-condition violation is detected on the receiver, a

post-condition violation in the sender ensures that the fault

is propagating along the direction of data flow. In case of

the TFPG model presented in Figure 3, a post-condition

violation in Sensor component’s publisher port (data out),

can result in a failure propagation that ultimately leads to

a pre-condition violation in the GPS component’s consumer

port (data in).

Timing Constraint dependency: Timing constraints are

enforced in the model through the real-time properties of

the component ports (i.e., periodicity, deadline, and WCET).

Timing constraints to detect staleness in data are captured

through the data validity properties on the consumer ports

[11]. During runtime, it is possible that a deadline viola-

tion in one process (component port) can lead to deadline

violations in other ports of the same component or in ports

sharing the partition. More importantly, if a process (i.e.

component port) depends on the completion of a method call

to another component, the designer should have taken into

account these dependencies. In other words, the TFPG model

is required to have a path for timing constraint violations in

a direction opposite to the direction of invocation. In the

TFPG model presented in Figure 3, a problem with the

timing constraint of the Sensor’s publisher can manifest as

a Deadline Violation anomaly. This can lead to a delayed

or omitted publication of data by the publisher, leading to

Validity constraint violation in the GPS’s consumer.

Combination of constraints on data and timing: Vio-

lations of the constraints on data and timing can affect each

other. For example, a violation on the timing constraint can

lead to a poor or lack of update on the data which can then

affect the constraints on the data flow. Likewise, a violation

on the data constraints, can lead to computational problems

that affect the timing properties associated with component

ports. For example, in Figure 3, violation of the Validity

constraint in the GPS’s consumer port can lead to problems

in consumer port’s code which can lead to a post-condition

violation on the consumer port, resulting in a bad state-

update of the GPS’s state variables by the consumer port.

It should be noted that the problems associated with

83

timing and data constraint violation manifest because of (i)

latent bugs (FM Code in GPS and Sensor components of the

TFPG model in figure 3), (ii) or problems associated with

operating environment of the component (FM Env in the

GPS and Sensor components of the TFPG model in figure 3).

Propagation of these failures that cause anomalies in other

parts of the assembly model is dependent on the kind of

interaction pattern being considered, as follows.

Synchronous Interactions: These interactions between

a required (receptacle) port and a provided (facet) port are

affected by failure propagations associated with constraint

violations on timing and data. A requires port can supply

bad data to a provider port, there by affecting the state in

the provider component. Similarly, a bad state in a provider

component can propagate to the component hosting the

requires interface via the returned data value. In case of

a violation of timing constraints, a deadline violation of the

provider can lead to a deadline violation in the requires port.

Asynchronous Interactions: Unlike synchronous inter-

actions, failure propagation in asynchronous interactions

proceeds in only one direction - from the publisher to

the consumer. For example, the TFPG model in figure 3

which shows the failure propagation interaction between the

Sensor’s publisher and the GPS’s consumer . While violation

of constraints associated with data propagates directly from

the publisher to the consumer, the problems associated with

timing do not have a direct relationship like the synchronous

interaction. However, it is possible that a periodic consumer

can be affected with data-validity violations of a stale data

if the publisher violates its deadline or fails to publish the

data.

Invocation Interactions: Ports (or processes) within the

same component can be affected by a fault propagation

associated with timing constraint violations when the busi-

ness logic associated with a port invokes another aperiodic

publisher port or a required port. In this case, deadline

violation propagates backwards along the invocation chain.

IV. DISCUSSION

In this section, we identify and discuss several issues

pertinent to effective diagnosis of distributed software com-

ponent assembly. We do not focus on the performance

or quantitative aspects of the diagnosis problem or the

associated health management architecture. Rather we focus

on some interesting aspects that crop up while adapting

system health management approaches to support software

health management, especially as observed in the context

of ACM software framework. We also discuss potential

strategies (some of which have already been implemented) to

account for these problems, thereby improving the software

health management architecture.

A. Effects of Local Mitigation: The support for local

mitigation actions provides a quick local response to an

anomaly. However, this can have the effect of creating a

modified failure cascade. For example, consider the case

in which CLHM receives a pre-condition violation on a

publisher, and decides to abort the publisher operation.

While it prevented the publication of bad data (that could

have potentially violated the contracts), the lack of data

published can lead to a problem on the consumer side.

Now, if the downstream consumer is periodic, it will get

a validity violation because the sampled data has not been

updated by the publisher. To account for the modified fault

cascades, we added modes based on the CLHM action (in

the generated TFPG model) to activate or deactivate certain

failure propagation paths. Also, the CLHM actions (along

with the anomalies) were reported to SLHM in order to aid

in proper diagnosis.

B. Alarm Timing Issues: In our architecture all anoma-

lies detected are time stamped using the local module

clock. However, unless a reliable and deterministic network

such as Time-Triggered Ethernet [15] is being used, it is

possible that alarms do not arrive at the SLHM modules

in the order of their detection. This can be either due to

the varying network latency or task preemption. To ensure

the consistency of the diagnosis , the received alarms are

aggregated and sorted by detection time in a moving window

and supplied to the diagnosis engine (by AlarmAggregator

component). The window size is set based on the higher

of the two values: the system hyper period, and the worst-

case network latency. In our implementation, this window-

size or delay has been set to the system hyper period

as it was much bigger than the network latency. Further,

this also assumes that the schedule generation ensures that

a partition associated with each active component port is

triggered at least once in every system hyper period. An

alternative approach to this problem involves re-computing

hypothesis(in the diagnosis engine) to tolerate the delayed

alarm reporting. However, this is not yet implemented.

C. Masking of Fault Effects: While building a diagnoser

that considers the fault cascades (discussed earlier), we must

consider the effect of component or component groups (such

as voters) that are designed to mask the effect of cer-

tain faults, thereby preventing their cascade to downstream

components. Since the generic TFPG model automatically

synthesized from the assembly model is not aware of this

fault-masking behavior of the component, the diagnosis

process related to these faults is affected. The diagnoser (on

the basis of the incomplete TFPG model) can expect certain

downstream alarms to fire. The masking effect will ensure

that the alarms do not fire and hence lead to less robust

hypothesis and possibly large number of ambiguities. In such

cases, it is important to update the generic TFPG model to

ignore the alarms associated with these faults whose effects

are being masked. Our earlier work presented in [18] shows

an assembly that was setup to tolerate up to two failures

among a class of components.

84

D. Intermittent Faults/Alarms: It is possible that the

failure source or the alarms associated with the anomalies

are intermittent, i.e. they are observed in one period but

not observed in another. This intermittent behavior can be

caused by a partial masking effect, or intermittent behavior

in the original fault source, or it can be due to the mitigation

actions. TFPG as a diagnosis engine has handled this prob-

lem in the system health management domain [3]. However,

this problem has not been handled in the software health

management framework yet.

E. System Hysteresis: It is possible that the despite the

mitigation action taken at the system-level to remove the

fault source, the fault cascade remains in the system for a

few cycles. Such hysteresis will result in intermittent alarms

during this period and should be ignored by the diagnosis

engine. Furthermore, it is important that the CLHMs report

not only the activation of alarms, but also their deactivation

to the SLHM, thereby improving the quality of future

diagnosis.

F. Alarms ’near’ the Fault Source: It is possible that

certain anomalies in the component assembly are not observ-

able as they do not have an associated alarm. For example,

the developer can choose not to specify a pre-condition for

a port. In such cases, when a failure propagates through this

port, it is not detected. Further, if an anomaly is detected

downstream, the hypothesis ambiguity set could be much

larger than if the pre-condition had been specified. This

is because then the firing or lack of firing of the pre-

condition would eliminate potentially many fault causes.

Also, when the ambiguity set grows the mitigation action

would probably need to be applied to all components or

repetitively to each component until normal functionality

is restored. Since this is not an efficient approach, system

integrators should ensure that all possible monitors that

could be specified are accounted for. This will ensure that

the alarms are mostly close to the fault source and that the

diagnosis process is less ambiguous resulting in faster and

effective mitigation.

G. Distributed SLHM: In case of very large systems,

with a large number of components, it will be useful

to identify component assemblies that have limited or no

interaction and diagnose each independent regions with a

different diagnosis engines. This will allow the diagnosis

engine to focus on a smaller region and provide a real-time

response to the observed fault-effects. In previous work [17]

we have presented a distributed TFPG model. This model

can be applied to a large system wherein the local reasoners

deal with the diagnosis of their almost independent regions

while the global reasoner deals with providing an integrated

view for the entire assembly.

V. RELATED RESEARCH

Our approach focuses on latent faults in software systems,

follows a component-based architecture, with a model-based

development process, and implements all steps in the Col-

lect/Analyze/Decide/Act loop [7].

Conmy et al. presented a framework for certifying In-

tegrated Modular Avionics software applications built on

ARINC-653 platforms in [8]. Their main approach was the

use of ‘safety contracts’ to validate the system at design

time. Nicholson presented the concept of reconfiguration in

integrated modular systems running on operating systems

that provide robust spatial and temporal partitioning in [20].

He suggested use of lookup tables, similar to the health

monitoring tables used in ARINC-653 system specification,

that maps trigger event to a set of system blue-prints

providing the mapping functions.

Rohr et al. advocate the use of architectural models for

self-management [25]. They suggest the use of a runtime

model to reflect the system state and provide reconfiguration

functionality. From a development model they generate a

causal graph over various possible states of its architectural

entities. Garlan et al. [13] and Dashofy et al. [9] have

proposed an approach which bases system adaptation on ar-

chitectural models representing the system as a composition

of several components, their interconnections, and properties

of interest. They make reconfiguration decisions using rule-

based strategies.

While these works have tended to the structural part

of the self-managing computing components, some have

emphasized the need for behavioral modeling of the compo-

nents. For example, Zhang et al. described an approach to

specify the behavior of adaptable programs in [34]. Their

approach is based on separating the adaptation behavior

specification from the non-adaptive behavior specification

in autonomic computing software. They model the source

and target models for the program using state charts and

then specify an adaptation model, i.e., the model for the

adaptation set connecting the source model to the target

model using a variant of Linear Temporal Logic [33].

Williams’ research [24] concentrates on model-based au-

tonomy. The paper suggests that emphasis should be on de-

veloping techniques to enable the software to recognize that

it has failed and to recover from the failure. Their technique

lies in the use of a Reactive Model-based Programming

Language (RMPL)[31] for specifying both correct and faulty

behavior of the software components. They also use high-

level control programs [32] for guiding the system to the

desirable behaviors.

The work described here is closely related to the larger

field of software fault tolerance: principles, methods, tech-

niques, and tools that ensure that a system can survive

software defects that manifest themselves at run-time [16],

[23]. To the best of our knowledge, this work and similar

85

work done by our peers [21], [27], [18], [4] comes closest to

applying formal system health management techniques, i.e.

detection, diagnosis, mitigation for dynamic software fault

removal, performed at run-time.

VI. CONCLUSION

This paper summarizes the approach we adopted towards

augmenting a software component assembly with support

for real-time health management. We adapted a diagnosis

scheme, used for Systems Health Management for elec-

tromechanical systems, and applied it towards diagnosing

problems in software assembly, thereby enabling a two-level

software health management scheme. The paper documents

the lessons learned (from a diagnosis perspective) to improve

the quality of software health management.
Acknowledgments: This paper is based upon work sup-

ported by NASA under award NNX08AY49A. Any opin-

ions, findings, and conclusions or recommendations ex-

pressed in this material are those of the author(s) and do not

necessarily reflect the views of the National Aeronautics and

Space Administration. The authors would like to thank Paul

Miner, Eric Cooper, and Suzette Person of NASA Langley

Research Center for their help and guidance on the project.

REFERENCES

[1] Arinc specification 653-2: Avionics application software standard
interface part 1 - required services. Technical report.

[2] S. Abdelwahed and G. Karsai. Notions of diagnosability for timed
failure propagation graphs. In Proc. IEEE Systems Readiness Tech-
nology Conference, pages 643–648, 18–21 Sept. 2006.

[3] S. Abdelwahed, G. Karsai, N. Mahadevan, and S. C. Ofsthun.
Practical considerations in systems diagnosis using timed failure
propagation graph models. Instrumentation and Measurement, IEEE
Transactions on, 58(2):240–247, February 2009.

[4] M. Barry. http://www.kestreltechnology.com/downloads/
FailsafeOverview.pdf, 2008.

[5] A. T. S. Bureau. In-flight upset; 240km NW Perth, WA; Boeing Co
777-200, 9M-MRG. Technical report, August 2005.

[6] A. T. S. Bureau. AO-2008-070: In-flight upset, 154 km west
of Learmonth, WA, 7 October 2008, VH-QPA, Airbus A330-303.
Technical report, October 2008.

[7] e. Cheng, Betty H. Software engineering for self-adaptive systems.
chapter Software Engineering for Self-Adaptive Systems: A Research
Roadmap, pages 1–26. Springer-Verlag, Berlin, Heidelberg, 2009.

[8] P. Conmy, J. McDermid, and M. Nicholson. Safety analysis and
certification of open distributed systems. In International System
Safety Conference,, Denver, 2002.

[9] E. M. Dashofy, A. van der Hoek, and R. N. Taylor. Towards
architecture-based self-healing systems. In WOSS ’02: Proceedings of
the first workshop on Self-healing systems, pages 21–26, New York,
NY, USA, 2002. ACM Press.

[10] R. de Lemos. Analysing failure behaviours in component interaction.
Journal of Systems and Software, 71(1-2):97 – 115, 2004.

[11] A. Dubey, G. Karsai, and N. Mahadevan. A component model for
hard real-time systems: Ccm with arinc-653. Software: Practice and
Experience, 41(12):1517–1550, 2011.

[12] A. Dubey, G. Karsai, and N. Mahadevan. Model-based Software
Health Management for Real-Time Systems. In Aerospace Confer-
ence, 2011 IEEE, pages 1–18. IEEE, 2011.

[13] D. Garlan, S. W. Cheng, and B. Schmerl. Increasing system
dependability through architecture-based self-repair. Architecting
Dependable Systems, 2003.

[14] W. S. Greenwell, J. Knight, and J. C. Knight. What should aviation
safety incidents teach us? In SAFECOMP 2003, The 22nd Inter-
national Conference on Computer Safety, Reliability and Security,
2003.

[15] H. Kopetz and G. Bauer. The time-triggered architecture. Proceedings
of the IEEE, 91(1):112–126, 2003.

[16] M. R. Lyu. Software reliability engineering: A roadmap. In
2007 Future of Software Engineering, FOSE ’07, pages 153–170,
Washington, DC, USA, 2007. IEEE Computer Society.

[17] N. Mahadevan, S. Abdelwahed, A. Dubey, and G. Karsai. Distributed
diagnosis of complex causal systems using timed failure propagation
graph models. In IEEE Systems Readiness Technology Conference,
AUTOTESTCON, 2010.

[18] N. Mahadevan, A. Dubey, and G. Karsai. Application of software
health management techniques. In Proceedings of the 2011 ICSE
Workshop on Software Engineering for Adaptive and Self-Managing
Systems, SEAMS ’11, New York, NY, USA, 2011. ACM, ACM.

[19] NASA. Report on the loss of the mars polar lander and deep space
2 missions. Technical report, NASA, 2000.

[20] M. Nicholson. Health monitoring for reconfigurable integrated
control systems. Constituents of Modern System safety Thinking.
Proceedings of the Thirteenth Safety-critical Systems Symposium.,
5:149–162, 2007.

[21] L. Pike, A. Goodloe, R. Morisset, and S. Niller. Copilot: A hard
real-time runtime monitor. In Runtime Verification, pages 345–359.
Springer, 2010.

[22] J. Potocti de Montalk. Computer software in civil aircraft. In Digital
Avionics Systems Conference, 1991. Proceedings., IEEE/AIAA 10th,
pages 324 –330, oct 1991.

[23] L. L. Pullum. Software fault tolerance techniques and implementa-
tion. Artech House, Inc., Norwood, MA, USA, 2001.

[24] P. Robertson and B. Williams. Automatic recovery from software
failure. Commun. ACM, 49(3):41–47, 2006.

[25] M. Rohr, M. Boskovic, S. Giesecke, and W. Hasselbring. Model-
driven development of self-managing software systems. In Proceed-
ings of the Workshop “Models@run.time” at the 9th International
Conference on model Driven Engineering Languages and Systems
(MoDELS/UML’06), 2006.

[26] J. Rushby. Modular certification. Technical report, Sept. 2001.

[27] J. Schumann, A. Srivastava, and O. Mengshoel. Who guards the
guardians?toward v&v of health management software. In Runtime
Verification, pages 399–404. Springer, 2010.

[28] A. Srivastava and J. Schumann. The Case for Software Health
Management. In Fourth IEEE International Conference on Space
Mission Challenges for Information Technology, 2011. SMC-IT 2011.,
pages 3–9, August 2011.

[29] M. Wallace. Modular architectural representation and analysis of fault
propagation and transformation. Electron. Notes Theor. Comput. Sci.,
141(3):53–71, 2005.

[30] N. Wang, D. C. Schmidt, and C. O’Ryan. Overview of the CORBA
component model. Component-based software engineering: putting
the pieces together, pages 557–571, 2001.

[31] B. Williams, B. Williams, M. Ingham, S. Chung, and P. Elliott.
Model-based programming of intelligent embedded systems and
robotic space explorers. Proceedings of the IEEE, 91(1):212–237,
2003.

[32] B. C. Williams, M. Ingham, S. Chung, P. Elliott, M. Hofbaur, and
G. T. Sullivan. Model-based programming of fault-aware systems.
AI Magazine, 24(4):61–75, 2004.

[33] J. Zhang and B. H. C. Cheng. Specifying adaptation semantics.
In WADS ’05: Proceedings of the 2005 workshop on Architecting
dependable systems, pages 1–7, New York, NY, USA, 2005. ACM.

[34] J. Zhang and B. H. C. Cheng. Model-based development of
dynamically adaptive software. In ICSE ’06: Proceeding of the 28th
international conference on Software engineering, pages 371–380,
New York, NY, USA, 2006. ACM.

86

