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Smart Contracts on Blockchains

• Smart contract:

general purpose computation on a blockchain (or other distributed ledger) based 

computational platform

• Recently popularized by Ethereum

• smart contracts may be developed using high-level languages, such as Solidity

• enables the creation of decentralized applications

• Envisioned to have a wide range of applications

• financial (self-enforcing contracts)

• Internet of Things

• decentralized organizations

• …
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Smart Contract Security in Practice

• Notable incidents (amounts vary over time with variations in exchange rate)

• The DAO attack: ~$500 million taken

• Parity wallet freeze: ~$70 million frozen

• Parity wallet hack: ~$21 million taken

• Recent analysis: 34,200 contracts (out of 1M publicly deployed contracts) have security 

issues / vulnerabilities1

• Distributed ledgers are immutable by design

• smart contract vulnerabilities cannot be patched*

• erroneous (or malicious) transactions cannot be reverted* 
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1 Ivica Nikolic, Aashish KolluriChu, Ilya Sergey, Prateek Saxena, and Aquinas Hobor, “Finding the greedy, 

prodigal, and suicidal contracts at scale,” ACSAC’18.

* without undermining the trustworthiness of the contract / ledger



Securing Smart Contracts

• Vulnerabilities often arise due to semantic gap

• difference between assumptions that developers make about execution semantics 

and the actual semantics

• Solidity resembles JavaScript, but it does not work exactly like 

• Existing approaches

• design patterns, e.g., Checks-Effects-Interactions 

• tools for finding (typical) vulnerabilities

• OYENTE

• MAIAN

• …

• tools for verification and static analysis

• SECURIFY

• RATTLE

• …
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Correct-by-Design Contract Development
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• Advantages of model-based approach

• specification of desired properties with respect to a high-level model

• providing feedback to developer with respect to a high-level model



• Formal, transition-system based language for contracts

• each contract may be represented as a transition system

VERISOLID Model
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• Formal, transition-system based language for contracts

• each contract may be represented as a transition system

Definition: A smart contract is a tuple 

• D custom data types and events

• S states

• SF ⊂ S final states

• s0 ∈ S initial state

• a0 ⊂ initial action

• aF ⊂ fallback action

• V contract variables

• T transitions (names, source and destination states, guards, actions, parameter 

and return types)

VERISOLID Model
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: subset of Solidity statements

state

implemented as functions in the generated code



VERISOLID Semantics

• We define semantics in the form of Structural Operational Semantics

• Basic transition rule:

• transition t changes ledger state from Ψ to Ψ’ and contract state from s to s’

• We also define semantics for erroneous transitions (e.g., exceptions) 

and for supported Solidity statements

• Transitions work “as expected” from a transition system *  

* with Solidity-related additions, such as exceptions and fallback functions
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VERISOLID Verification Process

• First, transform a contract into an augmented transition system, 

which captures behavior using transitions

• based on the formal operational semantics of supported Solidity statements

• Second, transform an augmented transitions system into an 

observationally-equivalent Behavior-Interaction-Priority (BIP) model

• Over-approximation of contract behavior

• satisfied safety properties are satisfied by the actual contract 

• violated liveness properties are violated by the actual contract

• Verification using nuXmv model checker
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Theorem: The original contract and the corresponding augmented transition system 

are observationally equivalent. 

satisfied properties + violated properties (with violating transition traces) 



VERISOLID Verification

• Instead of searching for vulnerabilities, we verify that a model satisfies desired properties that 

capture correct behavior

• Deadlock freedom: contract cannot enter a non-final state in which there are no enabled 

transitions

• Safety and liveness properties

• specified using Computational Tree Logic (CTL)

• we provide several CTL templates to facilitate specification

• example:
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X cannot happen after Y AG(Y → AG(¬X))

where X and Y can be 

transitions or statements

bid cannot happen after close AG(close → AG(¬bid))



Example Model:

Transactive Energy Market as a Transition System
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Violated Property Example
If close happens, postSellingOffer or 

postBuyingOffer can happen only after

offers.length=0



Conclusion

• VERISOLID advantages

• high-level model with formal semantics (which are familiar to most developers)

• verification of desired behavior (instead of searching for typical vulnerabilities)

• high-level feedback to the developer (for violated properties)

• Solidity code generation (instead of error-prone coding)

• Future work: interactions between multiple contracts

Source code: http://github.com/anmavrid/smart-contracts

Live demo at: http://cps-vo.org/group/SmartContracts

(requires free registration) 
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https://github.com/anmavrid/smart-contracts
http://cps-vo.org/group/SmartContracts
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Thank you for your attention!

Questions?


