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// A practical design  and runtime solution incorporates 

modern software development practices and technologies 

along with novel approaches to address the challenges of 

effectively managing constrained resources and isolating 

applications without adverse performance effects. //

MOBILE CLOUD COMPUTING in-
frastructures supporting the vision 
of the Internet of Things (IoT)1 pro-
vide services benefi cial to our soci-
ety. For example, a cloud of smart-
phones can run software that shares 
the sensing and computing resources 
of nearby devices, providing in-
creased situational awareness in a 
disaster zone. A cluster of small, col-
laborating satellites can provide in-
creased reliability at reduced launch 
costs for scientifi c missions; NASA’s 
Edison Demonstration of SmallSat 
Networks, as well as TanDEM-X, 
PROBA-3, and Prisma from the Eu-
ropean Space Agency, use clusters of 
small satellites.

Unlike traditional computing 
clouds, which draw a clear distinc-
tion between a cloud provider and 
user, these roles will be interchange-
able in the participating resources 
in mobile clouds.2 Additionally, the 
need to scale up on demand is often 
the motivation for using a traditional 
cloud, whereas a mobile embedded 
cloud is motivated by the need for on 
demand collaboration.

Table 1 presents associated require-
ments and challenges that existing 
cloud computing platforms don’t fully 
address. In this article, we describe an 
architecture called Distributed Real-
time Managed Systems (DREMS; 
www.isis.vanderbilt.edu/DREMS),3

which addresses these requirements. It 
consists of two main parts:

• a design-time tool suite for 
modeling, analysis, synthesis, 
integration, debugging, testing, 
and maintenance of application 
software built from reusable 
components and 

• a runtime software platform 
for deploying, managing, and 
operating application software 
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on a network of embedded, mo-
bile nodes. 

The platform reduces the com-
plexity and increases the robust-
ness of software applications by 
providing reusable technological 
building blocks in the form of an 
OS, middleware, and application 
management services (see Figure 
1). For further reading, see the F6 
Project Page website: (www.isis.
vanderbilt.edu/DREMS and www.
kestrel.edu/home/projects/f6) and 
the Generic Modeling Environment 
project page (www.isis.vanderbilt.
edu/Projects/gme).

Runtime Software 
Platform: OS and 
Middleware
DREMS provides a runtime plat-
form for applications in the form 
of an OS and middleware. The 
DREMS OS—a set of extensions to 
the Linux kernel—provides all the 
critical low-level services to support 
resource management (including 
spatial and temporal partitioning 

of the memory and the CPU), actor 
management, secure information 
fl ows (labeled and managed), and 
fault tolerance.

Software applications running 
on DREMS are distributed. To fa-
cilitate isolation (requirement 4), the 
components that make up an appli-
cation are encapsulated in process-
like containers called actors that 
run concurrently (on the same node) 
or in parallel (on different nodes). 
This is similar to the notion of con-
current communicating objects.4

Actors are specialized OS pro-
cesses; they have a persistent iden-
tity that allows their transparent mi-
gration between computing nodes. 
They also have strict limits on the 
resources that they can use. There 
are two main types of actors: appli-
cation actors and platform actors. 
Application actors are built for spe-
cifi c applications, whereas platform 
actors provide system-level services. 
The OS guarantees performance iso-
lation between actors of different 
applications (requirement 4). This is 
accomplished by 

• providing separate, protected ad-
dress spaces per actor; 

• enforcing that a peripheral de-
vice can be accessed by only one 
actor at a time; and 

• facilitating temporal isolation 
between actors by the scheduler. 

The temporal isolation is provided 
via ARINC-653-style partitions5—
periodically repeating fi xed inter-
vals of the CPU’s time exclusively 
assigned to a group of cooperating 
actors of the same application. The 
scheduler guarantees that actors in 
distinct temporal partitions can’t in-
advertently interfere with each other 
via CPU usage. (Further details on 
spatial and temporal isolation, both 
of which are standard mechanisms, 
are available elsewhere.3)

Component Model: 
Building Blocks for 
Application Development
To address requirement 1, DREMS 
uses a component-oriented ap-
proach for application develop-
ment.6 It’s commonly accepted that 
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 1 A summary of architectural decisions in DREMS.

Requirement Design principle Approach

1. Rapid application development, software reuse Component-based software 
engineering

Novel component model

2. Multiple application interaction semantics Separation of concerns Rich set of component interaction ports with 
operations scheduled independently

3. Managed concurrency and synchronization for 
robustness

Single-threaded components Concurrency managed by OS and 
middleware, not component business logic

4. Resource management and application 
isolation with performance guarantees

Spatial and temporal separation Applications are run in isolated partitions

5. Secure information � ows Multilevel security with multidomain 
labels, temporal/spatial isolation, 
and mandatory access control

Architectural support for separation, 
multilevel security (based on label checking), 
and constrained information � ows

6. Managed and secure application deployment 
and con� guration

Modeling and automation Model-driven middleware services to provide 
secure deployment and con� guration

7. Producible veri� ed systems Defects being caught early in the 
development cycle

Model-based system design and generative 
development
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component-based software develop-
ment promotes rapid application de-
velopment and reuse.7 Components 
have identity, have state, support 
various operations, and interact via 
ports. A DREMS component sup-
ports four basic types of communi-
cation ports, providing a range of 
interaction semantics (requirement 
2). First, there are facets, which are 
collections of operations (interfaces) 
provided by a component, and re-
ceptacles, which are collections 
of operations required. These two 
ports can be used to implement syn-
chronous and asynchronous point-
to-point interactions. In addition, 
publisher and subscriber ports pro-
vide a way for components to inter-
act in a global data space defi ned 
over topics. Conceptually, this is 

similar to the OMG Common Ob-
ject Request Broker Architecture 
(CORBA) Component Model.8

However, there are some key dif-
ferences. The DREMS component 
model provides ports for accessing 
I/O devices and timers. Ports are 
implemented using connectors that 
enable the use of a variety of com-
munication mechanisms,9 includ-
ing CORBA and Data Distribution 
Services (DDS). Furthermore, secu-
rity using labeled communication 
is a fundamental part of all com-
ponent interactions. Another key 
distinction is the threading model: 
DREMS meets requirement 3 by 
enforcing that component activi-
ties are scheduled by the middle-
ware as nonpreemptible, single-
threaded operations that necessitate 

no synchronization code from the 
developer. Note that components do 
run concurrently.

Secure Transport: A 
Secure Actor-to-Actor 
Communication Channel
DREMS provides a security architec-
ture (requirements 4 and 6) based on 

• spatial and temporal separation 
among the actors, 

• fi ne-grained actor privileges that 
control what system services can 
be used by an actor, 

• assurance that only one actor 
actively controls a device at a 
time, and 

• a novel communication mecha-
nism among nodes called secure 
transport, which supports the 
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FIGURE 1. DREMS architecture. The top-right portion shows the internals of one node.
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exchange of messages among 
actors according to a multilevel 
security (MLS) policy. 

The combination of separation and 
MLS guarantee, for example, that an 
erroneous or malicious actor cannot 
read information at a higher classifi -
cation level than its own.

To enforce these rules system 
wide, application actors aren’t per-
mitted to either create new actors or 
confi gure secure transport; these ac-
tivities are performed by the trusted 
platform actors.

Endpoints and Flows
Actors interact only in controlled 
ways, which is especially impor-
tant when they belong to different 
organizations (such as countries). 
To exchange messages, actors don’t 
reference each other directly; they 
reference local endpoints through 
which messages are sent and re-
ceived. An endpoint is analogous to a 
socket handle in traditional network-
ing systems. Endpoints in different 
actors are connected by fl ows—that 
is, “pipes”—through which mes-
sages are transferred (see Figure 2). 
A fl ow is a connectionless logical 
association between endpoints: uni-
cast fl ows connect a source endpoint 
to a destination endpoint; multicast 
fl ows connect a source endpoint to 
multiple destination endpoints. Both 
endpoints and fl ows are created and 
assigned only by trusted platform ac-
tors. Performing message exchanges 
via endpoints and fl ows (instead of 
addressing actors directly) has several 
advantages. First, it supports fi ne-
grained communication constraints: 
two actors can communicate only 
if there are suitable endpoints and 
fl ows. It also increases decoupling 
between senders and receivers, which 
only operate on their local endpoints, 

without explicit knowledge of the 
fl ows attached to those endpoints. 
For example, the fl ow connect-
ing a client to a failed server can be 
switched over to an alternative server 
transparently to the client.

Multilevel Security (MLS) Policies
MLS is a well-established concept.10

It’s based on linearly ordered hier-
archical classifi cation levels (for ex-
ample, Unclassifi ed < Confi dential < 
Secret < Top Secret) and nonhierar-
chical need-to-know categories (for 
example, mission identifi ers). Each 
organization defi nes its own levels 
and categories, in other words, its 
own labeling domain. In typical sys-
tems, which operate in a single la-
beling domain, a label is a pair LC
where L is a level and C is a set of 
zero or more categories. For example, 

in the US domain, the label TS{x,y}
consists of the Top Secret level and 
identifi ers for missions X and Y.

To support communication among 
actors from different organizations 
that can share the common embed-
ded system infrastructure, DREMS 
uses the novel concept of multido-
main labels. A multidomain label 
has the form [D

1]L1C1 … [Dp]LpCp, 
where D1, …, Dp are p ≥ 1 distinct 
(identifi ers of) domains and each LiCi

is a label (as defi ned in single-domain 
systems) in domain Di. For example, 
the label [US]TS{x}[NATO]CTS{x}
is used for data that is both US Top 
Secret and NATO Cosmic Top Secret 
for joint mission X.

The DREMS secure transport se-
curity policy follows the standard 
MLS requirement that information 
can only fl ow “up,” according to the 
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FIGURE 2. Transfer of a message via secure transport. The message goes through 

a � ow that connects an endpoint of the sending actor to an endpoint of the receiving 

actor. The rules on labels and label sets of actors, endpoints, and messages, guarantee 

the satisfaction of the Multilevel Security (MLS) policy. The MLS rules are illustrated using 

Venn diagrams.
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dominance relation.10 For example, 
a principal with Top Secret clear-
ance can read Unclassified messages, 
but not vice versa. Data exchanged 
among different organizations car-
ries labels with levels and categories 
from all the organizations’ domains. 
Formally, a label L dominates a la-
bel L′, written L ⊒ L′, if and only if 
L has at least all the domains of L′ 
(and possibly others) and, for each 
common domain, the level L in L is 
at least as high as the level L′ in L′ 
(that is, L ≥ L′) and the category set 
C in L contains the category set C ′ in 
L′ (that is, C ⊇ C ′).

Each actor has an immutable set 
of labels, which describe the clear-
ance of the actor (what informa-
tion the actor is allowed to read and 
write). Only trusted platform actors 
assign the label set to the actor.

Each endpoint E
A also has an 

immutable set of labels L�EA , which 
must be contained in the label set 
L�A  

of the (unique) actor A that owns 
the endpoint (that is, L L� ��E AA

 ⊆ L L� ��E AA
). The 

label set is assigned to the endpoint 
only by trusted platform actors.

Each message sent via secure 
transport has an immutable label, 
which describes the sensitivity of 
the message. The label is assigned 
by the actor that creates and sends 
the message. An actor A can send a 
message M with label LM through an 
endpoint EA with label set

 
L L� ��E AA 

if and 
only if LM ∈ L L� ��E AA

.
Figure 2 shows all of these MLS 

rules. These rules follow the stan-
dard MLS policy,10 adapted to se-
cure transport. When actor A at-
tempts to send message M with label 
LM through endpoint EA, the secure 
transport checks that LM ∈ L L� ��E AA

. 
When M is received through end-
point EB of actor B, the secure trans-
port checks that L ⊒ LM  for some la-
bel L ∈ L L�∈ EB

.

Networks
When a flow connects endpoints 
on different nodes, secure trans-
port uses IPv6 (http://tools.ietf.org/
html/rfc2460) to transfer messages 
across the network, which may in-
volve various wireless networking 
devices. Without proper protection, 
messages traveling through the net-
work could be seen or modified, de-
feating the MLS policy. IPsec11 and 
other measures are used to protect 
the confidentiality of messages and 
their labels.

Model-Driven Application 
Development, 
Integration, and 
Deployment
To simplify development and pro-
mote producible and verified systems 
(requirement 7), we have developed a 
model-based framework for DREMS 
for developing and integrating appli-
cations. This approach uses models 
to represent the software, the hard-
ware platform, and the mapping be-
tween the two. The validation of 
well-formedness constraints over the 
models makes the early detection of in-
tegration errors possible. Code genera-
tors then translate the validated high-
level models into low-level artifacts, 
such as program code and deployment 
plans to configure the system.

System integration and deploy-
ment (requirement 6) are also simpli-
fied with this approach. Once individ-
ual application models are combined, 
the global system configuration can 
be generated the same way as a single 
application configuration. Global sys-
tem properties, such as timing, can be 
checked using the integrated models. 
The graphical modeling language as a 
technique, along with reusability via 
templates in the modeling language, 
also addresses rapid application de-
velopment (requirement 1).

Figures 3 summarizes the model-
driven development process. During 
steps 1 and 2, data types are cre-
ated and used to define the structure 
and interfaces of individual software 
components. Multiple implementa-
tions of the same component type 
can coexist, providing the applica-
tion developer with alternative im-
plementations. Step 3 includes gen-
erating skeleton files and using those 
files to implement the behavior logic 
of the component. Once a compo-
nent has been implemented, it can be 
reused across different applications 
and projects. Applications are de-
fined by wiring instances of different 
components together (step 4).

After all applications are mod-
eled, the system integrator performs 
steps 5 through 7 (described in Figure 
3b). Well-formedness (requirement 
7) is ensured by a design constraint 
checker that analyzes the models and 
reports violations, including details 
about the constraints violated and 
the modeling elements involved.

The deployment plan describes 
all aspects of the application, includ-
ing the binary libraries required for 
each component and the metadata 
describing those libraries, the secure 
transport configuration, and the 
component interactions. This plan 
is provided to the runtime platform’s 
deployment and configuration ser-
vice that is responsible for deploying 
and activating the application on the 
distributed platform (see the exam-
ple in Figure 4).

An Example
To demonstrate DREMS, we con-
ducted a complex, multinode experi-
ment on a testbed of fanless comput-
ing nodes, each containing an Intel 
Atom N270 clocked at 1.6 GHz and 
with 1 GByte of RAM. The nodes 
were connected via a private subnet, 
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which had a network control node 
running dummynet,12 allowing full 
control of the bandwidth, latency, 
and packet loss on any network link 
(see Figure 4).

On this testbed, we emulated a 
cluster of three satellites, each run-
ning a copy of an example of a clus-
ter fl ight control application (CFA).  
In this example, the CFA consisted 
of three actors replicated on each 
satellite: OrbitMaintenance, ModuleProxy, 
and CommandProxy. OrbitMaintenance keeps 
track of every satellite’s position 
and updates the cluster with its cur-
rent position. ModuleProxy connects to 
the Orbiter space fl ight simulator,13 
which simulates the satellite hard-
ware and orbital behavior. Command-
Proxy receives commands from the 
ground network. 

Each node publishes a state vec-
tor describing its position and sub-
scribes to the state vectors of all 
other satellites. Individual state vec-
tors are periodically updated on 
each satellite through an asynchro-
nous method interface (AMI) from 
 ModuleProxy to OrbitMaintenance. This in-
teraction represents the fl ight hard-
ware periodically updating the con-
trol software with a new satellite 
state. The connection between the 
Orbiter and ModuleProxy facilitates pe-
riodically getting position data from 
the satellite sensors.

When OrbitMaintenance receives a 
command from CommandProxy, it pub-
lishes the command as a Satellite_ 
Command topic. The OrbitMaintenance ac-
tor on each satellite subscribes to 
the Satellite_Command topic, and upon 
reception of the topic, instructs 
the satellite thrusters to fi re (via an 
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Component

Component

Component

Component
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FIGURE 3. The model-driven 

development process: (a) application 

development and (b) system integration 

on a three-node cluster of embedded 

processors.
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AMI call to ModuleProxy), which ac-
tivates the satellite thruster in the 
simulation.

Despite the complexity of the ap-
plication, only 405 LOC total (0.41 
percent of the application code) were 
written by hand among the four com-
ponents. The other 99.59 percent is 
generated code that governs all com-
munications, timing, and interactions.

T here certainly exist state-
of-the-art development en-
vironments and runtime 

platforms that address some of the 
needs we’ve discussed in this article. 
There are model-based development 
environments for embedded systems 
(for example, Mathworks’s tool-
suites, IBM’s UML tools, and so on), 
there are various real-time operating 
system products with sophisticated 
development toolchains (for exam-
ple, Integrity by Green Hills), and 
there are systems that support MLS 

(for example, SELinux). However, to 
the best of our knowledge, there’s no 
single development environment and 
runtime platform that holistically 
provides all of these capabilities in 
one package.

We believe that emerging cloud 
paradigms for mobile devices will 
require the capability to develop, 
confi gure, and manage distributed 
applications and platform services 
in a manner that enables effi cient 
operation of the platform, permits 
the use of advanced component 
models and model-based design for 
improving modularity and analyz-
ability, and treats information fl ow 
security concerns as a fi rst-class 
concept. We believe the runtime 
platform and the toolchain we’ve 
described in this article will help 
progress in this direction.
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