
VeriSolid for TRANSAX: Correct-by-Design Ethereum Smart
Contracts for Energy Trading

Aron Laszka

University of Houston

Anastasia Mavridou

KBR / NASA Ames Research Center

Scott Eisele

Vanderbilt University

Emmanouela Stachtiari

Aristotle University of Thessaloniki

Abhishek Dubey

Vanderbilt University

1 INTRODUCTION
The adoption of blockchain based platforms is rising rapidly. Their

popularity is explained by their ability to maintain a distributed

public ledger, providing reliability, integrity, and auditability with-

out a trusted entity. Recent platforms, e.g., Ethereum, also act as

distributed computing platforms and enable the creation of smart

contracts, i.e., software code that runs on the platform and automat-

ically executes and enforces the terms of a contract. Since smart

contracts can perform any computation, they allow the develop-

ment of decentralized applications, whose execution is safeguarded

by the security properties of the underlying platform. Due to their

unique advantages, blockchain based platforms are envisioned to

have a wide range of applications, ranging from financial to the

Internet-of-Things.

However, the trustworthiness of the platform guarantees only

that a smart contract is executed correctly, not that the code of the

contract is correct. In fact, a large number of contracts deployed

in practice suffer from software vulnerabilities, which are often

introduced due to the semantic gap between the assumptions that

contract writers make about the underlying execution semantics

and the actual semantics of smart contracts. A recent automated

analysis of 19,336 smart contracts deployed in practice found that

8,333 of them suffered from at least one security issue. Although

this study was based on smart contracts deployed on the public

Ethereum blockchain, the analyzed security issues were largely plat-

form agnostic. Security vulnerabilities in smart contracts present

a serious issue for two main reasons. Firstly, smart-contract bugs

cannot be patched. By design, once a contract is deployed, its func-

tionality cannot be altered even by its creator. Secondly, once a

faulty or malicious transaction is recorded, it cannot be removed

from the blockchain (“code is law” principle). The only way to roll

back a transaction is by performing a hard fork of the blockchain,

which requires consensus among the stakeholders and undermines

the trustworthiness of the platform.

In light of this, it is crucial to ensure that a smart contract is se-

cure before deploying it and trusting it with significant amounts of

cryptocurrency. To this end, we present the VeriSolid framework for

the formal verification and generation of contracts that are specified

using a transition-system based model with rigorous operational

semantics [7]. VeriSolid provides an end-to-end design framework,

which combined with a Solidity code generator, allows the correct-

by-design development of Ethereum smart contracts. To the best of

our knowledge, VeriSolid is the first framework to promote a model-

based, correctness-by-design approach for blockchain-based smart

BDLT’19, September 2–5, 2019, Vienna, Austria
2019.

contracts. Properties established at any step of the VeriSolid design

flow are preserved in the resulting smart contracts, guaranteeing

their correctness. VeriSolid fully automates the process of verifica-

tion and code generation, while enhancing usability by providing

easy-to-use graphical editors for the specification of transition sys-

tems and natural-like language templates for the specification of

formal properties. By performing verification early at design time,

VeriSolid provides a cost-effective approach since fixing bugs later

in the development process can be very expensive. Our verification

approach can detect typical vulnerabilities, but it may also detect

any violation of required properties. Since our tool applies verifi-

cation at a high-level, it can provide meaningful feedback to the

developer when a property is not satisfied, which would be much

harder to do at bytecode level.

We present the application of VeriSolid on smart contracts used

in Smart Energy Systems such as transactive energy platforms.

In particular, we used VeriSolid to design and generate the smart

contract that serves as the core of the TRANSAX blockchain-based

platform for trading energy futures [3]. The designed smart contract

allows energy producers and consumers to post offers for selling

and buying energy. Since optimally matching selling offers with

buying offers can be very expensive computationally, the contract

relies on external solvers to compute and submit solutions to the

matching problem, which are then checked by the contract. Using

VeriSolid, we defined a set of safety properties and we were able

to detect bugs after performing analysis with the NuSMV model

checker.

2 VERISOLID FRAMEWORK
VeriSolid [5, 6] is an open-source

1
and web-based framework that

is built on top of WebGME [4]. VeriSolid allows the collaborative

development of Ethereum contracts with built-in version control,

which enables branching, merging, and history viewing. Figure 1

shows the steps of the VeriSolid design flow. Mandatory steps are

represented by solid arrows, while optional steps are represented

by dashed arrows. In step 1 , the developer input is given, which

consists of:

• A contract specification containing 1) a graphically specified

transition system and 2) variable declarations, actions, and

guards specified in Solidity.

• A list of properties to be verified, which can be expressed

using predefined natural-language like templates.

1
https://github.com/anmavrid/smart-contracts

https://github.com/anmavrid/smart-contracts


BDLT’19, September 2–5, 2019, Vienna, Austria Laszka et al.

Table 1: Analyzed properties and verification results for TRANSAX

Properties Type Result
(i) if close happens, postSellingOffer or postBuyingOffer can happen only after finalize.offers.length=0 Safety Violated

(ii) register.prosumers[msg.sender]= prosumerID cannot happen after setup Safety Verified

(iii) register cannot happen after setup Safety Verified

(iv) if finalize happens createSolution or addTrade can happen only after close Safety Verified

Figure 1: Design and verification workflow.

The verification loop starts at the next step. Optionally, step 2 is au-

tomatically executed if the verification of the specified properties re-

quires the generation of an augmented contract model. Next, in step

3 , the model of the contract in the Behavior-Interaction-Priority

(BIP) formal language [1] is automatically generated. Similarly, in

step 4 , the specified properties are automatically translated to

Computational Tree Logic (CTL). The model can then be verified for

deadlock freedom or other properties using tools from the BIP tool-

chain [1] or nuXmv [2] (step 5 ). If the required properties are not

satisfied by the model (depending on the output of the verification

tools), the specification can be refined by the developer (step 6 )

and analyzed anew. Finally, when the developers are satisfied with

the design, i.e., all specified properties are satisfied, the equivalent

Solidity code of the contract is automatically generated in step 7 .

3 TRANSAX PLATFORM
Power grids are undergoing major changes due to rapid growth

in renewable energy and improvements in battery technology.

Prompted by the increasing complexity of power systems, decen-

tralized transactive solutions are emerging, which arrange local

communities into transactive microgrids. The core functionality of

transactive microgrids is to provide an efficient market that matches

producers of energy with consumers, while ensuring the safety of

the power system and the privacy of the participants.

TRANSAX is a smart contract based energy-trading platform for

transactive microgrids [3]. TRANSAX provides safety by ensuring

the power line capacity constraints are respected by trading, and

it provides privacy through an anonymizing mixer. To efficiently

4/9/2018 VeriSolid

http://127.0.0.1:8888/?project=guest%2BVeriSolid&branch=master&node=%2F9%2F0&visualizer=FSMEditor&tab=0&layout=DefaultLayout&selection= 1/1

setup

createOffer

close

finalize

addAssignment

createSolution

postOffer

updateOffer

cancelOffer

Solve

Init Receive

Figure 2: VeriSolid model of the TRANSAX smart contract.

match producers and consumers, TRANSAX uses a hybrid architec-

ture, which combines the trustworthiness of smart contracts with

the efficiency of conventional computational platforms.

4 VERISOLID FOR TRANSAX
Wehave generated the correct-by-design Solidity code of the TRANSAX

smart contract using VeriSolid. The initial (before the augmenta-

tion) VeriSolid transition system of the contract is shown in Figure 2.

The contract has three states:

• Init, in which the contract has been deployed but not been

initialized. Before the contract can be used, it must be initial-

ized (i.e., numerical parameters must be set up).

• Receive, which corresponds to the offering phase of a cycle.

In this state, prosumers may post (or cancel) their offers.

• Solve, which corresponds to the solving phase of a cycle.

In this state, solvers may submit solutions (i.e., resource

allocations) based on the posted (but not cancelled) offers.

We defined a set of safety properties for this contract (Table 1

presents a subset of these properties). We were able to find a bug

in the action of the finalize transition:

// action of finalize transition
if (solutions.length > 0) {

Solution storage solution = solutions[bestSolution ];
for (uint64 i = 0; i < solution.numTrades; i++) {

Trade memory trade = solution.trades[i];
emit TradeFinalized(trade.sellingOfferID ,
trade.buyingOfferID , trade.power , trade.price);

}
solutions.length = 0;
offers.length = 0;

}
// offers.length = 0; SHOULD HAVE BEEN HERE
cycle += 1;

This bug was immediately detected as a violation of our first safety

property shown in Table 1.



VeriSolid for TRANSAX: Correct-by-Design Ethereum Smart Contracts for Energy Trading BDLT’19, September 2–5, 2019, Vienna, Austria

REFERENCES
[1] Basu, A., Bensalem, B., Bozga, M., Combaz, J., Jaber, M., Nguyen, T.-H., and

Sifakis, J. Rigorous component-based system design using the bip framework.

IEEE Software 28, 3 (2011), 41–48.
[2] Bliudze, S., Cimatti, A., Jaber, M., Mover, S., Roveri, M., Saab, W., and Wang,

Q. Formal verification of infinite-state BIP models. In Proceedings of the 13th
International Symposium on Automated Technology for Verification and Analysis
(ATVA) (2015), Springer, pp. 326–343.

[3] Laszka, A., Eisele, S., Dubey, A., and Karsai, G. TRANSAX: A blockchain-based

decentralized forward-trading energy exchange for transactive microgrids. In

Proceedings of the 24th IEEE International Conference on Parallel and Distributed
Systems (ICPADS) (December 2018).

[4] Maróti, M., Kecskés, T., Kereskényi, R., Broll, B., Völgyesi, P., Jurácz, L.,

Levendovszky, T., and Lédeczi, Á. Next generation (meta) modeling: Web-and

cloud-based collaborative tool infrastructure. In Proceedings of the MPM@MoDELS
(2014), pp. 41–60.

[5] Mavridou, A., and Laszka, A. Designing secure Ethereum smart contracts: A

finite state machine based approach. In Proceedings of the 22nd International
Conference on Financial Cryptography and Data Security (FC) (February 2018).

[6] Mavridou, A., and Laszka, A. Tool demonstration: FSolidM for designing secure

Ethereum smart contracts. In Proceedings of the 7th International Conference on
Principles of Security and Trust (POST) (April 2018).

[7] Mavridou, A., Laszka, A., Stachtiari, E., and Dubey, A. VeriSolid: Correct-

by-design smart contracts for Ethereum. In Proceedings of the 23rd International
Conference on Financial Cryptography and Data Security (FC) (February 2019).



TEMPLATE DESIGN © 2008

www.PosterPresentations.com

VeriSolid for TRANSAX: Correct-by-Design Ethereum Smart 

Contracts for Energy Trading

Aron Laszka, Anastasia Mavridou, Scott Eisele, Emmanouela Stachtiari, Abhishek Dubey

Correct-by-Design Contract Development

Conclusions

VeriSolid Language Verification of the TRANSAX Contract

VeriSolid advantages

• High-level model with formal semantics (which are familiar to most developers)

• Verification of desired behavior (instead of searching for typical vulnerabilities)

Distributed ledgers are immutable by design

• smart contract vulnerabilities cannot be patched

• erroneous (or malicious) transactions cannot be reverted

Three main approaches for securing

smart contracts:

• Design patterns

• Tools for finding (typical) 

vulnerabilities

• Tools for verification and 

static analysis

Advantages of model-based approach:

• Specification of desired properties with respect to a high-level model

• Providing feedback to developer with respect to a high-level model

VeriSolid approach

• Formal, transition-system based language for contracts

• Each contract may be represented as a transition system

• A smart contract  is a tuple 

• D custom data types and events

• S states

• SF ⊂ S final states

• a0 ⊂ initial action

• aF ⊂ fallback action

• V  contract variables

• T  transitions (names, source and destination states, actions, 

guards, parameter and return types)

Model

: subset of Solidity statements

Implemented as functions in the generated code

Formal Semantics

• Example transition rule:

• High-level feedback to the developer (for violated properties)

• Solidity code generation (instead of error-prone coding)

Source code: http://github.com/anmavrid/smart-contracts

Live demo at: http://cps-vo.org/group/SmartContracts

(requires free registration)

• Instead of searching for vulnerabilities, we verify that a model 

satisfies desired properties that capture correct behavior

• Deadlock freedom: contract cannot enter a non-final state in 

which there are no enabled transitions

• Safety and liveness properties

• Specified using Computational Tree Logic (CTL)

• We provide several CTL templates to facilitate specification

Violated Property Example
If close happens, postSellingOffer or postBuyingOffer can 

happen only after finalize.offers.length=0

TRANSAX: smart contract-based

energy-trading platform for 

transitive micrograms

Traditional approach

Recent analysis: 34,200 contracts (out of 1M publicly 

deployed contracts) have security issues / vulnerabilities

Background TRANSAX : Safe and Private Forward-Trading Platform for Transactive Microgrids

Energy trading markets are 

safety-critical systems and 

cannot afford errors in smart 

contract-based logic. 

Selling Offers

Buying Offers

Traded Energy

: energy transfer. 

: data transfer. 

https://github.com/anmavrid/smart-contracts
http://cps-vo.org/group/SmartContracts

