
Data-Driven Prediction of Route-Level Energy Use
for Mixed-Vehicle Transit Fleets

Afiya Ayman∗, Michael Wilbur†, Amutheezan Sivagnanam∗, Philip Pugliese‡, Abhishek Dubey†, Aron Laszka∗
∗University of Houston, †Vanderbilt University, ‡Chattanooga Area Regional Transportation Authority

Abstract—Due to increasing concerns about environmental
impact, operating costs, and energy security, public transit
agencies are seeking to reduce their fuel use by employing electric
vehicles (EVs). However, because of the high upfront cost of
EVs, most agencies can afford only mixed fleets of internal-
combustion and electric vehicles. Making the best use of these
mixed fleets presents a challenge for agencies since optimizing
the assignment of vehicles to transit routes, scheduling charging,
etc. require accurate predictions of electricity and fuel use.
Recent advances in sensor-based technologies, data analytics, and
machine learning enable remedying this situation; however, to
the best of our knowledge, there exists no framework that would
integrate all relevant data into a route-level prediction model for
public transit. In this paper, we present a novel framework for
the data-driven prediction of route-level energy use for mixed-
vehicle transit fleets, which we evaluate using data collected
from the bus fleet of CARTA, the public transit authority of
Chattanooga, TN. We present a data collection and storage
framework, which we use to capture system-level data, including
traffic and weather conditions, and high-frequency vehicle-level
data, including location traces, fuel or electricity use, etc. We
present domain-specific methods and algorithms for integrating
and cleansing data from various sources, including street and
elevation maps. Finally, we train and evaluate machine learning
models, including deep neural networks, decision trees, and linear
regression, on our integrated dataset. Our results show that
neural networks provide accurate estimates, while other models
can help us discover relations between energy use and factors
such as road and weather conditions.

I. INTRODUCTION

Transportation accounts for 28% of the total energy use
in the U.S. [1], and as such, it is responsible for immense
environmental impact, including urban air pollution and green-
house gas emissions, and may pose a severe threat to energy
security. Switching from personal vehicles to public transit
systems can significantly reduce energy use and environmental
impact. However, even public transit systems require substan-
tial amounts of energy; for example, public bus transit services
in the U.S. are responsible for at least 19.7 million metric tons
of CO2 emission annually [2].

Electric vehicles (EVs) can have much lower environmental
impact during operation than comparable internal combustion
engine vehicles (ICEVs), especially in urban areas. However,
existing EVs have limited battery capacity and hence driving
range. For example, a BYD K9S bus has a nominal driving
range of only around 150 miles. Due to this limited driving
range, the operation of EVs must be carefully planned. Such
planning is especially important to transit agencies that operate
mixed fleets of electric and internal-combustion vehicles.
Firstly, these agencies need to decide which vehicles are

assigned to serving which transit trips. Since the advantage
of EVs over ICEVs varies depending on the route and time
of day (e.g., the advantage of EVs is higher in slower traffic
with frequent stops, and lower on highways), the assignment
can have a significant effect on energy use and, hence, en-
vironmental impact. Secondly, they need to schedule when
to charge electric vehicles during the day considering how
long EVs can operate without recharging and when electricity
prices are lower.

At the crux of this operational optimization is the problem
of accurately predicting the electricity and fuel consumption
of transit vehicles. Such predictions must be contextualized
with a variety of factors, including the type of vehicle, traffic
and weather conditions, road gradient, and type of road (e.g.,
highway vs. residential area) since these factors can have
significant impact on energy use. Clearly, handling all of these
factors using model-driven approaches, which attempt to build
detailed physical models of vehicles, is very challenging.

Recent advances in sensor-based technologies, data analyt-
ics, and machine learning have enabled remedying this situ-
ation by building data-driven predictors of route-level energy
use. However, to the best of our knowledge, there exists no
framework that would integrate all relevant data into a route-
level prediction model for public transit. Such a framework
needs to address many challenges: high volume of unstructured
and irregular data must be stored efficiently, allowing easy
retrieval in subsequent steps; noisy data (e.g., GPS based
locations) must first be cleansed (e.g., corrected or imputed
based on other data sources); heterogeneous data (recorded
at different rates with different precision in different formats)
must be collated into samples that can be fed into training
machine-learning models; etc.

Contributions: In this paper, we present a novel framework
for the data-driven offline prediction of route-level energy use
for mixed-vehicle transit fleets, which we evaluate using data
collected from the bus fleet of CARTA, the public transit
authority of Chattanooga, TN.
• We collect and combine vehicle telemetry data, elevation

and street-level maps, weather data, and traffic data. Our
dataset is publicly available at https://github.com/
hdemma/hdemma.github.io

• We present a cloud-centric data collection and storage
framework for high-velocity spatiotemporal smart-city data.
Our modular architecture is centered around a topic-based
distributed log with easily extendable, application-specific
structured views.



TABLE I: Overview of Vehicle Dataset

Vehicle
Type

CARTA
Vehicle ID

Model Start Date End Date Duration

Diesel
Gillig

148, 149, 150
2014 Gillig Phantom

diesel Cummins-Allison
2019-08-22 2019-10-16 56 days

Electric
BYD

751, 752, 753
2016 BYD K9S

35-foot battery-electric
2019-08-01 2019-10-01 61 days

• We present a framework and novel algorithms for cleaning
and integrating time series data from multiple sources into
sets of samples with fixed-dimension feature space.

• We train machine-learning models on this dataset (deep
neural networks, linear regression, and decisions trees) and
study their performance, focusing on the impact of including
or omitting certain data sources.
Organization: The remainder of this paper is organized as

follows. In Section II, we describe our data sources, data col-
lection methods, and data storage architecture. In Section III,
we introduce our data cleansing and integration framework.
In Section IV, we propose machine-learning based prediction
models. In Section V, we present numerical results based
on real-world data. In Section VI, we discuss related work.
Finally, in Section VII, we provide concluding remarks.

II. DATA COLLECTION AND STORAGE

We first provide an overview of the data sources that we use
in our study (Section II-A) and then describe the architecture
of our data storage framework (Section II-B).

A. Data Sources

1) Vehicle Data: To collect data from CARTA’s fleet of
vehicles, we partner with ViriCiti, a company that offers sensor
devices and an online platform to support transit operators
with real-time insight into their fleets. ViriCiti has installed
sensors on CARTA’s mixed-fleet of 3 electric, 41 diesel, and
6 hybrid buses, and it has been collecting data continuously at
1-second (or shorter) intervals since installation. At the time of
this study, we have 2 months of data available for 3 electric
and 3 diesel buses, on which sensors were installed earliest
(see Table I). All electric buses are BYD K9S battery-electric
transit vehicles, while the diesel buses are 2014 Gillig Phantom
series vehicles with Cummins diesel engines.

For each vehicle, we obtain time series data from ViriCiti,
which includes series of timestamps and vehicle locations
based on GPS. For electric buses, we also include features
such as battery current in ampere (A), battery voltage (V ),
battery state of charge, and charging cable status. For diesel
buses, we include fuel level and the total amount of fuel used
over time in gallons. In total, we have already obtained around
6.6 million data points for electric buses and 1.1 million data
points for diesel buses (Table I). Fuel data is recorded less
frequently; hence, there are fewer data points for diesel buses.

2) Elevation, Weather, and Traffic Data: We collect static
GIS elevation data from the Tennessee Geographic Infor-
mation Council [3]. From this source, we download high-
resolution digital elevation models (DEMs), derived from
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Fig. 1: Data architecture overview.

LIDAR elevation imaging, with a vertical accuracy of approx-
imately 10 cm [4]. We join the DEMs for Chattanooga into a
single DEM file, which we then use to determine the elevation
of any location within the geographical region of our study.

We collect weather data from multiple weather stations in
Chattanooga at 5-minute intervals using the DarkSky API [5].
This data includes real-time temperature, humidity, air pres-
sure, wind speed, wind direction, and precipitation.

We collect traffic data at 1-minute intervals using the HERE
API [6], which provides speed recordings for segments of
major roads. Every road segment is identified by a unique
Traffic Message Channel identifier (TMC ID) [7]. Each TMC
ID is also associated with a list of latitude and longitude
coordinates, which describe the geometry of the road segment.
Weather and traffic data was collected from August 1, 2019
to October 1, 2019 to match the time range in Table I.

B. Data Architecture Framework

Next, we outline a general-purpose data architecture frame-
work for storing the various smart-city data streams. The goal
of this framework is to store the data streams in a way that
provides easy access for offline model training and updates as
well as real-time access for system monitoring and prediction.
An overview of our architecture is shown in Figure 1.

The first challenge is persistent storage of the high-velocity,
high-volume data streams. In this study, the real-time data
sources—ViriCiti, HERE, and DarkSky—produce around 100
GiB of data per month. Therefore, we choose a cloud based
design to allow for fast horizontal scalability of the system.

The second concern is that the data itself is highly unstruc-
tured and irregular. Additionally, each data source streams at
varying rates. Therefore we stream each data source to a topic-
based publish-subscribe (pub-sub) layer which persistently
stores each data stream as a separate topic. All replication is
handled at the ledger level, which allows downstream storage
and applications to adapt and expand without concern for
data resiliency. The distributed ledgers are append only logs
and store incoming data in its raw, unstructured form. This
data structure allows for near real-time access to incoming
data, which is optimal for model inference during deployment
and latency-sensitive client applications such as monitoring or
visualization tools. This setup minimizes latency for running
trained models in production in real-time use cases. Data
streams are accessed by unique topic names, and data is
persisted in each ledger, allowing for historical access.
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Fig. 2: Data architecture implementation.

Model-training and inference require data from various
streams to be merged. Typical implementations of stream pro-
cessing architectures require external processing frameworks
such as Apache Spark and Storm [8], [9]. For our system
we instead incorporate a customized stream processing layer
into the pub-sub module. In this layer, data cleansing and
processing functions are applied to the raw data topics and the
processed data is then published to separate reformed topics
that can easily be accessed for prediction or model training.

As shown in Figure 2, we use the pub-sub framework
Apache Pulsar [10] for the topic-based distributed ledger
module. Apache Pulsar provides topic-based messaging. The
storage component of Apache Pulsar relies on Apache Book-
Keeper [11], which allows sharding of data at the topic level.
As the size and velocity of data varies greatly between data
sources, topic level sharding allowed us to evenly distribute
data between storage nodes and thus maximize resources in
the cluster. Cluster state and coordination is managed with
Apache ZooKeeper [12]. The Apache Pulsar system provides
automatic failover and load balancing.

While distributed topic-based ledgers provide fast real-time
access to data and easy data replication, the complexity of
working with spatiotemporal data requires a more structured
representation of the data, particularly for training and batch
analysis. Therefore, we incorporate a structured view com-
ponent into the architecture downstream from the distributed
ledgers. In this sense, structured views are data representations
optimized for specific downstream components. For our use
case, this includes model training and data analysis client
applications. These applications require a data model with
spatial and temporal indexing for efficient data retrieval, which
is particularly important during model training. Additionally,
large-scale data has to be shared between research sites, which
requires a unified structure that is easily transferable. For
this, we use MongoDB [13], which provides native geospatial
indexing and easy large-scale exports in JSON format for
sharing between research sites.

III. DATA PROCESSING FRAMEWORK

Before applying machine-learning models, we have to pro-
cess the time series data recorded from the vehicles by
cleaning it, generating samples with a fixed-dimension feature
space, and integrating with other data sources.

A. Removing Garage Locations and Charging

Since our goal is to predict the amount of energy used for
driving, we remove all datapoints that were recorded when
a bus was (1) waiting in the garage or (2) charging. First,
we remove all datapoints whose GPS-based locations fall in
the geographical area of the CARTA bus garage. Second, for
electric buses, we remove all datapoints whose charging cable
status indicates that the vehicle was charging.

B. Estimating Energy Use for Electric Vehicles

For diesel buses, we can compute the amount of fuel used
between two consecutive datapoints as the change in the total
amount fuel used. For electric buses, we could compute the
amount of energy used as the change in the battery state of
charge (SoC), which is the remaining battery charge as a
percentage of the total capacity. However, SoC values are
recorded with a low precision of only one digit after the
decimal point. To obtain more accurate values, we need to
estimate the amount of energy used based on the recorded
battery current (A) and voltage (V ) values. At any time,
the instantaneous power use of the vehicle (in Watt) can be
computed as A · V . We can estimate the amount of energy
used (in Joule) between consecutive datapoints i− 1 and i as

Ai · Vi · (TSi − TSi−1) , (1)

where TSi is the timestamp of datapoint i (in seconds). Since
current and voltage values are recorded at least once every
second, the above formula provides a high-accuracy estimate.
We confirmed that our estimates are unbiased by comparing
them to changes in SoC over large numbers of datapoints.

C. Mapping GPS Locations to Roads

The recorded vehicle locations are inherently noisy since
they are based on GPS. For example, some locations fall
onto streets or parking lots where a bus cannot even drive.
This noise presents a significant challenge for computing
accurate travel distances and for integrating the time series
with other data sources. To mitigate this noise, we combine
the recorded vehicle locations with a street-level map of
Chattanooga, which we obtain from OpenStreetMap (OSM).
OSM represents each road using a disjoint set of segments,
called OSM features. Specifically, OSM divides each road into
one or more segments along its length and assigns a unique
OSM Feature ID to each one of these road segments.

We map each recorded GPS location to an OSM feature (i.e.,
road segment). For a particular location, we consider the set of
nearby OSM features based on geographical distance. For each
nearby OSM feature, we count how many of the preceding and
following datapoints were also near this feature. Finally, we
select the feature that is near the most datapoints. Algorithm 1
details the process of mapping locations to OSM features.

For each datapoint, we add the OSM Feature ID, which
we use to generate samples (Section III-D) and later to
calculate accurate travel distances (Section III-E). We also add
information from OpenStreetMap regarding the road, such as
the type of the road, whether the road is one-way or two-way,



whether it is a tunnel, etc. In our dataset, we encounter 14
different road types in total, which include primary, residential,
motorway, etc. For some roads, the type is “unknown’ on
OpenStreetMap, which we treat as a distinct type.

Algorithm 1: Mapping Locations to OSM Features
Input : Locations← list of locations

Map← OSM street-level map
WINDOW← lookahead and -back

Output : Roads→ OSM features traveled
Initialization:
NearbyRoads← [][] /* list of nearby OSM

features for each location */

Roads← [] /* OSM feature for each location */

for i ∈ {1, . . . , |Locations|} do
Nearby ←Map.NearbyFeatures(Locations[i])
NearbyRoads[i]← Nearby

for i ∈ {1, . . . , |Locations|} do
if |NearbyRoads[i]| > 0 then

Frequency ← [ ]
for Road ∈ NearbyRoads[i]) do

Count← 0
for j∈{i−WINDOW, . . . , i+WINDOW} do

for OtherRoad ∈ NearbyRoads[j] do
if Road == OtherRoad then

Count← Count+ 1

Frequency[Road]← Count

Selected← argmaxj Frequency[j]
Roads[i]← NearbyRoads[i][Selected]

D. Generating Samples

Next, we generate a set of samples from the time series data
by dividing the time series of each bus based on the traveled
road segments. Specifically, for each bus, we treat a maximal
continuous travel on a particular road segment (i.e., particular
OSM feature) as one sample. Each sample includes the starting
datapoint, the ending datapoint, and the sum of the amount of
energy or fuel used between them.

E. Calculating Travel Distance

Since GPS based locations are noisy, we combine them
with OpenStreetMap to calculate the distance traveled for
each sample accurately. First, for each sample, we obtain the
geometry of the corresponding road segment from OSM as
a list of contiguous line segments. Because the bus does not
necessarily travel the complete distance of the road segment
(e.g., it could turn on a different street before reaching the
end of the road segment), we need to identify the first and
last line segments that the bus actually traveled. We calculate
the distance between each line segment and the starting and
end points of the sample, which we denote DistS [] and DistE [],
respectively. Next, we identify the indices of the line segments
that are closest to the starting and end points, which we denote

Algorithm 2: Calculating Travel Distance for Sample
Input : locS ← starting point of sample

locE ← end point of sample
line1, line2, . . . , linen ← line

segments of the OSM feature of the sample
Output : L→ distance traveled
for i ∈ {1, . . . , n} do

DistS [i]← distance(locS , linei)
DistE [i]← distance(locE , linei)

indexS ← argmini DistS [i]
indexE ← argmini DistE [i]
/* vehicle moving in direction

lineindexS
, lineindexS+1, . . . , lineindexE */

if (indexS < indexE) then
l1 ← distance(locS , second endpoint of lineindexS

)
l2 ← sum length of lineindexS+1, . . . , lineindexE−1

l3 ← distance(first endpoint of lineindexE
, locE)

L← l1 + l2 + l3
/* vehicle moving in direction

lineindexE
, lineindexE+1, . . . , lineindexS */

else if (indexS > indexE) then
l1 ← distance(locE , second endpoint of lineindexE

)
l2 ← sum length of lineindexE+1, . . . , lineindexS−1

l3 ← distance(first endpoint of lineindexS
, locS)

L← l1 + l2 + l3
/* indexS == indexE */

else
L← distance between locS and locE .

indexS and indexE , respectively. Finally, we calculate the
distance traveled for the sample based on the partial distance
on line segment indexS , the full distance of all line segments
in between, and the partial distance on line segment indexE ,
according to Algorithm 2.

F. Removing Erroneous Samples

Even though current and voltage values are almost always
correctly recorded, we did find a few datapoints that have er-
roneous or missing values, which result in extremely low, neg-
ative energy consumption estimates. Note that many electric
vehicles can recharge from braking; so energy consumption
can in fact be negative for some shorter samples when the
bus is slowing down or going downhill. However, erroneous
values result in implausibly low values.

Figure 3 shows the distribution of the energy consumption
values (measured as changes in SoC) for the 62,249 samples
that we obtain for electric vehicles. Of these samples, 99.92%
have energy use values greater than or equal to -0.2. Only 50
samples have values lower than -0.2, constituting 0.08% of the
dataset. We remove these 50 samples from the dataset.

G. Incorporating Elevation

To add road gradients to the samples, we calculate the
difference between the elevation at the start and end points of
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Fig. 3: Distribution of energy consumption values for electric
vehicle samples.

each sample. The change in elevation captures the net potential
energy gained or lost during the sample.

H. Incorporating Weather

Since our goal is to provide predictions for planning transit
operations in advance, we cannot rely on real-time data for
weather. Instead, we compute hourly weather predictions for
each station based on the recorded historical weather data.
Then, for each sample, we compute the distance between the
end point of the sample and each weather station, and we
add the predicted weather features of the closest station to
the sample. Our weather dataset has a number of features, of
which we use temperature (T), humidity (H), visibility (V),
wind speed (W), and precipitation (P).

I. Incorporating Traffic

Our traffic dataset consists of timestamped speed val-
ues recorded for segments of roads in Chattanooga, which
are identified using Traffic Message Channel (TMC) identi-
fiers [7]. Each TMC segment represents a specific, directed
segment of a major road, whose geometry is stored as a
list of geo-points. While the TMC format is adequate for
delivering and storing traffic information, we must also be able
to integrate traffic data with our samples, which reference road
segments using OSM Feature IDs. To this end, we need to
map OSM features to TMC segments. This mapping presents
two challenges. First, OpenStreetMap typically divides roads
into significantly smaller segments than TMC segments, so
matching based on similarity of geometry is difficult. Second,
TMC segments cover only major roads, so most OSM features
cannot be mapped to any TMC segment.

To set up the mapping, we first generate an OpenStreetMap
routing graph. This graph enables us to find the shortest
driving-distance path between any two nodes, which represent
real-world locations, returning a list of edges. Each edge is
labeled with the ID of the corresponding OSM feature (i.e.,
road segment). Next, for the start and end geo-points of each
TMC segment, we find the closest nodes in the OSM routing
graph. Finally, for each TMC segment, we find the shortest
path in the OSM routing graph between the start and end
nodes, and we map each edge (i.e., OSM feature) of the path
to the TMC segment.

However, in some cases, the start and end geo-points of
a TMC segment are matched to OSM nodes on the opposite
sides of a road, which causes errors in the mapping. Therefore,
instead of finding only the nearest OSM node, we find the
four nearest nodes for each start and end geo-point. Then,
we find all the shortest paths between all the start and end
nodes, select the path whose length matches the actual length
of the TMC segment most closely, and map the OSM features
of only this path to the TMC segment. We found that this
process significantly improves the OSM to TMC mapping.

Based on this mapping, we add traffic information to our
samples. Similar to weather, we cannot rely on real-time traffic
for energy use prediction. Instead, we compute average traffic
conditions for each TMC segment for each hour of each day of
the week based on the recorded data, and we use these hourly
averages as traffic predictions. For each sample, we add the
hourly prediction for the TMC segment to which the OSM
feature of the sample is mapped. For samples that cannot be
mapped, we impute special values, which we discuss below.
We add two features from our traffic dataset to each sample:
speed ratio and jam factor. Speed ratio is the actual traffic
speed over the free-flow speed; values around 1 mean light or
no traffic, while values around 0 mean very heavy traffic. Jam
factor indicates the expected quality of travel, ranging from 0
(light or no traffic) to 10 (road closure) [6]. For samples that
cannot be mapped to a TMC segment, we let the speed ratio
and jam factor be 1 and 0, respectively, since road segments
that are missing from our traffic dataset are typically minor
roads, which rarely experience heavy traffic.

IV. ENERGY CONSUMPTION PREDICTION MODELS

We apply three different machine-learning models for pre-
dicting energy consumption: artificial neural network, linear
regression, and decision tree regression. We chose neural
networks for their superior prediction performance, which is
confirmed by our numerical results. In contrast, linear and
decision tree regression do not perform as well, but their
results are easier to understand and explain. For example,
linear regression shows the direct relation between input
variables and target features.

We map categorical variables (e.g., road type) into sets of
binary features using one-hot encoding. We train all three
models to minimize mean squared error (MSE).

A. Artificial Neural Network

We found that different network structures work best for
diesel and electric vehicles. For electric vehicles, the best
model has one input, two hidden, and one output layer. The
input layer has one neuron for each predictor variable. The two
hidden layers have 100 neurons and 80 neurons, respectively.
For diesel, the best model has one input, five hidden, and one
output layer. The five hidden layers have 400, 200, 100, 50,
and 25 neurons, respectively. In all the hidden layers, we use
sigmoid activation, and we use linear activation in the output
layer. We optimize the models using the Adam optimizer [14]
with learning rate 0.001.



Fig. 4: Mapping without noise.

Fig. 5: Mapping with noise
with 14-meter std. dev.

Fig. 6: Mapping with noise
with 28-meter std. dev.

B. Linear Regression

Our second model is a standard multiple linear regression.

C. Decision Tree

Our third model is decision tree regression [15]. This model
builds a tree structure based on the training samples, where
each node represents a decision based on the value of a
feature variable, and leaf nodes provide predictions. We use the
implementation provided by the scikit-learn Python library.

V. NUMERICAL RESULTS

A. Mapping GPS Locations to Road Segments

We begin by evaluating the accuracy of our algorithm for
mapping noisy locations to OSM features (Algorithm 1). Since
we do not have ground truth for the correct mapping in
our GPS-based dataset, we create a test dataset with known
ground truth. First, we generate routes using a street-level map
and select a set of locations along these routes, which are
precisely on the roads (Figure 4). Then, we add random noise
to these locations, generated using a two-dimensional Gaussian
distribution with zero mean. We vary the standard deviation of
the noise between 1 meter and 110 meters in both directions
(Figures 5 and 6). Finally, we map the noisy locations to road
segments using Algorithm 1 and measure accuracy as the ratio
of correctly mapped locations.

Figures 4 to 6 show locations with different levels of
noise added, highlighting in red the road segments to which
locations are mapped by Algorithm 1. Figure 7 shows the
accuracy of mapping with various levels of noise, ranging
from zero to 110-meter standard deviation in both directions.
As expected, the accuracy of the algorithm decreases as the
level of noise increases. However, for reasonable noise levels,
it performs very well: with 14-meter standard deviation, it can
still correctly map 84.5% of locations.

0 20 40 60 80 100 120
0%

20%

40%

60%

80%

100%

Standard deviation of noise [m]

A
cc

ur
ac

y Accuracy

Fig. 7: Accuracy of mapping noisy locations to road segments.
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Fig. 8: Prediction error with various sets of features. Note that
electric and diesel energy are measured in different units.

B. Comparison of Weather, Traffic and Elevation Features

For both electric and diesel buses, we have a set of 26
features in each sample, besides energy use as the target
feature. Now, we study which of these features are the most
useful for predicting energy use, and which subset of features
results in the lowest prediction error.

After preparing the samples for both electric and diesel
buses, we randomly split them into training (80%) and test sets
(20%). We use the same split ratio in all subsequent experi-
ments. Since neural networks attain the lowest prediction error
(see Section V-D), we compare features based on this model.
We include vehicle-level data in all experiments, and try
different combinations of weather, elevation, and traffic data.

Figure 8a shows that elevation is by far the most significant
feature for electric vehicles. Traffic data does improve predic-
tion, but its impact is much smaller, especially if elevation
is already included. This can be explained by regenerative
breaking: the energy use of electric vehicles is not impacted
by heavy traffic since they do not lose energy due to frequent
braking. On the other hand, Figure 8b shows that for diesel
vehicles, both elevation and traffic data are significant, and
both need to be included for good performance. Finally, we
find that weather data has the lowest impact on prediction error
for both electric and diesel vehicles.

C. Comparison of Different Weather Features

Since weather data has many features, we also present a
comparison among various weather features to see which ones
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Fig. 9: Prediction error with various weather features.
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help with prediction the most. We consider temperature (T),
humidity (H), visibility (V), wind speed (W), and precipitation
(P) in this comparison.

Figure 9 shows prediction error with various combinations
of weather features (with traffic and elevation always in-
cluded). For electric vehicles, we attain lowest error when we
use all five features together (Figure 9a). On the other hand,
for diesel vehicles, we attain lowest error using only three
features: temperature, visibility and pressure (Figure 9b). This
may be explained by over-fitting when using more features.

D. Comparison of Prediction Models for Samples

We first evaluate the three machine-learning models based
on how well they predict energy use for samples. Our samples
represent segments of trips that are short in both distance and
duration, presenting a challenging problem for prediction.

Figures 10 and 11 show mean squared error (MSE) and
mean absolute error (MAE) for the three models. Based
on MSE, the artificial neural network (ANN) outperforms
the other two models for both electric and diesel vehicles.
However, based on MAE, ANN outperforms decision trees
(DT) for diesel vehicles but not for electric vehicles. Note
that we optimized all models to minimize MSE, which can
explain the slightly inferior performance of ANN for MAE.
We have not encountered any overfitting since our training and
testing errors were consistent for each model.

E. Comparison of Prediction Models for Longer Trips

Finally, we study how well our models perform with respect
to predicting energy use for longer trips. First, we divide our
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Fig. 11: Mean square error (MSE) and mean absolute error
(MAE) for diesel vehicle samples.
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Fig. 12: Prediction error for longer trips with neural network
(ANN), decision tree (DT), and linear regression (LR).

time series into longer trips, varying the length of the trips
between 10 minutes and 6 hours. For each trip, we generate
a set of samples (as described in Section III), use our models
to predict energy use for each sample, and then compare the
sum of these predictions to the actual energy use of the trip.

Figure 12 shows the relative prediction error for trips of
various lengths. For each length, we plot an average error value
computed over many trips. We see that relative prediction error
is generally lower for longer trips; this is expected as the
individual errors of large numbers of samples cancel each other
out with an unbiased prediction model. For diesel vehicles, we
find that the ANN outperforms the other models significantly
for all trip lengths. On the other hand, for electric vehicles,
ANN and DT perform equally well for most trip lengths.

VI. RELATED WORK

Our study is most closely related to the work of Cauwer et
al. and of Wickramanayake and Bandara. Cauwer et al. [16]
use a cascade of ANN and multiple linear regression models as
a data-driven energy-consumption prediction method for EVs.
Their study uses vehicle monitoring data as time series of
tuples for two types of vehicles with location, vehicle speed,
and energy-consumption information, such as battery voltage,
current, and SoC. Their dataset also includes road network
data, weather data, and an altitude map. Our approach has
some similarity to this study. However, we also use traffic
data in our model, which we find to be very helpful with
diesel prediction. Wickramanayake and Bandara [17] assess



three different techniques for fuel consumption prediction of
a long-distance public bus. Their time series tuples include
GPS location, bearing, elevation, distance travelled, speed, ac-
celeration, ignition status, battery voltage, fuel level, and fuel
consumption. The authors compare the performance among
two ensemble models, random forest and gradient boosting,
and one ANN model. However, their study lacks critical
parameters, such as road information, traffic, weather, etc.

Perrotta et al. [18] compare the performance of SVM,
RF, and ANN in modelling fuel consumption of a large
fleet of trucks. Their features include gross vehicle weight,
speed, acceleration, geographical position, torque percentage,
revolutions of the engine, activation of cruise control, use
of brakes and acceleration pedal, measurement of travelled
distance, fuel consumption. The study also combines some
road characteristics. From the comparison of the RMSE, MAE,
and R2 score of the prediction, RF gives the best performance.
Nageshrao et al. [19] models the energy consumption of
electric buses based on time-dependent factors such as ambient
temperature and speed, battery capacity, total mass, battery
parameters, etc. They use a NARX based ANN time series
predictor to predict the state of charge of the battery. Gao et
al. [20] discuss an adaptive wavelet neural network (WNN)
based energy prediction. The study uses features such as day
type, temperature, rainfall, the travelled distance, and clarity
of the atmosphere. The study groups the trip days based on
similar attributes, using Grey Relational Analysis (GRA) and
then implements the Adaptive WNN.

Some researchers propose methods for optimizing the op-
erations of vehicle fleets. Wang et al. [21] design a real-
time charging scheduling system, called bCharge, for electric
bus fleets. They implement the system with the real-world
streaming dataset from Shenzhen, China, including GPS data,
bus stop data, bus transaction lines, bus charging station data,
and electricity rate data. Murphey et al. [22] propose the
ML EMO HEV framework for energy management optimiza-
tion in an hybrid-electric vehicles. Their framework first uses
a ANN to model the road environment of a driving trip as
a sequence of different roadway types and traffic congestion
levels. Then, it uses an additional ANN to model the driver’s
instantaneous reaction to the driving environment. Finally, the
framework uses an additional set of ANN to emulate the
optimal energy management strategy.

VII. DISCUSSION AND CONCLUSION

We presented a framework for the data-driven prediction of
the energy use of electric and internal-combustion vehicles,
which we evaluated on real-world data collected from a
transit fleet. Our results show that it is possible to collect,
aggregate, and process heterogeneous transit data effectively.
We found that generally, artificial neural networks perform
best for predicting energy use. For diesel buses, we achieve
best results using 21 predictor variables: travel distance, 14
road-type features, elevation change, 3 weather features, and
2 traffic features. For electric buses, we achieve best results
using 23 predictor variables, which include 2 more weather

features. We also found that relative prediction error is lower
for longer trips, which facilitates the long-term planning of
transit operations.
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