
62 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 4 / $ 3 1 . 0 0 © 2 0 1 4 I E E E

Distributed Real-
Time Managed
Systems:
A Model-Driven Distributed
Secure Information
Architecture Platform
for Managed Embedded
Systems

Tihamer Levendovszky, Abhishek Dubey, William R. Otte,
and Daniel Balasubramanian, Vanderbilt University

Alessandro Coglio, Kestrel Institute

Sandor Nyako, William Em� nger, Pranav Kumar,
Aniruddha Gokhale, and Gabor Karsai, Vanderbilt University

// A practical design and runtime solution incorporates

modern software development practices and technologies

along with novel approaches to address the challenges of

effectively managing constrained resources and isolating

applications without adverse performance effects. //

MOBILE CLOUD COMPUTING in-
frastructures supporting the vision
of the Internet of Things (IoT)1 pro-
vide services benefi cial to our soci-
ety. For example, a cloud of smart-
phones can run software that shares
the sensing and computing resources
of nearby devices, providing in-
creased situational awareness in a
disaster zone. A cluster of small, col-
laborating satellites can provide in-
creased reliability at reduced launch
costs for scientifi c missions; NASA’s
Edison Demonstration of SmallSat
Networks, as well as TanDEM-X,
PROBA-3, and Prisma from the Eu-
ropean Space Agency, use clusters of
small satellites.

Unlike traditional computing
clouds, which draw a clear distinc-
tion between a cloud provider and
user, these roles will be interchange-
able in the participating resources
in mobile clouds.2 Additionally, the
need to scale up on demand is often
the motivation for using a traditional
cloud, whereas a mobile embedded
cloud is motivated by the need for on
demand collaboration.

Table 1 presents associated require-
ments and challenges that existing
cloud computing platforms don’t fully
address. In this article, we describe an
architecture called Distributed Real-
time Managed Systems (DREMS;
www.isis.vanderbilt.edu/DREMS),3

which addresses these requirements. It
consists of two main parts:

• a design-time tool suite for
modeling, analysis, synthesis,
integration, debugging, testing,
and maintenance of application
software built from reusable
components and

• a runtime software platform
for deploying, managing, and
operating application software

FOCUS: NEXT-GENERATION MOBILE COMPUTING

s2lev.indd 62 2/6/14 4:35 PM

MARCH/APRIL 2014 | IEEE SOFTWARE 63

on a network of embedded, mo-
bile nodes.

The platform reduces the com-
plexity and increases the robust-
ness of software applications by
providing reusable technological
building blocks in the form of an
OS, middleware, and application
management services (see Figure
1). For further reading, see the F6
Project Page website: (www.isis.
vanderbilt.edu/DREMS and www.
kestrel.edu/home/projects/f6) and
the Generic Modeling Environment
project page (www.isis.vanderbilt.
edu/Projects/gme).

Runtime Software
Platform: OS and
Middleware
DREMS provides a runtime plat-
form for applications in the form
of an OS and middleware. The
DREMS OS—a set of extensions to
the Linux kernel—provides all the
critical low-level services to support
resource management (including
spatial and temporal partitioning

of the memory and the CPU), actor
management, secure information
fl ows (labeled and managed), and
fault tolerance.

Software applications running
on DREMS are distributed. To fa-
cilitate isolation (requirement 4), the
components that make up an appli-
cation are encapsulated in process-
like containers called actors that
run concurrently (on the same node)
or in parallel (on different nodes).
This is similar to the notion of con-
current communicating objects.4

Actors are specialized OS pro-
cesses; they have a persistent iden-
tity that allows their transparent mi-
gration between computing nodes.
They also have strict limits on the
resources that they can use. There
are two main types of actors: appli-
cation actors and platform actors.
Application actors are built for spe-
cifi c applications, whereas platform
actors provide system-level services.
The OS guarantees performance iso-
lation between actors of different
applications (requirement 4). This is
accomplished by

• providing separate, protected ad-
dress spaces per actor;

• enforcing that a peripheral de-
vice can be accessed by only one
actor at a time; and

• facilitating temporal isolation
between actors by the scheduler.

The temporal isolation is provided
via ARINC-653-style partitions5—
periodically repeating fi xed inter-
vals of the CPU’s time exclusively
assigned to a group of cooperating
actors of the same application. The
scheduler guarantees that actors in
distinct temporal partitions can’t in-
advertently interfere with each other
via CPU usage. (Further details on
spatial and temporal isolation, both
of which are standard mechanisms,
are available elsewhere.3)

Component Model:
Building Blocks for
Application Development
To address requirement 1, DREMS
uses a component-oriented ap-
proach for application develop-
ment.6 It’s commonly accepted that

TA
B

L
E

 1 A summary of architectural decisions in DREMS.

Requirement Design principle Approach

1. Rapid application development, software reuse Component-based software
engineering

Novel component model

2. Multiple application interaction semantics Separation of concerns Rich set of component interaction ports with
operations scheduled independently

3. Managed concurrency and synchronization for
robustness

Single-threaded components Concurrency managed by OS and
middleware, not component business logic

4. Resource management and application
isolation with performance guarantees

Spatial and temporal separation Applications are run in isolated partitions

5. Secure information � ows Multilevel security with multidomain
labels, temporal/spatial isolation,
and mandatory access control

Architectural support for separation,
multilevel security (based on label checking),
and constrained information � ows

6. Managed and secure application deployment
and con� guration

Modeling and automation Model-driven middleware services to provide
secure deployment and con� guration

7. Producible veri� ed systems Defects being caught early in the
development cycle

Model-based system design and generative
development

s2lev.indd 63 2/6/14 4:35 PM

64 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: NEXT-GENERATION MOBILE COMPUTING

component-based software develop-
ment promotes rapid application de-
velopment and reuse.7 Components
have identity, have state, support
various operations, and interact via
ports. A DREMS component sup-
ports four basic types of communi-
cation ports, providing a range of
interaction semantics (requirement
2). First, there are facets, which are
collections of operations (interfaces)
provided by a component, and re-
ceptacles, which are collections
of operations required. These two
ports can be used to implement syn-
chronous and asynchronous point-
to-point interactions. In addition,
publisher and subscriber ports pro-
vide a way for components to inter-
act in a global data space defi ned
over topics. Conceptually, this is

similar to the OMG Common Ob-
ject Request Broker Architecture
(CORBA) Component Model.8

However, there are some key dif-
ferences. The DREMS component
model provides ports for accessing
I/O devices and timers. Ports are
implemented using connectors that
enable the use of a variety of com-
munication mechanisms,9 includ-
ing CORBA and Data Distribution
Services (DDS). Furthermore, secu-
rity using labeled communication
is a fundamental part of all com-
ponent interactions. Another key
distinction is the threading model:
DREMS meets requirement 3 by
enforcing that component activi-
ties are scheduled by the middle-
ware as nonpreemptible, single-
threaded operations that necessitate

no synchronization code from the
developer. Note that components do
run concurrently.

Secure Transport: A
Secure Actor-to-Actor
Communication Channel
DREMS provides a security architec-
ture (requirements 4 and 6) based on

• spatial and temporal separation
among the actors,

• fi ne-grained actor privileges that
control what system services can
be used by an actor,

• assurance that only one actor
actively controls a device at a
time, and

• a novel communication mecha-
nism among nodes called secure
transport, which supports the

Graphics decompressor

Actor

Actor

OS

RT Middleware

Deployment
manager

Device Device Communication
device

Developer

Model-driven development:
software toolchain for modeling,

synthesis, analysis, and veri�cation

Software platform:
support for components, resource sharing,

security, and fault tolerance

Deployment

Comp

Comp

Comp

Comp

Comp

Cluster lead

Cluster

IDL/XML
�les

FIGURE 1. DREMS architecture. The top-right portion shows the internals of one node.

s2lev.indd 64 2/6/14 4:35 PM

MARCH/APRIL 2014 | IEEE SOFTWARE 65

exchange of messages among
actors according to a multilevel
security (MLS) policy.

The combination of separation and
MLS guarantee, for example, that an
erroneous or malicious actor cannot
read information at a higher classifi -
cation level than its own.

To enforce these rules system
wide, application actors aren’t per-
mitted to either create new actors or
confi gure secure transport; these ac-
tivities are performed by the trusted
platform actors.

Endpoints and Flows
Actors interact only in controlled
ways, which is especially impor-
tant when they belong to different
organizations (such as countries).
To exchange messages, actors don’t
reference each other directly; they
reference local endpoints through
which messages are sent and re-
ceived. An endpoint is analogous to a
socket handle in traditional network-
ing systems. Endpoints in different
actors are connected by fl ows—that
is, “pipes”—through which mes-
sages are transferred (see Figure 2).
A fl ow is a connectionless logical
association between endpoints: uni-
cast fl ows connect a source endpoint
to a destination endpoint; multicast
fl ows connect a source endpoint to
multiple destination endpoints. Both
endpoints and fl ows are created and
assigned only by trusted platform ac-
tors. Performing message exchanges
via endpoints and fl ows (instead of
addressing actors directly) has several
advantages. First, it supports fi ne-
grained communication constraints:
two actors can communicate only
if there are suitable endpoints and
fl ows. It also increases decoupling
between senders and receivers, which
only operate on their local endpoints,

without explicit knowledge of the
fl ows attached to those endpoints.
For example, the fl ow connect-
ing a client to a failed server can be
switched over to an alternative server
transparently to the client.

Multilevel Security (MLS) Policies
MLS is a well-established concept.10

It’s based on linearly ordered hier-
archical classifi cation levels (for ex-
ample, Unclassifi ed < Confi dential <
Secret < Top Secret) and nonhierar-
chical need-to-know categories (for
example, mission identifi ers). Each
organization defi nes its own levels
and categories, in other words, its
own labeling domain. In typical sys-
tems, which operate in a single la-
beling domain, a label is a pair LC
where L is a level and C is a set of
zero or more categories. For example,

in the US domain, the label TS{x,y}
consists of the Top Secret level and
identifi ers for missions X and Y.

To support communication among
actors from different organizations
that can share the common embed-
ded system infrastructure, DREMS
uses the novel concept of multido-
main labels. A multidomain label
has the form [D

1]L1C1 … [Dp]LpCp,
where D1, …, Dp are p ≥ 1 distinct
(identifi ers of) domains and each LiCi

is a label (as defi ned in single-domain
systems) in domain Di. For example,
the label [US]TS{x}[NATO]CTS{x}
is used for data that is both US Top
Secret and NATO Cosmic Top Secret
for joint mission X.

The DREMS secure transport se-
curity policy follows the standard
MLS requirement that information
can only fl ow “up,” according to the

Actor A Actor B

Endpoint EA Endpoint EB

Flow F Message M

LA ⊇ LE
 A

 • LM ∈ LE

 A
 • ∃ L ∈ LE

 B

. L ⊒ LM • LE
 B

⊆ LB

Multilevel security rules

LA

LM
LE

 A

LE
 B LB

L
⊑

~

~
~

~ ~ ~ ~

~
~

~

FIGURE 2. Transfer of a message via secure transport. The message goes through

a � ow that connects an endpoint of the sending actor to an endpoint of the receiving

actor. The rules on labels and label sets of actors, endpoints, and messages, guarantee

the satisfaction of the Multilevel Security (MLS) policy. The MLS rules are illustrated using

Venn diagrams.

s2lev.indd 65 2/6/14 4:35 PM

66 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: NEXT-GENERATION MOBILE COMPUTING

dominance relation.10 For example,
a principal with Top Secret clear-
ance can read Unclassified messages,
but not vice versa. Data exchanged
among different organizations car-
ries labels with levels and categories
from all the organizations’ domains.
Formally, a label L dominates a la-
bel L′, written L ⊒ L′, if and only if
L has at least all the domains of L′
(and possibly others) and, for each
common domain, the level L in L is
at least as high as the level L′ in L′
(that is, L ≥ L′) and the category set
C in L contains the category set C ′ in
L′ (that is, C ⊇ C ′).

Each actor has an immutable set
of labels, which describe the clear-
ance of the actor (what informa-
tion the actor is allowed to read and
write). Only trusted platform actors
assign the label set to the actor.

Each endpoint E
A also has an

immutable set of labels L�EA , which
must be contained in the label set
L�A

of the (unique) actor A that owns
the endpoint (that is, L L� ��E AA

 ⊆ L L� ��E AA
). The

label set is assigned to the endpoint
only by trusted platform actors.

Each message sent via secure
transport has an immutable label,
which describes the sensitivity of
the message. The label is assigned
by the actor that creates and sends
the message. An actor A can send a
message M with label LM through an
endpoint EA with label set

L L� ��E AA

if and
only if LM ∈ L L� ��E AA

.
Figure 2 shows all of these MLS

rules. These rules follow the stan-
dard MLS policy,10 adapted to se-
cure transport. When actor A at-
tempts to send message M with label
LM through endpoint EA, the secure
transport checks that LM ∈ L L� ��E AA

.
When M is received through end-
point EB of actor B, the secure trans-
port checks that L ⊒ LM for some la-
bel L ∈ L L�∈ EB

.

Networks
When a flow connects endpoints
on different nodes, secure trans-
port uses IPv6 (http://tools.ietf.org/
html/rfc2460) to transfer messages
across the network, which may in-
volve various wireless networking
devices. Without proper protection,
messages traveling through the net-
work could be seen or modified, de-
feating the MLS policy. IPsec11 and
other measures are used to protect
the confidentiality of messages and
their labels.

Model-Driven Application
Development,
Integration, and
Deployment
To simplify development and pro-
mote producible and verified systems
(requirement 7), we have developed a
model-based framework for DREMS
for developing and integrating appli-
cations. This approach uses models
to represent the software, the hard-
ware platform, and the mapping be-
tween the two. The validation of
well-formedness constraints over the
models makes the early detection of in-
tegration errors possible. Code genera-
tors then translate the validated high-
level models into low-level artifacts,
such as program code and deployment
plans to configure the system.

System integration and deploy-
ment (requirement 6) are also simpli-
fied with this approach. Once individ-
ual application models are combined,
the global system configuration can
be generated the same way as a single
application configuration. Global sys-
tem properties, such as timing, can be
checked using the integrated models.
The graphical modeling language as a
technique, along with reusability via
templates in the modeling language,
also addresses rapid application de-
velopment (requirement 1).

Figures 3 summarizes the model-
driven development process. During
steps 1 and 2, data types are cre-
ated and used to define the structure
and interfaces of individual software
components. Multiple implementa-
tions of the same component type
can coexist, providing the applica-
tion developer with alternative im-
plementations. Step 3 includes gen-
erating skeleton files and using those
files to implement the behavior logic
of the component. Once a compo-
nent has been implemented, it can be
reused across different applications
and projects. Applications are de-
fined by wiring instances of different
components together (step 4).

After all applications are mod-
eled, the system integrator performs
steps 5 through 7 (described in Figure
3b). Well-formedness (requirement
7) is ensured by a design constraint
checker that analyzes the models and
reports violations, including details
about the constraints violated and
the modeling elements involved.

The deployment plan describes
all aspects of the application, includ-
ing the binary libraries required for
each component and the metadata
describing those libraries, the secure
transport configuration, and the
component interactions. This plan
is provided to the runtime platform’s
deployment and configuration ser-
vice that is responsible for deploying
and activating the application on the
distributed platform (see the exam-
ple in Figure 4).

An Example
To demonstrate DREMS, we con-
ducted a complex, multinode experi-
ment on a testbed of fanless comput-
ing nodes, each containing an Intel
Atom N270 clocked at 1.6 GHz and
with 1 GByte of RAM. The nodes
were connected via a private subnet,

s2lev.indd 66 2/6/14 4:35 PM

MARCH/APRIL 2014 | IEEE SOFTWARE 67

which had a network control node
running dummynet,12 allowing full
control of the bandwidth, latency,
and packet loss on any network link
(see Figure 4).

On this testbed, we emulated a
cluster of three satellites, each run-
ning a copy of an example of a clus-
ter fl ight control application (CFA).
In this example, the CFA consisted
of three actors replicated on each
satellite: OrbitMaintenance, ModuleProxy,
and CommandProxy. OrbitMaintenance keeps
track of every satellite’s position
and updates the cluster with its cur-
rent position. ModuleProxy connects to
the Orbiter space fl ight simulator,13
which simulates the satellite hard-
ware and orbital behavior. Command-
Proxy receives commands from the
ground network.

Each node publishes a state vec-
tor describing its position and sub-
scribes to the state vectors of all
other satellites. Individual state vec-
tors are periodically updated on
each satellite through an asynchro-
nous method interface (AMI) from
 ModuleProxy to OrbitMaintenance. This in-
teraction represents the fl ight hard-
ware periodically updating the con-
trol software with a new satellite
state. The connection between the
Orbiter and ModuleProxy facilitates pe-
riodically getting position data from
the satellite sensors.

When OrbitMaintenance receives a
command from CommandProxy, it pub-
lishes the command as a Satellite_
Command topic. The OrbitMaintenance ac-
tor on each satellite subscribes to
the Satellite_Command topic, and upon
reception of the topic, instructs
the satellite thrusters to fi re (via an

(a)

(b)

ActorActorActor

1. Data types are de�ned or imported from a library.

Component

Component

Component

Component

Component

Component

2. Structure of software components is de�ned or existing components are imported
from a library.

Component

Component

Component

Component

Component

Component Component Component

Component

3. Skeleton �les are generated and behavioral logic is written for the new
components by the developer.

4. Applications are de�ned by instantiating componentsand con�guring their
communication. Components are assigned to actors in this step.

Struct Enum Interfaces Containers

Component Component Component

Scheduler abstractions (Temporal Partition Groups)

Hardware Hardware

6. Applications are instantiated and mapped to hardware nodes. Scheduling
abstractions are also created in this step.

Hardware node Hardware node

5. Hardware Nodes are described.

Deployment
plan

Deployment
plan

Deployment
plan

Deployment
plan

7. Deployment plans are generated from the models after constraints are checked.

Actor

Application 1

Actor

Application 2

Actor

Application 3

Actor

Application 4

FIGURE 3. The model-driven

development process: (a) application

development and (b) system integration

on a three-node cluster of embedded

processors.

s2lev.indd 67 2/6/14 4:35 PM

68 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: NEXT-GENERATION MOBILE COMPUTING

AMI call to ModuleProxy), which ac-
tivates the satellite thruster in the
simulation.

Despite the complexity of the ap-
plication, only 405 LOC total (0.41
percent of the application code) were
written by hand among the four com-
ponents. The other 99.59 percent is
generated code that governs all com-
munications, timing, and interactions.

T here certainly exist state-
of-the-art development en-
vironments and runtime

platforms that address some of the
needs we’ve discussed in this article.
There are model-based development
environments for embedded systems
(for example, Mathworks’s tool-
suites, IBM’s UML tools, and so on),
there are various real-time operating
system products with sophisticated
development toolchains (for exam-
ple, Integrity by Green Hills), and
there are systems that support MLS

(for example, SELinux). However, to
the best of our knowledge, there’s no
single development environment and
runtime platform that holistically
provides all of these capabilities in
one package.

We believe that emerging cloud
paradigms for mobile devices will
require the capability to develop,
confi gure, and manage distributed
applications and platform services
in a manner that enables effi cient
operation of the platform, permits
the use of advanced component
models and model-based design for
improving modularity and analyz-
ability, and treats information fl ow
security concerns as a fi rst-class
concept. We believe the runtime
platform and the toolchain we’ve
described in this article will help
progress in this direction.

Acknowledgments
The DARPA System F6 Program sup-
ported this work. Any opinions, fi ndings,

and conclusions or recommendations ex-
pressed in this material are those of the
authors and do not refl ect the views of
DARPA. We thank Olin Sibert of Oxford
Systems and all the team members of our
project for their invaluable input and con-
tributions to this effort.

References
 1. L. Atzori, A. Iera, and G. Morabito, “The

Internet of Things: A Survey,” Com-
puter Networks, vol. 54, no. 15, 2010, pp.
2787–2805.

 2. O. Brown, P. Eremenko, and C. Roberts,
“Cost-Benefi t Analysis of a Notional Frac-
tionated SATCOM Architecture,” Proc.
24th Int’l Comm. Satellite Systems Conf.,
American Inst. Aeronautics and Astronau-
tics, 2006; doi:10.2514/6.2006-5328.

 3. A. Dubey et al., “A Software Platform
for Fractionated Spacecraft,” Proc. IEEE
Aerospace Conf., IEEE, 2012, pp. 1–20.

 4. R.K. Karmani and G. Agha, “Actors,”
Encyclopedia of Parallel Computing, D.
Padua, ed., Springer, 2011, pp. 1–11.

 5. Avionics Application Software Standard
Interface (draft 15), document 653, Aero-
nautical Radio, January 1997.

 6. W.R. Otte et al., “F6COM: A Component
Model for Resource-Constrained and Dy-
namic Space-Based Computing Environ-
ment,” to be published in Proc. 16th IEEE
Int’l Symp. Object-Oriented Real-Time
Distributed Computing (ISORC 13),
IEEE.

 7. C. Szyperski, “Component Technology:
What, Where, and How?,” Proc. 25th Int’l
Conf. Software Eng. (ICSE 03), IEEE CS,
2003, pp. 684–693.

 8. Light Weight CORBA Component Model
(revised submission), Object Management
Group, 2003; www.info.fundp.ac.be/~ven/
CIS/OMG/lightweight%20component%20
model.pdf.

 9. W.R. Otte et al., “Infrastructure for
Component-Based DDS Application De-
velopment,” Proc. 10th ACM Int’l Conf.
Generative Programming and Component
Eng. (GPCE 11), ACM, 2011, pp. 53–62.

 10. D.E. Bell and L.J. LaPadula, Secure Com-
puter Systems: Mathematical Founda-
tions, tech. report 2547, vol. I, MITRE,
1973.

 11. S. Kent and K. Keo, Security Architecture
for the Internet Protocol, IETF RFC 4301,
Internet Society, 2005.

 12. M. Carbone and L. Rizzo, “Dummynet
Revisited,” SIGCOMM Computing
Comm. Rev., vol. 40, no. 2, 2010, pp.
12–20.

 13. B. Irving, “Playing in Space: Interactive
Education with the Orbiter Space Flight
Simulator,” Proc. Int’l Space Development
Conf. (ISDC 07), 2007; download.orbit.
m6.net/news/PlayingInSpace_ISDC2007_
Irving_Slides.pdf.

FIGURE 4. The runtime platform’s deployment. The simulator image (on the left)

shows three satellites, whereas the other display (on the right) shows the deployment

model of the experiment.

s2lev.indd 68 2/6/14 4:35 PM

MARCH/APRIL 2014 | IEEE SOFTWARE 69

TIHAMER LEVENDOVSZKY is a research
assistant professor at Vanderbilt University.
His research interests include automated
software engineering, model-based engineer-
ing, computer security, and performance
analysis of software systems. Levendovszky
received a PhD in computer science from
the Budapest University of Technology and
Economics. Contact him at tihamer.
levendovszky@vanderbilt.edu.

ABHISHEK DUBEY is a research scientist
at Institute for Software-Integrated Systems
(ISIS) at Vanderbilt University. His research
interests include distributed fault-tolerant
real-time systems and autonomic computing.
Dubey received a PhD in electrical engineer-
ing from Vanderbilt University. Contact him at
dabhishe@isis.vanderbilt.edu.

WILLIAM R. OTTE is a research scientist
at ISIS at Vanderbilt University. His research
interests include middleware for real-time
embedded systems and their deployment
and con� guration. Otte received a PhD in
computer science from Vanderbilt University.
Contact him at wotte@dre.vanderbilt.edu.

DANIEL BALASUBRAMANIAN is a
research scientist at ISIS at Vanderbilt
University. His research interests include the
lightweight application of formal methods
and analysis to model-based development.
Balasubramanian received a PhD in computer
science from Vanderbilt University. Contact
him at daniel@isis.vanderbilt.edu.

ALESSANDRO COGLIO is a principal
scientist at Kestrel Institute. His research
interests include formal methods and tools to
develop correct-by-construction software via
formal speci� cation, re� nement, and theorem
proving. Coglio received an MS in informatics
engineering from University of Genoa. Contact
him at coglio@kestrel.edu.

SANDOR NYAKO is a senior research
engineer at Vanderbilt University. His research
interests include the telecom, � nance, and
computer entertainment � elds. Nyako re-
ceived a BSc in computer science from Eotvos
Lorand University. Contact him at snyako@
isis.vanderbilt.edu.

WILLIAM EMFINGER is a graduate
research assistant at ISIS at Vanderbilt
University. His research interests include
networking for critical systems. Em� nger
received a BE in electrical engineering and
biomedical engineering from Vanderbilt
University. Contact him at em� nger@isis.
vanderbilt.edu.

PRANAV SRINIVAS Kumar is a graduate
research assistant at ISIS at Vanderbilt
University. His research interests include
modeling, analysis, and veri� cation tech-
niques for distributed component-based
software applications. Kumar received a BE
in electronics and communications engi-
neering from Anna University. Contact him at
pkumar@isis.vanderbilt.edu.

ANIRUDDHA GOKHALE is an associate
professor in the department of electrical
engineering and computer science and
senior research scientist at ISIS at Vanderbilt
University. His research interests include
deployment and con� guration and quality
of service issues, such as timeliness, fault
tolerance, and security, in large-scale,
service-oriented, distributed, real-time, and
embedded systems. Gokhale received a PhD
in computer science from Washington Uni-
versity, St. Louis. He’s a senior member of
IEEE and ACM. Contact him at a.gokhale@
vanderbilt.edu.

GABOR KARSAI is a professor of electrical
and computer engineering and computer
science at Vanderbilt University and senior
research scientist at ISIS. His research in-
terests include model-integrated computing
(MIC), design automation for model-driven
development processes, automatic program
synthesis, and the application of MIC in
various government and industrial projects.
Karsai received a PhD in electrical engineer-
ing from Vanderbilt University. He’s a senior
member of the IEEE Computer Society.
Contact him at gabor.karsai@vanderbilt.edu.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

s2lev.indd 69 2/6/14 4:35 PM

