
VERISOLID:

Correct-by-Design Smart Contracts for Ethereum

Aron Laszka1, Anastasia Mavridou2, Scott Eisele3, Emmanouela Stachtiari4,

Abhishek Dubey3

1 University of Houston
2 NASA Ames
3 Vanderbilt University
4 Aristotle University of Thessaloniki

1

Smart Contracts on Blockchains

• Smart contract:

general purpose computation on a blockchain (or other distributed ledger) based

computational platform

• Recently popularized by Ethereum

• smart contracts may be developed using high-level languages, such as Solidity

• enables the creation of decentralized applications

• Envisioned to have a wide range of applications

• financial (self-enforcing contracts)

• Internet of Things

• decentralized organizations

• …

2

Transactive Energy Systems

Smart Contract Security in Practice

• Notable incidents (amounts vary over time with variations in exchange rate)

• The DAO attack: ~$500 million taken

• Parity wallet freeze: ~$70 million frozen

• Parity wallet hack: ~$21 million taken

• Recent analysis: 34,200 contracts (out of 1M publicly deployed contracts) have security

issues / vulnerabilities1

• Distributed ledgers are immutable by design

• smart contract vulnerabilities cannot be patched*

• erroneous (or malicious) transactions cannot be reverted*

4

1 Ivica Nikolic, Aashish KolluriChu, Ilya Sergey, Prateek Saxena, and Aquinas Hobor, “Finding the greedy,

prodigal, and suicidal contracts at scale,” ACSAC’18.

* without undermining the trustworthiness of the contract / ledger

Securing Smart Contracts

• Vulnerabilities often arise due to semantic gap

• difference between assumptions that developers make about execution semantics

and the actual semantics

• Solidity resembles JavaScript, but it does not work exactly like

• Existing approaches

• design patterns, e.g., Checks-Effects-Interactions

• tools for finding (typical) vulnerabilities

• OYENTE

• MAIAN

• …

• tools for verification and static analysis

• SECURIFY

• RATTLE

• …
5

Correct-by-Design Contract Development

6

Contract

bytecode
deploy

Contract

model

feedback

verification

• Advantages of model-based approach

• specification of desired properties with respect to a high-level model

• providing feedback to developer with respect to a high-level model

• Formal, transition-system based language for contracts

• each contract may be represented as a transition system

VERISOLID Model

7

state

• Formal, transition-system based language for contracts

• each contract may be represented as a transition system

Definition: A smart contract is a tuple

• D custom data types and events

• S states

• SF ⊂ S final states

• s0 ∈ S initial state

• a0 ⊂ initial action

• aF ⊂ fallback action

• V contract variables

• T transitions (names, source and destination states, guards, actions, parameter

and return types)

VERISOLID Model

8

: subset of Solidity statements

state

implemented as functions in the generated code

VERISOLID Semantics

• We define semantics in the form of Structural Operational Semantics

• Basic transition rule:

• transition t changes ledger state from Ψ to Ψ’ and contract state from s to s’

• We also define semantics for erroneous transitions (e.g., exceptions)

and for supported Solidity statements

• Transitions work “as expected” from a transition system *

* with Solidity-related additions, such as exceptions and fallback functions
9

VERISOLID: Correct-by-Design Smart Contracts

10

VERISOLID: Correct-by-Design Smart Contracts

11

VERISOLID: Correct-by-Design Smart Contracts

12

VERISOLID: Correct-by-Design Smart Contracts

13

VERISOLID: Correct-by-Design Smart Contracts

14

VERISOLID: Correct-by-Design Smart Contracts

15

VERISOLID: Correct-by-Design Smart Contracts

16

VERISOLID Verification Process

• First, transform a contract into an augmented transition system,

which captures behavior using transitions

• based on the formal operational semantics of supported Solidity statements

• Second, transform an augmented transitions system into an

observationally-equivalent Behavior-Interaction-Priority (BIP) model

• Over-approximation of contract behavior

• satisfied safety properties are satisfied by the actual contract

• violated liveness properties are violated by the actual contract

• Verification using nuXmv model checker

17

Theorem: The original contract and the corresponding augmented transition system

are observationally equivalent.

satisfied properties + violated properties (with violating transition traces)

VERISOLID Verification

• Instead of searching for vulnerabilities, we verify that a model satisfies desired properties that

capture correct behavior

• Deadlock freedom: contract cannot enter a non-final state in which there are no enabled

transitions

• Safety and liveness properties

• specified using Computational Tree Logic (CTL)

• we provide several CTL templates to facilitate specification

• example:

18

X cannot happen after Y AG(Y → AG(¬X))

where X and Y can be

transitions or statements

bid cannot happen after close AG(close → AG(¬bid))

Example Model:

Transactive Energy Market as a Transition System

19

Violated Property Example
If close happens, postSellingOffer or

postBuyingOffer can happen only after

offers.length=0

Conclusion

• VERISOLID advantages

• high-level model with formal semantics (which are familiar to most developers)

• verification of desired behavior (instead of searching for typical vulnerabilities)

• high-level feedback to the developer (for violated properties)

• Solidity code generation (instead of error-prone coding)

• Future work: interactions between multiple contracts

Source code: http://github.com/anmavrid/smart-contracts

Live demo at: http://cps-vo.org/group/SmartContracts

(requires free registration)

20

https://github.com/anmavrid/smart-contracts
http://cps-vo.org/group/SmartContracts

21

Thank you for your attention!

Questions?

