VANDERBILT UNIVERSITY

7 >~ Z > -
7 Z
Z Z Z Z
7 7 7 7
Z Z Z Z
Z 7/ 7 Z
Z Z Z 7
Z Z—— Z
Z 7 A
'z v 4 Vs v -

INSTITUTE FOR SOFTWARE
INTEGRATED SYSTEMS

Institute for Software Integrated Systems
Vanderbilt University
Nashville, Tennessee, 37212

A Case Study On The Application of Software Health Management
Techniques

Nagabhushan Mahadevan
Abhishek Dubey
Gabor Karsai

TECHNICAL REPORT
ISIS-11-101

Jan, 2011

A Case Study On The Application of Software
Health Management Techniques

Nagabhushan Mahadevan

Abhishek Dubey

Gabor Karsai

Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN 37212, USA

Abstract—Ever increasing complexity of software used in large-
scale, safety critical cyber-physical systems makes it increasingly
difficult to expose and thence correct all potential bugs. There
is a need to augment the existing fault tolerance methodologies
with new approaches that address latent software bugs exposed
at runtime. This paper describes an approach that borrows and
adapts traditional ‘Systems Health Management’ techniques to
improve software dependability through simple formal specifica-
tion of runtime monitoring, diagnosis and mitigation strategies.
The two-level approach of Health Management at Component
and System level is demonstrated on a simulated case study of an
Air Data Inertial Reference Unit (ADIRU). That subsystem was
categorized as the primary failure source for the in-flight upset
caused in the Malaysian Air flight 124 over Perth, Australia in
August 2005.

I. INTRODUCTION

Due to the increasing software complexity in modern cyber-
physical systems there is a likelihood of latent software defects
that can escape the existing rigorous testing and verification
techniques but manifest only under exceptional circumstances.
These circumstances may include faults in the hardware sys-
tem, including both the computing and non-computing hard-
ware. Often, systems are not prepared for such faults. Such
problems have led to number of failure incidents in the past,
including but not limited to those referred to in these reports:
(51, [26], (6], [7], [17].

State of the art for safety critical systems is to employ
software fault tolerance techniques that rely on redundancy
and voting [23], [35], [9]. However, it is clear that existing
techniques do not provide adequate coverage for problems
such as common-mode faults and latent design bugs triggered
by other faults. Additional techniques are required to make
the systems self-managing i.e. they have to provide resilience
to faults by adaptively mitigating faults and failures.

Self-adaptive systems, while in operation, must be able to
adapt to latent faults in their implementation, in the computing
and non-computing hardware; even if they appear simulta-
neously. Software Health Management (SHM) is a system-
atic extension of classical software fault tolerance techniques
that aims at implementing the vision of self-adaptive software
using techniques borrowed from system health management
for complex engineering systems. System health management
typically includes anomaly detection, fault source identifica-
tion (diagnosis), fault effect mitigation (in operation), mainte-
nance (offline), and fault prognostics (online or offline) [27],
[20].

Our research group has been involved in developing tools
and techniques, including a hard real-time component frame-
work built over the platform services provided by ARINC-653

[1] compliant operating systems., for software health man-
agement (SHM) [14], [15]. The core principle behind our
approach is the hypothesis that it is possible to deduce the
behavioral dependencies and failure propagation across a com-
ponent assembly, if the interactions between those components
are restricted and well-defined. Here, components imply soft-
ware units that encapsulate parts of a software system and
implement a specific service or a set of services. Similar
approaches exist in [12], [36]. The key differences between
those and this work are that we apply an online diagnosis
engine coupled with a two-level mitigation scheme.

In this paper, we provide a discussion of our work with re-
spect to a case study that approximately emulates the working
of the Boeing 777 Air Data Inertial Reference Unit (ADIRU).
Our goal is to show how SHM architecture can be used to
detect, diagnose, and mitigate the effects of component-level
failures such that the system-wide functionality is preserved.
This work extends our previous works [13], [14], [15] to allow
multi-module systems working on different physical comput-
ers. We also extended the detection functionality developed
earlier for monitoring the correctness of data on all ports
to enable observers that can also monitor the sequence of
activities inside a component. Finally, we built the necessary
infrastructure to close the loop from detecting an anomaly
and diagnosing a component failure to issuing the necessary
mitigation actions in real-time.

Paper Outline: Section III describes the incident and the
ADIRU architecture. Section IV describes the main concepts
of our component framework used to build the emulated sys-
tem. Sections V-VI describe the implemented case study and
explains our approach. Finally section VII presents a discus-
sion on the experiment.

II. RELATED RESEARCH

The work described here fits in the general area of self-
adaptive software systems, for which a research roadmap has
been presented in [10]. Our approach is focusing on latent
faults in software systems, follows a component-based archi-
tecture, with a model-based development process, and imple-
ments all steps in the Collect/Analyze/Decide/Act loop.

Rohr et al. advocate the use of architectural models for self-
management [30]. They suggest the use of a runtime model
to reflect the system state and provide reconfiguration func-
tionality. From a development model they generate a causal
graph over various possible states of its architectural entities.
At the core of their approach, they use specs based on UML to
specify constraints, monitoring and reconfiguration operations
at the time of development.

Garlan et al. [16] and Dashofy et al. [11] have proposed
an approach which bases system adaptation on architectural
models representing the system as a composition of several
components, their interconnection and properties of interest.
Their work follows the theme of Rohr et al., where architec-
tural models are used at runtime to track system state and
make reconfiguration decisions using rule-based strategies.

While these works have tended to the structural part of the
self-managing computing components, some have emphasized
on the need for behavioral modeling of the components. For
example, Zhang et al. described an approach to specify the
behavior of adaptable programs in [41]. Their approach is
based on separating the adaptation behavior specification and
non-adaptive behavior specification in autonomic computing
software. They model the source and target models for the
program using state charts and then specify an adaptation
model, i.e., the model for the adaptation set connecting the
source model to the target model using a variant of Linear
Temporal Logic [40].

Williams’ research [29] concentrates on model-based au-
tonomy. The paper suggests that emphasis should be on de-
veloping techniques to enable the software to recognize that it
has failed and to recover from the failure. Their technique lies
in the use of a Reactive Model-based programming language
(RMPL)[38] for specifying both correct and faulty behavior
of the software components. They also use high-level control
programs [39] for guiding the system to the desirable behav-
iors.

Lately, the focus has started to shift to formalize the soft-
ware engineering concepts for self-management. In [22], Light-
stone suggested that systems should be made “just sufficiently”
self-managing and should not have any unnecessary com-
plicated function. Shaw proposes a practical process control
approach for autonomic systems in [31]. The author main-
tains that several dependability models commonly used in
autonomic computing are impractical as they require precise
specifications that are hard to obtain. It is suggested that prac-
tical systems should use development models that include the
variability and unpredictability of the environment. Addition-
ally, the development methods should not pursue absolute
correctness (regarding adaption) but should rather focus on the
fitness for the intended task, or sufficient correctness. Several
authors have also considered the application of traditional
requirements engineering to the development of autonomic
computing systems [8], [34].

III. CASE STUDY: BOEING 777 ADIRU

In 2005, the flight computer of Malaysian Air flight 124 -
a Boeing 777, flying to Kuala Lumpur from Perth registered
excessive acceleration values in all three body axes - vertical
acceleration changed to -2.3g within 0.5 seconds, lateral ac-
celeration decreased to -1.01g within 0.5 second and the longi-
tudinal acceleration increased to +1.2g within 0.5 second. As
a result, the flight computer pitched the aircraft up and com-
manded it to a steep climb. Thereafter, the airspeed decreased
and the aircraft descended. Re-engagement of autopilot was
followed by another climb of 2,000 ft. The investigation report
[6] revealed that the problem was caused due to an anomaly

Accelerometer
Containment Area with 6
Accelerometer FCM

Gyro Fault Containment
Area with 6 Gyro FCM

Power Supply Containment
Area with 3 supply FCM

‘ Processor ‘ ‘ Processor ‘ ‘ Processor ‘ ‘ Processor ‘

ARINC 629 FCA, Left
2629 FCM

ARINC 629 FCA,
center 2 629 FCM

ARINC 629 FCA, right
2 629 FCM

Mid value
selection

Flight
Computer

Secondary Attitude Air Data Reference Unit (SAARU)

Flight Flight
Corrf uter. Com Tjter

Fig. 1. Outline of 777 ADIRU Architecture. Based on the diagram shown
in [6], page 5. FCA= Fault Containment Area. FCM= Fault Containment
Modules

in the fault masking software in the aircraft’s primary Air
Data Inertial Reference Unit (ADIRU). An ADIRU supplies
air data (airspeed, angle of attack and altitude) and inertial
reference (position and attitude) information to the pilots’
Electronic Flight Instrument System displays as well as other
systems on the aircraft such as the engines, autopilot, flight
control and landing gear systems. An ADIRU acts as a sin-
gle, fault tolerant source of navigational data for both pilots
of an aircraft (Source: http://en.wikipedia.org/wiki/Air_Data_
Inertial Reference Unit). To understand the scenario we need
to briefly summarize the ADIRU architecture.

Boeing 777 ADIRU Architecture: The primary design
principle in Boeing 777’s ADIRU Architecture [25], [32] is
multiple levels of redundancy, see Fig. 1 . There are two
ADIRU units: primary and secondary. The primary ADIRU
is divided into 4 Fault Containment Areas (FCA), with each
FCA containing multiple Fault Containment Modules (FCM):
accelerometers (6 FCM), gyros (6 FCM), processors (4 FCM),
power supplies (3 FCM), ARINC 629 bus (3 FCM). The
ADIRU system was designed to be serviceable, with no need
of maintenance with one fault in each FCA. Systems can still
fly with two faults, but it necessitates maintenance upon land-
ing. A secondary unit, the S(econdary)AARU also provided
inertial data. The flight computers used middle value selec-
tion upon the values provided by the primary and secondary
ADIRU.

Accelerometers and gyros are arranged on the face of a
dodecahedron in a skewed redundant configuration [25]. Thus,
any four accelerometers and gyros are sufficient to calculate
the linear acceleration in the body inertial reference frame
and angular velocity in the fixed frame of reference [33].
This calculation is replicated in parallel by each one of the 4
processors.

Failure Analysis: Subsequent analysis [6] revealed that in
2001 accelerometer 5 had failed with high output values and
was subsequently discarded. However, because there was only

http://en.wikipedia.org/wiki/Air_Data_Inertial_Reference_Unit
http://en.wikipedia.org/wiki/Air_Data_Inertial_Reference_Unit

P t
ﬁe ¢ Component

Publish

—D (Event)
—@ Required

(Interface)

Subscribe
(Event) §>—

o—
Provided

(Interface)

<k Consumer
O Provided

bl o

State Tri
Resource 'M99€r

Publisher I~
Required)

Fig. 2. Component Model

one failure no maintenance was requested on the unit. The
status of failed unit was recorded in on-board maintenance
memory. However, on the day of the incident, a power cycle
on the primary ADIRU occurred, during flight. Upon reset, the
processors did not check the status of the on board memory
and hence did not regard accelerometer 5 as faulty. Thereafter,
a second in-flight fault was recorded in the accelerometer
6 and it was disregarded. Till the time of the incident, the
ADIRU processors used a set of equations for acceleration
estimation that disregarded the values measured by accelerom-
eter 5. However, the fault in accelerometer 6 necessitated a
reconfiguration to use a different set of estimation equations.
At this point, they allowed the use of accelerometers 1 to 5 as
accelerometer 5 was not regarded as faulty, passing the high
acceleration values to all flight computers. Due to common-
mode nature of the fault, voters allowed high accelerometer
data to go out to all channels. This high value was used by
primary flight computer. The mid value select function used
by the flight computer lessened the effect of pitch motion.
Thus, a latent software bug and the common-mode nature of
the accelerometer fault bypassed the redundancy checks and
caused the effect to cascade into a system failure [19].

In the rest of this paper, we will show that such problems
can be avoided by augmenting the redundancy-based fault
protection by a real-time health management framework that
can perform system-level detection, diagnosis, and mitigation.
To demonstrate our approach we emulated the necessary com-
ponentsl of the 777 ADIRU on our hard real-time ARINC-
653 component framework [14], [13]. In order to describe
our approach, we will need to briefly describe our component
framework.

IV. THE ARINC COMPONENT MODEL

ARINC Component Framework (ACF) is the runtime soft-
ware layer that implements the ARINC-653 component model
(ACM). ACM borrows concepts from other software com-
ponent frameworks, notably from the CORBA Component
Model (CCM) [37], and is built upon the capabilities of ARINC-
653 [1], the state of the art operating system standard used
in Integrated Modular Avionics. Key to ARINC-653 is the
principle of spatial and temporal isolation among partitions,
see sidebar 1.

In ACM, a component can have four kinds of external ports
for interactions: publishers, consumers, facets (provided in-

'we did not emulate the gyros and actual flight control logic.

terfacesi) and receptacles (required interfaces), see fig 2. Each
port has an interface type (a named collection of methods) or
an event type (a structure). The component can interact with
other components through synchronous interfaces (assigned
to provided or required ports) and/or asynchronous event
(assigned to event publisher or consumer ports). Additionally,
a component can host internal methods that are periodically
triggered.

Unlike CCM frameworks, where the functional logic be-
longing to a port is executed on a new or pre-existing but dy-
namically allocated worker-thread, here the port’s functional
logic is statically bound to a unique ARINC-653 process.
Therefore, each port can be periodic (i.e. time triggered) or
aperiodic (i.e. event triggered). This binding is defined and
configured during initialization. Given that a provided inter-
face can have more than one method, every method is allo-
cated to a separate process. At any time, only one process
per component is allowed to be in the running state, thus
each process must obtain a component lock before it can
execute. During design, the developers must identify the real-
time properties for each component port, including frequency,
deadline, worst case execution time etc.

Sidebar 1: ARINC-653

The ARINC-653 software specification describes the standard
Application Executive (APEX) kernel and associated services
that are supported by safety-critical real-time operating sys-
tems (RTOS) used in avionics. ARINC-653 systems group
processes into spatially and temporally separated partitions,
with one or more partitions assigned to each module, and
one or more modules (processor hosts) form a system. While
spatial partitioning guarantees total memory isolation between
processes in different partitions, temporal isolation ensures
exclusive use of the processing resources by a partition. A
fixed priority cyclic schedule is used by the RTOS to share
the CPU between partitions. Within each partition, processes
are scheduled in a priority preemptive manner.

Processes within a partition share data only via the intra-
partition services, and are responsible for their individual state.
Intra-partition communication is supported using buffers that
provide a queue for passing data messages and blackboards
that allow processes to read, write and clear a single-item
data message. Inter-partition communication is asynchronous
and is provided using ports and channels that can be used for
sampling or queuing of messages.

Even though ARINC-653 specification provides a well-
defined task execution model, it does not provide enough
details about the communication schedule. For example, there
is no information and support for how a task execution model
affects or is dependent upon the order in which the messages
are sent over the shared bus.

Model-based design: ACF comes with a modeling lan-
guage built using our model integrated computing tools (http:
/Iwww.isis.vanderbilt.edu/research/MIC) that allows the com-
ponent developers to model a component and the set of ser-
vices that it provides independent of actual deployment con-
figuration. This allows us to conduct preliminary, constraint
based analysis on the system. Such an analysis can be used to

2an interface is a collection of related methods.

http://www.isis.vanderbilt.edu/research/MIC
http://www.isis.vanderbilt.edu/research/MIC

Porameter

Component

Software Assembly Specification
& Consumer
O Provided

Publisher I
Required 5

Software Assemblies

N

Assembly | [systeryg® —‘\“M s, g %r
>
()
ip_' N /‘g;/ Computation System Specification
i
Q@
Component Library :E
S 5
® led
= 5& Bus
b= 9
Sllaa - -
Component Parts a || = y,
& | B <
Component Receptac Fé“\ s —
Health le 1, 2 v E—
>—% Eg L3 c
Management O_ ‘ » 5 % Module $ 3 5 a
S £ €356 Y
e Publish | = &

Consumer

~H

(2

Interface Definition

Partition

Channel
o

Module
Specificatkon

f
DataTypes

Buffer Process BB

so
3¢
33
HH

Fig. 3. ACM Modeling Paradigm

ABORT- |

HM

Ignore— HM
97OTe RESPONSE

HM
RESPONSE

a
m
123
bl
[}
z
7]
m

|
|<— —— —— —— Framework Monitors Deadline Violation. — —— — —>|

HM HM
RESPONSE—I Respouse—l

°
Fail F
e
m

IGNORE or
USE_PAST_DATA

ion Instance

|

Read Data From
Event Port

Obtain Write Lock on Component <
Finish

Execute User Provided

Functional Code

Fig. 4.
port.

Flow chart of the framework provided code used for a consumer

check, for instance, type compatibility among connected ports.
The model captures the component’s real-time properties and
resource requirements using a domain specific modeling lan-
guage. System integrators then configure software assemblies
specifying the architecture of the system built from interacting
components.

The deployment configuration can consist of separate pro-
cessors, mapped to ARINC-653 modules, with each module
containing one or more partitions. These partitions are tempo-
rally and spatially isolated. System integrators map each com-
ponent in the assembly to a partition. Component developers
can also specify local monitors and local health management
actions for each component (described later using the case
study example). Once the assembly has been specified, system
integrators are required to specify the models for system-
level health management (described later using the case study
example).

SHM in ACF: With this framework, there are various lev-

els at which health management techniques can be applied,
ranging from the level of individual components or the level
of subsystems to the whole system. In the current work, we
have focused on two levels of software health management:
Component level that is limited to the component, and the
System level that includes global information for performing
diagnosis to identify the root failure mode(s) and components.

Component-level health management: (CLHM) provides
localized and limited functionality for managing the health
of one component by detecting anomalies, mitigating its ef-
fects using a reactive timed state machine — on the level of
individual components. It also reports to higher-level health
manager(s): the system health manager.

System-Level Health Manager (SLHM) manages the over-
all health of the system i.e. assembly of all components. The
CLHM processes hosted inside each of the components report
their input (monitored alarms) and output (mitigation actions)
to the SLHM. It is important to know the local mitigation
action because it could affect how the faults cascade through
the system. Thereafter, the SLHM is responsible for the iden-
tification of root failure source(s) - multiple failure mode
hypotheses are allowed. Once the fault source is identified,
appropriate mitigation strategy is employed.

Code generation: Finally, code generation tools allow the
integrators to generate the glue code (to realize component
interactions), and the health management code. Relieving soft-
ware developer from the arduous task of writing code for im-
plementing interactions ensures that we can restrict the seman-
tics so that we can analyze the system failure propagation at
design time before deployment. The generated code includes
the wrappers necessary to launch and configure the ARINC-
653 ports associated with the component. These wrappers
follow a strict template for each kind of port: checking pre
conditions, acquiring locks (to ensure atomic operation on
the component), executing user code by calling the devel-
oper written functional code, and checking post conditions.
Developers write the functional code using only the exposed
interfaces provided by the framework.

Fig. 4 shows the flowchart of the code generated for a
consumer port. The shaded gray decision boxes are associated
with the generated monitors. When an anomaly is detected by
a monitor, it is always reported to the local component health
manager. Deadline violation is always monitored in parallel by
the underlying framework. White boxes represent the possible
mitigation actions taken by the local health manager.

V. MODELING THE ADIRU

This section describes how we modeled the ADIRU soft-
ware architecture using the ACM Modeling language, in order
to conduct experiments. We did not model the gyros in this
example, and timing used does not reflect the actual timing
on the real system.

Software Assembly: Fig. 5 shows the different compo-
nents that are part of this example. This figure also shows
the management module, which implements the system-wide
health management. Also shown are the real-time properties
for the ports of each type of component. We will cover the
components in that module in detail in subsequent sections.

Synchronized_Execution=TRUE

Hyper period =1 Second

2
S
T
o
Mitigation £ 5 2
—p -} HMConsumer AlarmPublisher} » -} AlarmC Topt b 7 h > ° &
Commands gL = 5
wn £
> E [
D &
c
AlarmAggregator DiagnosisEngine SystemHMResponseEngine s
i
S
:g |I| Acc il
© — 7 Col g
a 3 + 3 =
3 23 g : §§§ @ out % cl T E
Accelerometerl (I j E rcc [0 S
I > Ac3 @ ousdi— = Co4 = or
N + Acd =
5 i 5 Ac5 VoterLeft
2 @M Ac + Ac6 DisplayComponentL
S —
o ___ADIRUProcessorl |
Accelerometer2 - ~
¢ +
i izg & T Col 5
o = @ outr T Co2 1| L3 cl €
‘E |I| Acc 2 Act 3 Co3 III Ut | L + Cc |I| 8
© BLLcS - Co4 F Cr
o 3 Acé 2
Accelerometer3 ADIRUProcessor2 VoterCenter DisplayComponentC
< + Acl T.
5 3 Ac2 ©
:g @ Acc ; iy a
© 3 ace Dl Out:
a
| + Ac5
Accelerometer4 3 Ac6
" ADIRUProcessor3
g T Cl x
= F Col Fcc O =)
£ [Acd B Acl I Co2 1 LT or [
© + Ac2 @ outl
a =) + Co3 -
=S O ourl= L5 cos DisplayComponentR
=+ Acd
Accelerometer5
Ty p VoterRight
© + Ac6 E
[= — al
o ADIRUProcessor4
= @ Acc
£
©
[«
Accelerometer6

Partition1_SCHEDULE =0, 0.1

Partition2_SCHEDULE = 0.16, 0.16
Partition3_SCHEDULE = 0.32, 0.16
Partition4_SCHEDULE = 0.49, 0.16

L

o

Partl_SCHEDULE =0, 0.24
Part2_SCHEDULE = 0.25, 0.24
Part3_SCHEDULE = 0.50, 0.24

Left_SCHEDULE = 0, 0.33
Center_SCHEDULE = 0.33, 0.33
Right_SCHEDULE = 0.66, 0.33

o Part4_SCHEDULE =0.75, 0.24
Partition6_SCHEDULE = 0.66, 0.16
Partition5_SCHEDULE =0.83, 0.16
ACC Module ADIRU Module Voter Module
Component Port Period | Deadline
Accelerometer Acc 1sec 1sec
Processor Acl-Ac6 | -lsec 1sec
Processor Out -1sec Isec
Voter Col-Co4 | -lsec 1sec
Voter Out -1sec Isec
Display CLCc,Cr | -l1sec 1sec
Fig. 5. The ADIRU Assembly in ACM modeling paradigm. -1 denotes an aperiodic process.

TABLE I
GENERATED ARINC-653 PROCESS FOR LAUNCHING THE PUBLISHER

//! Method launched with the process for Publisher Acceleration
void Accelerometerl_impl:: APEX_proc_Acceleration ()

PROCESS_PRELUDE;
RETURN_CODE_TYPE return_code ;
Accelerometerl_impl :: RESET_PROCESS_ERROR_STATE(MY_PROCESS_ID, return_code);
ENSURE_CONDITION (return_code==NO_ERROR) ;

SYSTEM_TIME_TYPE now; //Stores the time to be passed to pre and post conditions

Accelerometerl_impl:: APEX_Accelerometer]_impl—>writelock (INFINITE_TIME_VALUE,&return_code); //Get the Writelock
LOGGER(APP, "PUBLISH,_: %s" ,PROCESS_NAME) ;

////7/////////7////SENDING ENTRY MESSAGE///////////////////////////////////////
APP_ERROR_CODE_TYPE ERROR_CODE_ENTRY=ERROR_Accelerometerl_Acceleration_ENTRY ;
RETURN_CODE_TYPE RETURN_CODE_ENTRY=NO_ERROR;
RAISE_APPLICATION_ERROR (APPLICATION_ERROR,
/*!in x/ MESSAGE_ADDR_TYPE (&ERROR_CODE_ENTRY) ,
/x!in %/ sizeof (ERROR_CODE_ENTRY) ,
/% !out*/ &RETURN_CODE_ENTRY) ;
////////////7//// FINISHED ENTRY MESSAGE///////////////////////////////////////

// Transfer control to the user code to fill the event to be published

Accelerometer]_impl :: APEX_Accelerometerl_impl—>handle_Acceleration (Accelerometerl_impl:: APEX_Accelerometer]l_impl—>
m_Acceleration_data);

//post—conditions

now = currentTimeInNanoSeconds () ;

// Evaluate post—condition Acceleration_condl
bool postcheck_Acceleration_condl = Accelerometerl_impl:: APEX_Accelerometerl_impl—>m_Acceleration_condl.evaluate (
Accelerometerl_impl:: APEX_Accelerometerl _impl—>m_Acceleration_data , now);
if (!postcheck_Acceleration_condl)

//Invoke the Component Health Manager if the post—condition {postcheck.fullname} fails
LOGGER(HMEVENT, "POSTCHECK,_ - _condl_-_IN Accelerometerl::Acceleration FAILED_: _, %s", PROCESS_NAME) ;
LOGGER (HMEVENT, "RAISE_ERROR: %s" ,PROCESS_NAME) ;

APP_ERROR_CODE_TYPE ERROR_CODE=ERROR_Accelerometerl_Acceleration_condl ;
RETURN_CODE_TYPE RETURN_CODE;
ACM_USER : : HM_RESPONSE_TYPE HM_RESPONSE;

RAISE_APPLICATION_ERROR_AND_GET_RESPONSE (APPLICATION_ERROR,
/= !in %/ MESSAGE_ADDR_TYPE (&ERROR_CODE) ,
/x!in %/ sizeof (ERROR_CODE) ,
/+!in =/ INFINITE_TIME_VALUE, // parameterized?
/*!outx/ &HM_RESPONSE,
/% !out*/ &RETURN_CODE) ;

switch (HM_RESPONSE.HM_ACTION)

case ACM_USER::HM_RESPONSE_TYPE: : REFUSE:
LOGGER (HMEVENT, "RESPONSE_REFUSE:_3%s", PROCESS_NAME) ;
Accelerometerl_impl:: APEX_Accelerometerl_impl—>writeunlock(&return_code);
return;

case ACM_USER::HM_RESPONSE_TYPE: : IGNORE:
LOGGER (HMEVENT, "RESPONSE_IGNORE: _%s", PROCESS_NAME) ;
break ;

default:
break;

}

//release the lock
Accelerometer]l_impl:: APEX_Accelerometerl_impl—>writeunlock(&return_code);

O 00 ~JI NP W —

Fig. 6.

Orientation of accelerometers.

TABLE I
GENERATED PUBLISHER FOR THE ACCELEROMETER COMPONENT

//! Method to set the actual data to be

// published by the publisher Acceleration

void Accelerometerl_impl:: handle_Acceleration
(LinearAcceleration& data)

{

LOGGER(APP, "Accelerometerl: :publishing");

// @handle_Acceleration — User code begins

if (IterationNumber >=1000)
IterationNumber=0; //rewind

data . Value=accelerationValues

[IterationNumber];

IterationNumber ++;

SYSTEM_TIMESPEC temp=currentTime () ;

data . TimeStamp.tv_sec=temp.tv_sec;

data . TimeStamp.tv_nsec=temp.tv_nsec;

LOGGER(APP,"Iter _%d,data:%f",

IterationNumber , data . Value) ;
// @handle_Acceleration — User code ends

// Publish Data
publish_Acceleration (data);

Different parts of the assembly are organized into modules.
Each ARINC-653 module is deployed on a different host
processor. The modeling paradigm also captures the internal
data flow and control flow of the components, not shown in the
figure. This is required to create the fault propagation graph
as discussed later in section VI-D.

There are six instances of accelerometer components. Each
accelerometer component has a periodic publisher that pub-
lishes its data every 1 second. The published data consists
of a linear acceleration value measured in the axis of the
accelerometer and a time stamp. Figure 6 shows the six axes
of acceleration values measured using these accelerometers.
All accelerometers measure in directions perpendicular to the
six faces of a dodecahedron centered at the origin of the
body coordinate system. Equation 1 describe the measured
acceleration, aj, to ag in terms of three orthogonal body
acceleration vectors, az,a,,a.. Here N is a 6 x 1 vector of

zero mean, normal noise. Running the model interpreter of
the ACM framework generates the code for all accelerometers.
The only portion supplied by the developer is the function that
is called in every cycle to produce the data. We use a lookup
table to simulate actual sensor measurements, configured for
each experiment.

ax —0.3717 —0.3386 0.8644
a2 0.3717 —0.8644 0.3386
ag | | —0.6015 —0.7971 —0.0536 « ZI
as | | —0.9732 0.1625 0.1625 Y
as —0.6015 —0.0536 —0.7971 i
ae 0.2298 —0.6882 —0.6882

Table I shows the code generated by running the model in-
terpreter of the ACF framework. The component developer
writing the software for the accelerometer’s functionality only
edits lines 8 to /9, between the comments user code be-
gins and user code ends. Subsequent code generation cycles
preserve the code written between these comments. In this
particular example, the framework calls this function every 1
second - because it is set as the periodicity of this publisher.
For emulation purposes, we pass the value of measured ac-
celeration to be published using a lookup table (size=1000
entries) stored as the array accelerationValues. This
array is configured for each experiment.

All acceleration values are fed to the four ADIRU pro-
cessors, which process the values measured by the six ac-
celerometers and solve a set of linear regression equations to
estimate the body linear acceleration. Each ADIRU processor
consists of six aperiodic consumers and a periodic publisher.
See Sidebar 2 for a brief overview of the regression principle.
It should be noted that if a processor is aware of a fault in one
of the accelerometers it can ignore that particular observation
and use the other 5 for performing regression. The following
equations present the nominal acceleration estimate derived by
solving the regression equations using all six accelerometers :
ay = —0.19a; +0.19a3 — 0.30a3 — 0.49a4 — 0.30as 4+ 0.11ag,
ay = —0.17a; —0.43a3 — 0.40a3 + 0.08a4 — 0.03a5 — 0.34as,
and a, = +0.43a7 + 0.17a3 — 0.03a3 + 0.08a4 — 0.40a5 —
0.34a¢.

The output of each ADIRU processor is the body axis data
and is published every second to the three voter components.
The voters consume these data with three consumers. Each
voter uses a median algorithm to choose the middle values
and outputs it to the display component.

Deployment: Fig. 5 also shows the deployment. Each ac-
celerometer is deployed on a separate partition in an ARINC
653 module. Module schedule is also shown. ADIRU pro-
cessors are deployed on 4 partitions on one module. A pair
of a voter and a display unit shares a single partition on the
last module. The ARINC Component Framework ensures that
all modules run in a synchronized manner with the specified
system-wide hyper period of 1 second. At the start of each
hyper period a controller sends a synchronization message to
each module manager, which executes the module schedule.
This is similar to the technique in the TTP/A protocol [21].

+N (D)

Sidebar 2: Linear Regression

The multivariate linear regression problem with n obser-
\iations and k independent variables, [, is to find the estimator
[that solves the following with minimum mean square error:
Y =XB+Z, where Yis (nx 1), Xis (nxk), Bis (kx1)
and unknown. Z is a (n x 1) vector with zero mean, normal
error and a (n X n) variance-covariance matrix V/[Z] = Io?.

The MLE estimate 3 satisfies the following equation: 8 =
arg min, ||Y — Xb||2, where b are various estimates of 3. It
is known that the unbiased MLE £ is:

. =
b= (x"x) x"Y)
_ The residual sum of squares is defined by S(B) =
BXTY — nY>. The total sum of square error is given by
SST = YTY—nY?. Coefficient of determination R is given

by R =1-— % R? close to 1 signifies a good fit.

VI. SHM For ADIRU

As briefly discussed in section IV, we use a two-level ap-
proach for implementing a software health management frame-
work: (a) component level with local view of the problem, and
(b) the system level. The component level health management
deals with detecting violations and taking local mitigation ac-
tion within a component. The system level health management
deals with aggregating the data (monitor and local mitigation
action) from component health managers across the entire
system, performing a system-wide diagnosis to identify the
fault-source and taking a system-wide mitigation action based
on the results of the diagnosis. The following sub-sections
discuss these aspects with respect to the ADIRU example
more detail.

A. Component Level Detection

The ACM framework allows the system designer to deploy
monitors which can be configured to detect deviations from
expected behavior, violations in properties, constraints, and
contracts of an interaction port or component. Table III de-
scribes the different discrepancies that can be observed on a
component port and the component as a whole. A detailed
description is provided in the paper [15]. While the mon-
itors associated with resource usage are run in parallel by
framework, other monitors are evaluated in the same thread
executing the component port. When any monitor reports a
violation, the status is communicated to its Component Level
Health Manager (CLHM) and then possibly to the System
Level Health Manager (SLHM).

In addition to the monitors described in Table III, new
monitors have been introduced that inform the component
health manager of the current component-process (port) being
executed. These monitors report an ENTRY into and EXIT
from a process. These are used to observe the execution se-
quence using an observer state machine and thereby detect
and/or prevent any deviations that might adversely affect the
health/operation of the component.

<PreCondition>::=<Condition>
<PostCondition>::=<Condition>
<Deadline>::=<double value> /* from the start of the process
associated with the port to the end of that method */
<Data_Validity>::=<double value> /* Max age from time of
publication of data to the time when data is consumed*/
<Lock Time Out>::=<double value> /* from start of obtain-
ing lock*/
<Condition>::=<Primitive

Clause><op><Primitive

Clause>|<Condition> <logical op><Condition>|
!<Condition> | True| False
<Primitive ~ Clause>::=<double value>| Delta(Var)|

Rate(Var)| Var

/* A Var can be either the component State Variable, or the data
received by the publisher, or the argument of the method defined
in the facet or the receptacle™/
<op>i=< | > | <=|>=|=|!=

<logical op>::=&& | ||

TABLE III
MONITORING SPECIFICATION. COMMENTS ARE SHOWN IN ITALICS.

HM Action Semantics
CLHM: IGNORE Continue as if nothing has happened
CLHM:ABORT Discontinue current operation, but operation
can run again
CLHM: Use most recent data (only for operations
USE_PAST _DATA | that expect fresh data)
CLHM: STOP Discontinue current operation
Aperiodic processes (ports): operation can
run again
Periodic processes (ports): operation must be
enabled by a future START HM action
CLHM: START Re-enable a STOP-ped periodic operation
CLHM RESTART A Macro for STOP followed by a START
for the current operation
SLHM: RESET Stop all operations, initialize state of com-
ponent, clear all queues. start all periodic
operations
SLHM: STOP Stop all operations
TABLE IV

CLHM AND SLHM MITIGATION ACTIONS.

Monitors in the Modeled ADIRU Assembly: In the ADIRU
assembly, the monitors are configured to track the resource-
usage of the publishers / consumers in the Components as-
sociated with Accelerometers, ADIRU processors, Voters and
Display components. The publisher port in each Accelerom-
eter component is configured with a monitor to observe the
published data via a post condition. These monitors fire if the
published data from the associated Accelerometer appears to
be Stuck-High or Stuck-Low or show a rapid change in value
that is more than the established norms. All the consumer ports
in each of the ADIRU-processors, Voters and Display compo-
nents have a specified Data-Validity time and the associated
monitors trigger when the age of the incoming data (i.e. the
difference between the current time and the timestamp on the
data) is more than the specified Data-Validity time. Another
set of monitors are configured to check for violations of a
pre-condition for the consumer ports in the Display compo-
nent. This property detects rapid changes in the data fed to
these consumers consistent with the physical limits on aircraft

acceleration and jerk (rate of change of acceleration) in each
one of the body axes.

Entry_1[nue] !
Initial

[T @
State_0
POST_CONDJ[] /
SEND(IGNORE true)
timeout(2)/
status[0]=
Initial @ 0 o E)_ OR
Initial L
ok staleDala FaultManager
(@) (b)

Fig. 7. (a) Accelerometer 1 Observer inside the ADIRU processor. (b)
CLHM State-Machine of Accelerometerl

In addition to the monitors specified above, the ADIRU
processor components look for the absence of published data
on each of the consumer ports, connected to one of the six
accelerometers. This is done by observing the lack of the
ENTRY/EXIT events from these ports within a pre-specified
timeout period, see Fig. 7(a). It shows portions of the state
machine specification monitoring the events for accelerometer
1. Once a missing data is detected, the status is set to O.
The status array, indexed from O and having six elements,
captures the state of all six channels. Five other, similar state
machines are used for observing the other accelerometers, in
parallel.

B. Component Level Mitigation

Once a discrepancy is detected, the generated code provided
by the framework reports the problem to the CLHM. The
ACM modeling language allows the CLHM to be defined as
a timed-state machine that acts upon input error/discrepan-
cy/anomaly events and outputs the appropriate local mitigation
action. CLHM for each component is deployed on a high-
priority ARINC process that is triggered when any of the
associated ARINC processes (hosting the Component ports) or
the underlying ACM framework report any violations detected
by monitors. In a blocking call, the reporting process waits
for a response/mitigation action from the CLHM. Table IV
lists the mitigation actions that can be issued by the CLHM.

During the work presented in this paper, we updated the
ACM framework and Health Management support, the CLHM
can be configured to take on the additional responsibility of
an observer. As an observer, the CLHM state machine uses
the input events detected by ENTER and EXIT monitors to
track the execution-sequence of the component ports, pos-
sibly together with the evolution of the component’s state.
Such tracking can detect incorrect sequencing of component
operations, or illegal states of the component. Previous sec-
tions described how we used observers in context of ADIRU.
When any deviation is observed, the observer can trigger the
health manager portion of the CLHM state machine to take
the appropriate mitigation action, and/or transition to a new
state.

CLHM in the ADIRU assembly: Components associated
with an Accelerometer and a Display host a CLHM. In case of

PRE_COND_CENTER(] /

- PRE_COND_RIGHT]/
SEND(ABORT_PROCESS true)

SEND(ABORT_PROCESStrue)

PRE_COND_LEFT(J/
SEND(ABORT_PROCESS true)

OR OR OR

StateLeft

StateCenter StateRight

Fig. 8. CLHM State-Machine associated with Display Component.
PRE_COND are events send when the corresponding monitor fires. SEND is
a predefined action that sends out the mitigationa action to the failed process.

the Accelerometers, the CLHM, see Fig. 7(b), is configured to
issue an IGNORE command when the post-condition violation
is detected in the publisher. In case of the Display component,
the CLHM, see Fig. 8, has a parallel state machine to observe
and manage faults detected in the consumers associated with
left, right, and center channels. Each of these parallel ma-
chines responds with an ABORT command if a pre-condition
violation is observed in the data input to the consumer. As
described in the previous section, this pre-condition checks
whether the rate of change of acceleration does violate the
specifications. In both cases, the CLHM reports the anomaly
detected and the local mitigation command issued to the Sys-
tem Level Health Manager.

C. System-Level Health Management

While component level health management is performed
by the CLHM inside the Component, the system level health

management requires additional, system-wide components. These

new components: Alarm Aggregator, Diagnosis Engine, and
SystemHMResponse Engine - have dedicated tasks associ-
ated with System Health Management. Fig. 5 shows these ad-
ditional System Level Health Management components, hosted
in a separate module, for the ADIRU assembly.

The Alarm Aggregator is responsible for collecting and
aggregating inputs from the component level health managers
(local alarms and the corresponding mitigation actions). It
contains an aperiodic consumer that is triggered by the data
(alarm, and local mitigation command) provided by the com-
ponent level health managers. The Alarm Aggregator com-
ponent assimilates the information received from the Com-
ponent Level Health Managers in a moving window of two
hyper periods and sorts them based on their time of occur-
rence. This data is fed to the diagnosis engine. The Diagnosis
Engine uses a model-based reasoner to diagnose the source
of the fault by searching for an explanation for the alarms
collected by the Alarm Aggregator. Finally, the SystemHM-
ResponseEngine component acts upon the diagnosis result to
deliver the appropriate system level mitigation response.

In order to interact with the System Level Health Manage-
ment components, each functional component in the existing
Assembly model is provided an additional publisher: HMPub-
lisher, and consumer: HMConsumer. The publisher is used
by the Component Health Manager to feed local detection
and mitigation data to the Alarm Aggregator. The consumer
is used to receive commands from the SystemHMRespon-
seEngine. To avoid clutter, Fig. 5 does not show these ad-
ditional publishers and consumers.

PUBLISHER-PORT-TFPG
LOCK PROBLEM
B
LOCK_FM| LockTimeout_Failure LockTimeout

JIGNORE _ __
ABORT

COMPONENT-TFPG

PRECONDITION FAILURE

a0 IGNQRE__ | Y
E @ ABORT 20
Bad_State BadData_IN PreCondition |

NoDataff’uinghed

USER-CODE FAILURE

|
|
|
|
|
|
|
:
IGNORE '
——————————— ~ 50

CONSUMER-PORT-TFPG
LOCK PROBLEM

GNORE _ |
ABORT

LOCK_FM| LockTimeout_Failure LockTimeout

9d41-ININOJINOD

VALIDITY FAILURE |
N USEPASTDATA
0 —_ =

ValidityFailure_IN BORT

o A
ValidityFailure

RRECONDITION FAILURE
> B

I

I

I

I

I

I

I

I

I

}
7 I "
| BadData_IN \—>MJ9NDRE4 -
RT |

[¢)
MissingSthteUpdate

AB|
USEPASTDATA PreCondition

S

|
i
ValidityFailure !
|
|
|

USER-CODE FAILURE |nval‘d5tate

UserCode UserCode

IGNORE

[IDCREFT] ey

PreCondition

ABORT

InvalidDataPé‘jinshed

|

|

|

|

|

I

i

POST-CONDITION FAILURE }
|

PostCondition

IGNORE
UserCode

DEADLINE FAILURE

PostCondition

IGNORE ™ — —
!—pm— —_— — J STOP
Deadline Deadline RESTART

IGNORE

=

Pointer to Other Discrepancy
with same Name

LateDataPublished

OrDiscrepancy
With Alarm

UserCode UserCodLABORT

IGNORE

PreCondition

IGNORE __, g
A
|
|
|
|
|
|
|
|

POST-CONDITION FAILURE !
|

PostCondition PostCondition

m IGNPRE
UserCode

DEADLINE FAILURE

|
|
|
|
|
|
|
|
|
|
|
,___l

W/ GNORE |

Deadline
IGN

LateState quate

UserCode

Bl Discrepancy . Failure Mode

Fig. 9. TFPG model of a Publisher/Consumer interaction

D. System Level Diagnosis

To identify the fault-source, the Diagnosis Engine com-
ponent in the SLHM needs to reason over the alarms (and
their associated local mitigation actions) received from one
or more Component Health Managers. The reasoning process
isolates the fault source using a diagnosis technique based
on a Timed-Failure Propagation Graph (TFPG) model
of the system, see Sidebar 3. In a TFPG model [2], [3],
[4], [28] the fault-sources (Failure Modes) and the anomalies
(observed or un-observed Discrepancies) in the system are
represented as nodes of a labeled, directed graph. The directed
edges between nodes capture the propagation of the failure
effect from the source node (Failure Mode/Discrepancy) to the
destination node (Discrepancy). A propagation timing interval
and the system mode wherein the fault effect can propagate
are captured as edge properties.

Automatic Synthesis Of Fault Propagation Graph: In
this work, the TFPG model of the system is auto-generated
using the information available in the system’s ACM model.
The TFPG model of the system is made up of the TFPG model
of its associated component, which in turn is made up of the
TFPG model of the interaction ports (Publisher / Consumer/
Provides/ Requires ports) present in the component. As each
of the ports have a well-defined sequence of operations, a
specific TFPG-template model can be created for each of these
types. The template TFPG model contains the Failure-Modes,
Discrepancies and the failure-propagation edges specific to
that ACM-port type. The TFPG model of each component is
populated with instances of the appropriate template-TFPG
model (based on the type of ACM-ports contained in the
component). The data-flow model and the control flow of the
Component, is useful in identifying additional failure propa-

Publisher Ccﬁjmer'ACﬂ Consumer-ADIRU-1 Consumer-VOTER-L
s BDI EHBDI —|»#mEBDI
NDP Bl o VFI VFI >
IDP 88 Publisher - Publisher Al
LOPRRTY £o® NDP il 5 %e NDPEE 5%
EE g Ex
Accelerometerl 3 @ IDP B8 ize IDP &8 ile
§® LDPSS Sle LDPE S5e
gonsumer-Acch Consumer-ADIRU-4 Consumer-VOTER-R
0 EHED {+-EmBD »8HBDI
N B VFI B VFI » g VFI
(2]
% o ADIRU-Processor-1 VOTER-L Display-L
£
o
E . ™ [)
2 iy [
c @ e VOTER-C DISPLAY-C
< o
o m. o
a8 ®
[
LEGEND <se ®
IDP= Invalid Data a
Published
NDP= No Data
Published - -
_ Consumer-Accl Consumer-ADIRU-1 Consumer-VOTER-L
LDP=Late Data »EHEDI
Published =?/E|I > VF |
BDI= Baq I_Data I_n Publisher Publisher 50
VFI= Validity Failure In 5 ® NDP N g 5"
: 2% IDP 88T IDP S8k zo®
Publisher S<e® LDP &I LDPSS| || c>e
NP Consumer-Acc6 Consumer-ADIRU-4 Consumer-VOTER-R
IDP B8 BHEDI "Bl BDI
LDP S = VFI > VFI
Accelerometer6 Display-R
ADIRU-Processor-4 VOTER-R play

Fig. 10. TFPG model of the ADIRU system

gation edges within the Component. The interaction captured
in the Assembly model (e.g. Fig. 5) helps in identifying failure
propagation interactions across two components.

Diagnosis: The generated TFPG-model is used by the di-
agnosis engine to hypothesize the fault-source(s) that could
have triggered a specific set of alarms. While additional alarms
certainly help in narrowing out the fault-source, it is possible
that the observed alarm set (observable discrepancies) could
be explained by multiple hypotheses (fault source). Thresh-
olds based on hypothesis metrics such as Plausibility and
Robustness [4] are used to prune the hypotheses set. Further,
the component containing the most number of fault-sources
(as identified by the pruned hypotheses set) is categorized as
the faulty component.

TFPG Model of ADIRU Assembly: The TFPG model for
the ADIRU system was auto-generated using the approach
described above. This section explains the generation process
and the TFPG models in more detail. Fig. 9 captures an
instance of the template TFPG model of a publisher and a
consumer as well as the TFPG model of the Components
hosting these ACM-ports. Additionally it captures the Failure
Propagation effect between the publisher and consumer (or
their components).

As previously stated, each of the ACM-port types has a set
of generic operations performed in a well-defined sequence in
each cycle of execution. During this process, a set of mon-
itors are invoked to detect anomalies. Currently these moni-

tors detect violations and problems related to Lock-Acquire,

Data-Validity in consumer, Pre-Condition and Post-Condition

checks, errors in User-Code and Deadline violations. The TFPG
model of the Publisher and Consumer port in the Fig. 9 shows

the Discrepancies associated with these monitors and the fail-

ure propagation interaction of these Discrepancies with other

Discrepancies and Failure modes. These failure propagations

correspond to the cascading effects of failures within the ACM-
port as well as the failure propagation into or out of the

component port (here Publisher/Consumer).

Discussion of Fault Propagation: For example, as shown
in the TFPG for the publisher-port, it is evident that inabil-
ity to acquire the Component LOCK prevents the Publisher
code from running, thereby resulting in no data being pub-
lished (see section IV for description of the generated code
for all ports.). Another fault-propagation example includes
a Bad_Input to the Publisher port that could lead to pre-
condition violation which in-turn could lead to different kinds
of anomalies based on the CLHM’s local mitigation action.
An ABORT command issued by CLHM for a pre-condition
violation could again lead to the problems associated with no
data being published. An IGNORE CLHM command could
resolve the issue (with no further alarms) or possibly cascade
into a user code anomaly and/or a post-condition anomaly
and/or a deadline violation. The net result of these failures
could be either no data being published or invalid data being
published or the data being published late. All these effects

Sidebar 3: Timed Failure Propagation
Graph

Timed failure propagation graphs (TFPG) are causal models
that capture the temporal characteristics of failure propagation
in dynamic systems. A TFPG is a labeled directed graph.
Nodes in graph represent either failure modes (fault causes),
or discrepancies (off-nominal conditions that are the effects of
failure modes). Edges between nodes capture the propagation
of the failure effect. Formally, a TFPG is represented as a
tuple (F, D, E, M, A), where:

o F'is a nonempty set of failure nodes.

e D is a nonempty set of discrepancy nodes. Each dis-
crepancy node is of AND or OR type.”. Further, if a
discrepancy is observable then it is associated with an
alarm.

¢« ECV XV is aset of edges connecting the set of all
nodes V' = F' U D. Each edge has a minimum and a
maximum time interval within which the failure effect
will propagate from the source to the destination node.
Further, an edge can be active or inactive based on the
state of its associated system modes.

e M is a nonempty set of system modes.

o A is a nonempty set of alarms.

The TFPG model serves as the basis for a robust online
diagnosis scheme that reasons about the system failures based
on the events (alarms and modes) observed in real-time[18],
[3],[4]. The model is used to derive efficient reasoning algo-
rithms that implement fault diagnostics: fault source identifica-
tion by tracing observed discrepancies back to their originating
failure modes. The TFPG approach has been applied and
evaluated for various aerospace and industrial systems[28].
More recently, a distributed approach has been developed for
reasoning with TFPG[24].

“An OR(AND) type discrepancy node will be activated when the
failure propagates to the node from any (all) of its predecessor nodes.

could affect the consumer downstream. Again, a part of the
scenario described above could be triggered even with good
data input into the publisher. It is possible that in this case
there is no pre-condition violation, but a fault in the user code
(captured by USER_Code failure mode) could trigger a set of
anomalies leading to down-stream problems associated with
the published data.

It can be seen that the TFPG model of the consumer is only
slightly different from that of the publisher. This is because
the generic operations triggered in sequence during an execu-
tion/run of the consumer are similar to that of the publisher.
The difference is present since a consumer consumes a data-
token. There is a monitor associated with the validity of the
data-token - ValidityFailure. Failure propagations are similar
to the publisher’s TFPG model. The difference lies in that the
failure effects propagating out of the consumer port affect
the state variables that the consumer updates (No_Update,
Invalid_Update, and Late_Update).

Since the ACM ports are hosted inside specific compo-
nents, the failure effects could propagate (in either direction)
between the ports (i.e. within the component) and between
components. With reference to the Fig. 9, it can be seen that
the publisher is affected if the component state-variable (used

by the publisher) is affected. This is represented as a failure-
propagation between the Bad_State discrepancy in the compo-
nent TFPG and the Bad_Data_IN discrepancy in the publisher
TFPG. The failure effects of a bad-data input affecting the
publisher’s pre-condition, or user-code evaluation is captured
by the failure propagation links in the publisher TFPG. In the
case of the consumer-port, the failure effects originate from
the consumer and affect the state-variables (updated by the
consumer) in the component.

Interaction between the publisher and the consumer is cap-
tured in the Assembly model. This implies that the output
discrepancies in the publisher can possibly propagate failure
effects to the input discrepancies on the consumer side. For
example, the failure effects associated with either no data
published or data published late could affect the validity of the
data consumed in the consumer. Alternatively, an invalid data
published from the publisher could lead to a pre-condition or
user code violation in the consumer.

As can be seen from the TFPG model described in Fig.
9, a Bad_State introduced in the Publisher component, could
cascade through the publisher to the consumer side and the
associated states of the consumer component.

Fig. 10 captures the component-level TFPG model for the
entire ADIRU assembly model. The details of the TFPG model
of the publisher/consumer ports and their interaction with their
respective components is not shown in this model and is
considered to be hidden within the component and ACM port
TFPG models.

This generated TFPG model is used to initialize the model-
based reasoner in the Diagnosis Engine component. When
new data is received from the Alarm-Aggregator component,
the reasoner processes these alarms to generate a set of hy-
potheses that best describe the cause for the alarms. As new
alarms are received it updates the hypotheses. The hypotheses
with the best metric (Plausibility, Robustness) are regarded as
the most plausible explanation. Further, in the case when a
system-level mitigation strategy is specified, then the compo-
nent containing the source failure modes is identified and the
information is passed on to the component hosting the system-
level mitigation strategy: the SystemHMResponseEngine.

E. System Level Mitigation

The system-level mitigation strategy is modeled using hi-
erarchical timed state machine formalism in the ACM model-
ing language. This state machine is executed inside the Sys-
temHMResponseEngine component. This component has an
aperiodic consumer that receives the diagnosis results from
the Diagnosis-Engine Component. Upon arrival of a new di-
agnosis result, the consumer triggers the state-machine imple-
menting the system level mitigation with the input event: the
diagnosis result. If a mitigation action needs to be taken on a
specific component, the state machine’s output is sent to the
appropriate component. The commands issued by the System-
Level Health Manager are those defined by ARINC-653 -
RESET, STOP, CHECKPOINT and RESTORE commands to
other ARINC processes (see table IV). Currently, the Sys-
tem Level Health Manager action is considered for the entire
component (i.e. all ARINC processes in the Component).

TABLE V
EVENT SEQUENCE

Time(s)| Module:Component Description

1 Accelerometer-5 Accelerometer 5 is known to be faulty and not being used by the processors. Accelerometer 5
post-condition violation followed by IGNORE from its CLHM. No pre-condition violation in
the display components. SLHM diagnosis does not produce a hypothesis that crosses robustness
threshold.

Power Reset of ADIRU-Processors
0 ADIRU Processor(s) Reset. During initialization fail to read information that Accelerometer-5 is faulty. But continue
to use only Accelerolmeterl,2,3,4,6
Accelerometer-6 fails silent
1.00 Accelerometer-6 Fails Silently. Detected by the observers in ADIRU Processors.
2.00 ADIRU-Processor(s) Reconfigure the set of regression equations - end up using Accelerometer-5.
Using Faulty Accelerometer-5
2774 | Accelerometer-5 | Published Bad Data. Post-condition check violated.
Local Mitigation & Report to SLHM

2.74 Accelerometer-5 CLHM | Receives Post-Condition violation alarm and issues an IGNORE command. Passes the data to
Alarm Aggregator.

3.25 [Alarm Aggregator [Receives data from Accelerometer-5. Buffers and later sends it to Diagnosis Engine.

Faulty Data Consumed & Processed
4.00 4 ADIRU-Processors (1- | All of them use data from faulty Accelerometer-5. Hence results from all ADIRU-Processors are
4) skewed
4.25 3 Voters (Left, Center, | Voters compute the results based on the ADIRU-Component outputs. They cannot isolate the faulty
and Right) data as all the input-data (to Voter) display is similarly affected.
Local Mitigation & Report to SLHM
4.25 3 Display Components | Consume data fed by the voters. Data show pre-condition violation.
(Left, Center, Right)
4.25 Display = Component(s) | Receives Pre-Condition violation alarm and issues an ABORT command. Passes the data to Alarm
CLHM Aggregator.
[425 [Alarm Aggregator | Receives data from Display Component. Buffers and later sends it to Diagnosis Engine.
System Level Health Management - Alarm Aggregation, Diagnosis, Mitigation

5.25 Alarm Aggregator Feeds data to Diagnosis Engine.

5.25 Diagnosis Engine Receives alarm data from Alarm Aggregator and runs the TFPG-Reasoner. Detects Accelerometer-
5 to be a possible fault candidate. Supporting alarms received from Pre-Condition violations in
Display-Components increases the metric and confirms the fault in Accelerometer-5. Feeds result
to Response Engine Comp component to take mitigation action

5.39 Response Engine Comp Receives information on the faulty component - Accelerometer-5 - and issues command to reset.

5.74 Accelerometer-5 Receives command to Reset from Response Engine Comp. Resets itself.

Reset of Accelerometer-5 has no effect
6.74 [Accelerometer-5 [Fault in Accelerometer-5. Published Bad Data. Violates Post-Condition check.
Local Mitigation & Report to SLHM

6.84 Accelerometer-5 CLHM | Receives Post-Condition violation alarm and issues an IGNORE command. Passes the data to
Alarm Aggregator.

6.95 | Alarm Aggregator | Receives data from Accelerometer-5. Buffers and later sends it to Diagnosis Engine.

Faulty Data Consumed & Processed & Other monitors trigger

7 4 ADIRU Processor (1-4) | All ADIRUs use all the Accelerometers (including the faulty Accelerometer-5). Hence results from
all ADIRU-Processors are skewed

7.25 3 Voters (Left, Center, | Voters compute the results based on the ADIRU-Processor outputs. They cannot isolate the faulty

and Right) data as all the input-data (to Voter) display is similarly affected.

7.30 3 Display Components | Consume data fed by the voters. Pre-condition violations detected

(Left, Center, Right)
Local Mitigation & Report to SLHM
7.30 Display-Component(s) Receives Pre-Condition violation alarm and issues an ABORT command. Passes the data to Alarm
CLHM Aggregator.
734 | Alarm Aggregator | Receives data from Display-Component(s). Buffers and later sends it to Diagnosis Engine.
System Level Health Management - Alarm Aggregation, Diagnosis, Mitigation

8.30 Alarm Aggregator Feeds data to Diagnosis Engine.

8.65 Diagnosis Engine Receives alarm data from Alarm Aggregator and runs the TFPG-Reasoner. Again detects
Accelerometer-5 to be a possible fault candidate. Finds other monitors/alarms that support the
hypothesis. Feeds result to Response Engine Comp component to take mitigation action

8.65 Response Engine Comp Receives information on the faulty component - Accelerometer-5 - and issues command to STOP
1t.

8.95 Accelerometer-5 Receives command to Stop from Response Engine Comp. Stops itself.

Post Stopping Accelerometer 5

9.45 ADIRU-Processor(s) Over-time ADIRU-Processors detects using the observer that there is no data from Accelerometer-
5. Stop using Accelerometer-5. Regression equations use accelerometers 1-4

9.75 Display-Component(s) The Data received from the Voter(s) do not violate the Pre-condition. Back to Healthy operation.

Initial Reset

Nominal
[ISFaulty(Acceleratorl)] /
OR COMMAND(RESETALL Acceleratorl OR

[ISFaulty(Acceleratorl)] /
OR COMMAND(STOPALL,Acceleratorl

STOP

Fig. 11. Portion of the Mitigation Strategy (State Machine) dealing with
Accelerometerl

Mitigation Strategy for ADIRU: The system-level miti-
gation strategy for the ADIRU is modeled as a hierarchical
parallel timed state machine. Fig 11 captures the mitigation
strategy for each Accelerometer fault. An initial command is
issued to RESET the Accelerometer component, hoping that
this will get the Accelerometer to work correctly. If despite the
reset, the same Accelerometer is identified as a fault-source
within a specified time-limit, then command is issued to STOP
the Accelerometer.

VII. EXPERIMENT AND DISCUSSIONS

We deployed the three different modules of the ADIRU
assembly shown in Fig. 5 on three computers in our lab.
These computers were running our ARINC-653 emulator on
top of Linux, and had the ARINC Component runtime. These
computers were on an isolated subnet, with the network shared
by all hosts. Upon initialization, all modules synchronized
with the system module that ran the diagnoser and system
response engine. Thereafter, each module cyclically scheduled
its partitions. All modules resynchronized with the system
module at the start of each hyperperiod. The code necessary
for this distributed synchronization was auto generated from
the ADIRU deployment model in which each module was
mapped to a physical core on a processor.

Table V shows the highlights of the events as they were
recorded throughout the system. Time is relative to the first
event. All faults, including accelerometer 6 and 5 were artifi-
cially injected and turned on after a fixed number of iterations.
From our observations we noticed that our diagnoser was
correctly able to determine that the problem was caused by
accelerometer 5 and shut it down. Thereafter, the redundancy
management algorithm in the ADIRU processor was able to
reconfigure itself to use a different set of regression equations
that did not use Accelerometer 5 or 6, and prevented a system-
wide failure.

VIII. CONCLUSION

Self-adaptive systems, while in operation, must be able to
adapt to latent faults in their implementation, in the computing
and non-computing hardware; even if they appear simulta-
neously. Software Health Management (SHM) is a system-
atic extension of classical software fault tolerance techniques
that aims at implementing the vision of self-adaptive software
using techniques borrowed from system health management.
SHM is predicated on the assumptions that (1) specifications
for nominal behavior are available for a system, (2) a mon-
itoring system can be automatically constructed from these
specifications that detects anomalies, (3) a systematic design

method and a generic architecture can be used to engineer
systems that implement SHM. In this paper we have presented
our first steps towards such an SHM approach. We heav-
ily rely on our model-based technologies (domain-specific
modeling languages, software generators, and model-based
fault diagnostics), but we believe the overhead caused by this
apparatus is worthwhile, as the designer can directly work
with specifications and design the (SHM) system on a high
level. Our experiments have illustrated the approach but its
large-scale, industrial application remains.

The SHM technique described above is only the first step
towards the vision and much work remains. For example, fault
management systems need to be verified to show that they
do not violate safety rules. The verification of such adaptive
systems is a major challenge for the research community.
Furthermore, the approach described is based on explicitly
designed, reactive state machines that encode the strategies
to handle specific failure modes. Designers have to model
these reactions explicitly. In a more advanced system a more
deliberative, reasoning-based approach can be envisioned that
derives the correct reaction based on some high-level goals
and the current state of the system. Such an advanced ap-
proach to SHM is currently being investigated.

ACKNOWLEDGMENTS

This paper is based upon work supported by NASA under
award NNXO08AY49A. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the
National Aeronautics and Space Administration. The authors
would like to thank Dr Paul Miner, Eric Cooper, and Suzette
Person of NASA LaRC for their help and guidance on the
project.

REFERENCES

[1] Arinc specification 653-2: Avionics application software standard inter-
face part 1 - required services. Technical report.

[2] S. Abdelwahed and G. Karsai. Notions of diagnosability for timed fail-
ure propagation graphs. In Proc. IEEE Systems Readiness Technology
Conference, pages 643-648, 18-21 Sept. 2006.

[3] S. Abdelwahed, G. Karsai, and G. Biswas. A consistency-based robust
diagnosis approach for temporal causal systems. In in The 16th
International Workshop on Principles of Diagnosis, pages 73-79, 2005.

[4] S. Abdelwahed, G. Karsai, N. Mahadevan, and S. C. Ofsthun. Practical
considerations in systems diagnosis using timed failure propagation
graph models. Instrumentation and Measurement, IEEE Transactions
on, 58(2):240-247, February 2009.

[5] Ariane 5 inquiry board report. Technical report, Available at
http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf, June 1996.

[6] A. T.S. Bureau. In-flight upset; 240km nw perth, wa; boeing co 777-
200, 9m-mrg. Technical report, August 2005.

[71 A. T. S. Bureau. A0-2008-070: In-flight upset, 154 km west of
learmonth, wa, 7 october 2008, vh-gpa, airbus a330-303. Technical
report, October 2008.

[8] D. W. Bustard and R. Sterritt. A requirements engineering perspective
on autonomic systems development. Autonomic Computing: Concepts,
Infrastructure, and Applications, pages 19-33, 2006.

[9] R. Butler. A primer on architectural level fault tolerance. Technical
report, NASA Scientific and Technical Information (STI) Program
Office, Report No. NASA/TM-2008-215108, 2008.

[10] e. Cheng, Betty H. Software engineering for self-adaptive systems.
chapter Software Engineering for Self-Adaptive Systems: A Research
Roadmap, pages 1-26. Springer-Verlag, Berlin, Heidelberg, 2009.

[11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

E. M. Dashofy, A. van der Hoek, and R. N. Taylor. Towards architecture-
based self-healing systems. In WOSS ’02: Proceedings of the first
workshop on Self-healing systems, pages 21-26, New York, NY, USA,
2002. ACM Press.

R. de Lemos. Analysing failure behaviours in component interaction.
Journal of Systems and Software, 71(1-2):97 — 115, 2004.

A. Dubey, G. Karsai, R. Kereskenyi, and N. Mahadevan. A real-time
component framework: Experience with ccm and arinc-653. Object-
Oriented Real-Time Distributed Computing, IEEE International Sym-
posium on, pages 143-150, 2010.

A. Dubey, G. Karsai, and N. Mahadevan. A component model for
hard-real time systems: Ccm with arinc-653. Softw., Pract. Exper., 2011.
To Appear. Draft available at http://isis.vanderbilt.edu/sites/default/files/
Journal_0.pdf.

A. Dubey, G. Karsai, and N. Mahadevan. Model-based software health
management for real-time systems. In Aerospace conference, 2011
IEEE, 2011. to appear. Draft available at http://www.isis.vanderbilt.
edu/node/4232.

D. Garlan, S. W. Cheng, and B. Schmerl. Increasing system depend-
ability through architecture-based self-repair. Architecting Dependable
Systems, 2003.

W. S. Greenwell, J. Knight, and J. C. Knight. What should aviation
safety incidents teach us? In SAFECOMP 2003, The 22nd International
Conference on Computer Safety, Reliability and Security, 2003.

S. Hayden, N. Oza, R. Mah, R. Mackey, S. Narasimhan, G. Karsai,
S. Poll, S. Deb, and M. Shirley. Diagnostic technology evaluation report
for on-board crew launch vehicle. Technical report, NASA, 2006.

C. Johnson, C.W.;Holloway. The dangers of failure masking in fault-
tolerant software: Aspects of a recent in-flight upset event. In 2nd IET
Systems Safety Conference, The IET, Savoy Place, London, UK., pages
60-65. IEE, 2007.

S. Johnson, editor. System Health Management: With Aerospace
Applications. John Wiley & Sons, Inc, Based on papers from First
International Forum on Integrated System Health Engineering and
Management in Aerospace, 2005. To Appear in 2011.

H. Kopetz, M. Holzmann, and W. Elmenreich. A universal smart
transducer interface: Ttp/a. In Object-Oriented Real-Time Distributed
Computing, 2000. (ISORC 2000) Proceedings. Third IEEE International
Symposium on, pages 16 23, 2000.

S. Lightstone. Seven software engineering principles for autonomic
computing development. ISSE, 3(1):71-74, 2007.

M. R. Lyu. Software Fault Tolerance, volume New York, NY, USA.
John Wiley & Sons, Inc, 1995.

N. Mahadevan, S. Abdelwahed, A. Dubey, and G. Karsai. Distributed
diagnosis of complex causal systems using timed failure propagation
graph models. In IEEE Systems Readiness Technology Conference,
AUTOTESTCON, 2010.

M. D. W. Mcintyre and D. L. Sebring. Integrated fault-tolerant air data
inertial reference system, 1994.

[26]

[27]

(28]

[29]

(30]

(31]

[32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

NASA. Report on the loss of the mars polar lander and deep space 2
missions. Technical report, NASA, 2000.

S. Ofsthun. Integrated vehicle health management for aerospace
platforms. [Instrumentation Measurement Magazine, IEEE, 5(3):21 —
24, Sept. 2002.

S. C. Ofsthun and S. Abdelwahed. Practical applications of timed failure
propagation graphs for vehicle diagnosis. In Proc. IEEE Autotestcon,
pages 250-259, 17-20 Sept. 2007.

P. Robertson and B. Williams. Automatic recovery from software
failure. Commun. ACM, 49(3):41-47, 2006.

M. Rohr, M. Boskovic, S. Giesecke, and W. Hasselbring. Model-driven
development of self-managing software systems. In Proceedings of the
Workshop “Models@run.time” at the 9th International Conference on
model Driven Engineering Languages and Systems (MoDELS/UML’06),
2006.

M. Shaw. “self-healing”: softening precision to avoid brittleness:
position paper for woss ’02: workshop on self-healing systems. In
WOSS ’02: Proceedings of the first workshop on Self-healing systems,
pages 111-114, New York, NY, USA, 2002. ACM Press.

M. Sheffels. A fault-tolerant air data/inertial reference unit. In Digital
Avionics Systems Conference, 1992. Proceedings., IEEE/AIAA 11th,
pages 127 —131, Oct. 1992.

S. H. Stovall. Basic inertial navigation. RTCA, Incorporated, 1997.
A. Taleb-Bendiab, D. W. Bustard, R. Sterritt, A. G. Laws, and F. Keenan.
Model-based self-managing systems engineering. In DEXA Workshops,
pages 155-159, 2005.
W. Torres-Pomales.
report, NASA, 2000.
M. Wallace. Modular architectural representation and analysis of fault
propagation and transformation. Electron. Notes Theor. Comput. Sci.,
141(3):53-71, 2005.

N. Wang, D. C. Schmidt, and C. O’Ryan. Overview of the corba
component model. Component-based software engineering: putting the
pieces together, pages 557-571, 2001.

B. Williams, B. Williams, M. Ingham, S. Chung, and P. Elliott. Model-
based programming of intelligent embedded systems and robotic space
explorers. Proceedings of the IEEE, 91(1):212-237, 2003.

B. C. Williams, M. Ingham, S. Chung, P. Elliott, M. Hofbaur, and
G. T. Sullivan. Model-based programming of fault-aware systems. Al
Magazine, 24(4):61-75, 2004.

J. Zhang and B. H. C. Cheng. Specifying adaptation semantics.
In WADS °’05: Proceedings of the 2005 workshop on Architecting
dependable systems, pages 1-7, New York, NY, USA, 2005. ACM.

J. Zhang and B. H. C. Cheng. Model-based development of dynamically
adaptive software. In ICSE ’06: Proceeding of the 28th international
conference on Software engineering, pages 371-380, New York, NY,
USA, 2006. ACM.

Software fault tolerance: A tutorial. Technical

http://isis.vanderbilt.edu/sites/default/files/Journal_0.pdf
http://isis.vanderbilt.edu/sites/default/files/Journal_0.pdf
http://www.isis.vanderbilt.edu/node/4232
http://www.isis.vanderbilt.edu/node/4232

	Introduction
	Related Research
	Case Study: Boeing 777 ADIRU
	The ARINC Component Model
	Modeling the ADIRU
	SHM for ADIRU
	Component Level Detection
	Component Level Mitigation
	System-Level Health Management
	System Level Diagnosis
	System Level Mitigation

	Experiment and Discussions
	Conclusion
	References

