VERISOLID:
Correct-by-Design Smart Contracts for Ethereum

Aron Laszkal, Anastasia Mavridou?, Scott Eisele®, Emmanouela Stachtiari?,
Abhishek Dubey?

1 University of Houston

2NASA Ames

3 Vanderbilt University

4 Aristotle University of Thessaloniki

Smart Contracts on Blockchains

- Smart contract:

general purpose computation on a blockchain (or other distributed ledger) based
computational platform

Recently popularized by Ethereum

- smart contracts may be developed using high-level languages, such as Solidity

- enables the creation of decentralized applications

Envisioned to have a wide range of applications
- financial (self-enforcing contracts)
- Internet of Things

- decentralized organizations

Transactive Energy Systems

15) bill » Trades

150 kW
(smvert) -
| 1) registerSmartMeter 10) finalize
14) Energy | —_—— 2) registerProsumer ... Y. Y. , 100 kW
Transfer | 3) withdrawAssets :
| 4) createAnonAddr T :
[Smart Meter 1 j— — — — Prosumer 1 9) 56(:')]?1?15 {ngf,t ; ;te Al >
f 11) Finalized |] 50 kW
Tl 3) request b 12) deposit . | Smart contract :
— " . (Solidity)
S Hybrid Solver =
:(Off—C] . SDlVEI'] 8) pOStSO].uthn > Verifier | : ow EEEEEECERERE | | | | | | |
| T b ¢ ‘ o
7) OfterPosted -50 kW

11) Finalized 06:00 08:00 10:00 12:00 14.00 16:00 18:00 20:00 22:00

insecurity

Smart Contract Security ip?rattice

- Notable incidents (amounts vary over time with variations in exchange rate)

- The DAO attack: ~$500 million taken
- Parity wallet freeze: ~$70 million frozen

. Parity wallet hack: ~$21 million taken

. Recent analysis: 34,200 contracts (out of 1M publicly deployed contracts) have security
issues / vulnerabilities’

- Distributed ledgers are immutable by design
- smart contract vulnerabilities cannot be patched*

- erroneous (or malicious) transactions cannot be reverted*

* without undermining the trustworthiness of the contract / ledger

! Ivica Nikolic, Aashish KolluriChu, llya Sergey, Prateek Saxena, and Aquinas Hobor, “Finding the greedy,
prodigal, and suicidal contracts at scale,” ACSAC’18. 4

Securing Smart Contracts

- Vulnerabilities often arise due to semantic gap

- difference between assumptions that developers make about execution semantics
and the actual semantics

- Solidity resembles JavaScript, but it does not work exactly like

. EXxisting approaches
- design patterns, e.g., Checks-Effects-Interactions

- tools for finding (typical) vulnerabilities
- OYENTE
- MAIAN

- tools for verification and static analysis
- SECURIFY
- RATTLE

Correct-by-Design Contract Development

feedback

verification

Contract Contract
model bytecode

.- Advantages of model-based approach
- specification of desired properties with respect to a high-level model

- providing feedback to developer with respect to a high-level model

VERISOLID Model

- Formal, transition-system based language for contracts

label, [guard], action
state O »O

- each contract may be represented as a transition system

VERISOLID Model

- Formal, transition-system based language for contracts

label, [guard], action
state O »O

- each contract may be represented as a transition system

Definition: A smart contract is a tuple (D, S, Sg, sg, ag, ag, V,T)
- D custom data types and events
- S states
- Sr cS final states
- s0 €85 Initial state
. ay c@ initial action
. ar c@fallback action
) contract variables

S: subset of Solidity statements

.- T transitions (names, source and destination states, guards,factions}parameter
and return types)

‘\’-— Implemented as functions in the generated code

VERISOLID Semantics

- We define semantics in the form of Structural Operational Semantics

- Basic transition rule:
teT, name=trome gs=tirom
M = Params(t,vi,ve,...), o= (¥,M)
Eval(o,g:) = ((6,N), true)
((5'7 N)a at) — <(5J7 N)7)
OA.I — (W’,M’), SI — tto
(¥, s), name (v1,vs,...)) = (¥,s,-))

. transition ¢ changes ledger state from ¥ to ¥’ and contract state from s to s’

TRANSITION

- We also define semantics for erroneous transitions (e.g., exceptions)
and for supported Solidity statements §

- Transitions work “as expected” from a transition system *

* with Solidity-related additions, such as exceptions and fallback functions

VERISOLID: Correct-by-Design Smart Contracts

User Input L Solidity Code
Smart Contract as

Properties

Transition System

|
|
|
|
| |
|
|
I
i

Augmented | | wverification
Transition System Qutput

l A
L—p| BIP Model CTL Properties I

10

VERISOLID: Correct-by-Design Smart Contracts

User Input L Solidity Code
Smart Contract as

Properties

Transition System

F'----

Augmented | | wverification
Transition System Qutput

l A
L—p| BIP Model CTL Properties I

11

VERISOLID: Correct-by-Design Smart Contracts

User Input L Solidity Code
Smart Contract as

Properties

Transition System

|
|
|
|
| |
|
|
I
i

Augmented | | wverification
Transition System Qutput

i

o |

A

BIP Model CTL Properties I

12

VERISOLID: Correct-by-Design Smart Contracts

User Input L Solidity Code
Smart Contract as

Properties

Transition System

|
|
|
|
| |
|
|
I
i

* . -
Augmented | Verification
Transition System @ - Qutput

l A
L—p| BIP Model CTL Properties I

13

VERISOLID: Correct-by-Design Smart Contracts

User Input

[

Smart Contract as
Transition System

Properties

Augmented
Transition System

l

L—p-| BIP Model
|

F'----

CTL Properties I ®

Solidity Code

Venfication
Qutput

A

14

VERISOLID: Correct-by-Design Smart Contracts

User Input L Solidity Code
Smart Contract as

A

Properties

Transition System

i
i
i
|
[I
i
|
I
L

X

Venfication
Qutput

Augmented
Transition System

l A
L—p| BIP Model CTL Properties I

15

VERISOLID: Correct-by-Design Smart Contracts

User Input L Solidity Code
Smart Contract as

Properties

Transition System

|
|
|
|
| |
|
|
I
i

Augmented | | wverification
Transition System Qutput

l A
L—p| BIP Model CTL Properties I

16

VERISOLID Verification Process

. First, transform a contract into an augmented transition system,
which captures behavior using transitions

- based on the formal operational semantics of supported Solidity statements

Theorem: The original contract and the corresponding augmented transition system
are observationally equivalent.

- Second, transform an augmented transitions system into an
observationally-equivalent Behavior-Interaction-Priority (BIP) model

- Over-approximation of contract behavior
- satisfied safety properties are satisfied by the actual contract

- violated liveness properties are violated by the actual contract

- Verification using nuXmv model checker

b satisfied properties + violated properties (with violating transition traces)

17

VERISOLID Verification

. Instead of searching for vulnerabilities, we verify that a model satisfies desired properties that
capture correct behavior

. Deadlock freedom: contract cannot enter a non-final state in which there are no enabled
transitions

. Safety and liveness properties
. specified using Computational Tree Logic (CTL)

- we provide several CTL templates to facilitate specification

[X cannot happen after Y] » AG(Y — AG(—X))

where X and Y can be
transitions or statements

[bid cannot happen after close] » AG(close — AG(—bid))

. example:

18

-xample Model:
Transactive Energy Market as a Transition System

updateOffer
createQOffer

> Violated Property Example
@ | .p OF"’StOﬁef If close happens, postSellingOffer or
teSolut = . postBuyingOffer can happen only after

cancelOffer offers.length=0

// action of finalize transition
if (solutions.length > 0) {

Solution storage solution = solutions[bestSolution];
for (uint64 1 = 0; 1 < solution.numTrades; i++) {
Trade memory trade = solution.trades[i];
emit TradeFinalized(trade.sellingOfferID,

trade.buyingOfferID, trade.power, trade.price);

addAssignment

3
solutions.length = 0;

offers.length = 9;

¥
// offers.length = ©; SHOULD HAVE BEEN HERE
cycle += 1;

19

Conclusion

- VERISOLID advantages
high-level model with formal semantics (which are familiar to most developers)
verification of desired behavior (instead of searching for typical vulnerabilities)
high-level feedback to the developer (for violated properties)

Solidity code generation (instead of error-prone coding)

- Future work: interactions between multiple contracts

Source code: http://github.com/anmavrid/smart-contracts

Live demo at: http://cps-vo.org/group/SmartContracts
(requires free registration)

20

https://github.com/anmavrid/smart-contracts
http://cps-vo.org/group/SmartContracts

Thank you for your attention!

Questions?

21

