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Abstract. Distributed Real-Time Embedded (DRE) Systems that ad-
dress safety and mission-critical system requirements are applied in a
variety of domains today. Complex, integrated systems like managed
satellite clusters expose heterogeneous concerns such as strict timing re-
quirements, complexity in system integration, deployment, and repair;
and resilience to faults. Integrating appropriate modeling and analysis
techniques into the design of such systems helps ensure predictable, de-
pendable and safe operation upon deployment. This paper describes how
we can model and analyze applications for these systems in order to ver-
ify system properties such as lack of deadline violations. Our approach
is based on (1) formalizing the component operation scheduling using
Colored Petri nets (CPN), (2) modeling the abstract temporal behavior
of application components, and (3) integrating the business logic and the
component operation scheduling models into a concrete CPN, which is
then analyzed. This model-driven approach enables a veri�cation-driven
work�ow wherein the application model can be re�ned and restructured
before actual code development.

1 Introduction

Safety and mission-critical DRE systems are used in a variety of domains such
as avionics, locomotive control, industrial and medical automation. Given the
increasing role of software in such systems, growing both in size and complexity,
utilizing predictable and dependable software is critical for system safety. To
mitigate this complexity, model-driven, component-based software development
has become an accepted practice. Applications are built by assembling together
small, tested component building blocks that implement a set of services. Models
describe what these component blocks are, what interfaces they have, how they
are built, how they interact and how they are deployed to realize the domain-
speci�c application.

Complex, managed systems, e.g. a fractionated spacecraft following a mission
timeline and hosting distributed software applications expose heterogeneous con-
cerns such as strict timing requirements, complexity in deployment, repair and
integration; and resilience to faults. High-security and time-critical software ap-
plications hosted on such platforms run concurrently with all of the system-level
mission management and failure recovery tasks that are periodically undertaken
on the distributed nodes. Once deployed, it is often di�cult to obtain low-level



access to such remote systems for run-time debugging and evaluation. These
types of systems therefore demand advanced design-time modeling and analysis
methods to detect possible anomalies in system behavior, such as unacceptable
response time, before deployment.

Our team has designed and prototyped a comprehensive information archi-
tecture called Distributed REal-time Managed System (DREMS) [1, 2] that
addresses requirements for rapid component-based application development. In
prior work, we have described the design-time modeling capability [3], and the
component model used to build and execute applications [4]. The formal mod-
eling and analysis method presented in this paper focuses on applications that
rely on this foundational architecture.

The principle behind this design-time analysis here is to map the structural
and behavioral speci�cations of the system under analysis into a formal domain
for which analysis tools exist. Using an appropriate model-based abstraction,
the mapping from one domain to another remains valid under successive re�ne-
ments in system development, including code generation. Application develop-
ers use domain-speci�c modeling languages to model the component assembly,
component interactions, component execution code, operation sequencing, and
associated temporal properties such as estimated execution times, deadlines etc.
Using such application-speci�c parameters in the design model, a Colored Petri
net-based (CPN) [5] analysis model is generated. The analysis must ensure that,
under the assumptions made about the components and the component architec-
ture, the behavior of the system remains within the safe operational region. The
results of this analysis will enable system re�nement and re-design if required,
before actual code development.

The remainder of this paper is organized as follows. Section 2 presents ex-
isting research relating to this paper; Section 3 provides a brief background on
the DREMS Infrastructure and on the CPN formalism; Section 4 discusses the
problem statement that is evaluated; Section 5 describes how this architecture
is abstracted and modeled using CPN; Section 6 investigates the utility and
scalability of state space analysis; Section 7 brie�y describes how the analysis
model is generated; Sections 8 and 9 present future extensions to the proposed
approach and concluding remarks respectively.

2 Related Research

In recent years, much of the proliferating work in the development of mission-
critical distributed real-time systems addresses the need for Safety and Veri�-
cation driven Engineering. Structural properties of the system are established
using domain-speci�c modeling tools. Design models are transformed into rel-
evant analysis models to study possible behaviors of the system and identify
anomalies. When analyzing timing behavior, typically several exaggerated as-
sumptions such as upper bounds on task execution times, service rates, maxi-
mum resource consumption etc are made. The results of system analysis using
these assumptions are equally pessimistic. However, real-time systems with high
criticality necessitate such assumptions to avoid the consequences of poor design.



Predictability of system behavior is achieved by obtaining upper bounds on the
system properties.

Petri nets and their extensions have proven to be a powerful formalism for
modeling and analyzing concurrent systems. System designs represented using a
domain-speci�c modeling languages are often translated into Petri nets for for-
mal analysis. High-level formalisms such as AADL models have been translated
into Symmetric Nets for qualitative analysis [6] and Timed Petri nets [7] to check
for real-time properties such as deadline misses, bu�er over�ows etc. Similar to
[7], our CPN-based analysis also makes use of observer places [8] that monitor
the system behavior and look for real-time property violations and prompt com-
pletion of operations. However, [7] only considers periodic threads in systems
that are not preemptive. Our analysis covers a broader range of thread inter-
action patterns geared towards component-based applications operating on a
hierarchical scheduling scheme requiring higher-level modeling concepts to cap-
ture component interaction in a distributed setup.

In the context of component-based systems, for complete real-time analysis,
signi�cant information must be obtained about the component assembly, the
interaction patterns and the temporal behavior of components. The real-time
model of the system is composed of real-time models of its constituent parts, each
with its own temporal behavior. Using abstract model descriptors, [9] describes a
real-time model for component-based systems, including semantic and quantita-
tive meta-data about component real-time behavior. Using the MAST transac-
tional modeling methodology [10] and analysis tools in the MAST environment,
schedulability checks and priority assignment automation are performed. Note
here that for every real-time application, a separate and independent real-time
analysis model is generated for each mode of operation and analyzed separately.

For classes of component-based systems whose component assembly and ap-
plication structure change dynamically over time, design-time veri�cation is ob-
served to be insu�cient. Incremental re-veri�cation strategies [11] have been
applied to dynamic systems to augment traditional compositional veri�cation
by identifying the minimal set of components that require re-veri�cation after
dynamic changes. Since our approach considers design-time deployment plans
that are static, our analysis does not consider dynamic changes to component
assembly at run-time, but it will be subject of future work.

3 Background

DREMS Components: Design and implementation of component-based soft-
ware applications rests on the principle of assembly: Complex systems are built
by composing re-useable interacting components. Components contain functional,
business-logic code that implements operations on state variables. Ports facilitate
interactions between communicating components. A component-level message
queue, with associated infrastructure code, controls the scheduling of operations
of the individual components. Figure 1a shows the basic DREMS component.

Each DREMS component supports four basic types of ports for interaction
with other collaborating components: Facets, Receptacles, Publishers and Sub-
scribers. A component's facet is a unique interface that can be invoked either



(a) DREMS Component (b) Component Operation Scheduling

Fig. 1: DREMS Infrastructure

synchronously via remote method invocation (RMI) or asynchronously via asyn-
chronous method invocation (AMI). A component's receptacle speci�es an in-
terface required by the component in order to function correctly. Using its recep-
tacle, a component can invoke operations on other components using either RMI
or AMI. A publisher port is a single point of data emission and a subscriber
port is a single point of data consumption. Communication between publishers
and subscribers is contingent on the compatibility of their associated topics (i.e.
data types). More details on this component model can be found in [4].
Component Operation Scheduling: An operation is an abstraction for the
di�erent tasks undertaken by a component. These tasks are implemented by the
component's executor code written by the developer. As shown in Figure 1b,
in order to service interactions with the underlying framework and with other
components, every component is associated with a message queue. This queue
holds instances of operations ('messages') that are ready for execution and need
to be serviced by the component. These operations service either interaction re-
quests (seen on communication ports) or service requests (from the underlying
framework). An example for the latter is the use of component timers that can
periodically (or sporadically) activate an operation. Each operation is character-
ized by a priority and a deadline. The deadline here is the maximum acceptable
time between the release of a component operation and the completion of that
operation, measured starting from when the operation is enqueued onto the
component's message queue. To facilitate component behavior that is free of
deadlocks and race conditions, the component's execution is handled by a single
thread. This single-threaded execution helps avoid synchronization primitives
such as internal lock variables that lead to tenuous code development.

The DREMS OS scheduler enforces an ARINC-653 [12] style temporal and
spatial partition scheme in order to schedule components grouped into processes.
Temporal partitions, as shown in Figure 1b, are periodic �xed intervals of the
processor time. Note that there are two levels of scheduling in DREMS: (1) Each
component operation in the component-level is scheduled using a component-
level scheduler, and (2) each component executor thread, on the system-level, is



scheduled by the OS in one of the temporal partitions, granting a slice of the
CPU's time to those threads.

3.1 Colored Petri Nets
Petri nets [13] are a graphical modeling tool used for describing and analyzing a
wide range of systems. A Petri net is a �ve-tuple (P, T,A,W,M0) where P is a
�nite set of places, T is a �nite set of transitions, A is a �nite set of arcs between
places and transitions, W is a function assigning weights to arcs, and M0 is
the initial marking of the net. Places hold a discrete number of markings called
tokens. A transition can legally �re when all of its input places have necessary
number of tokens, and when �res it produces tokens for its output places.

With Colored Petri nets (CPN) [5], tokens carry values of speci�c data types
called colors. Transitions in CPN are enabled for �ring only when valid colored
tokens are present in all of the typed input places, and valid arc bindings are
realized to produce the necessary colored tokens on the output places. The �ring
of transitions in CPN can check for and modify the data values of these colored
tokens. Furthermore, large and complex models can be constructed by composing
smaller sub-models as CPN allows for hierarchical description. This extended
paradigm can more easily model and analyze systems with typed parameters.

4 Problem Statement

Consider a set of mixed-criticality component-based applications that are dis-
tributed and deployed across a cluster of embedded computing nodes. Each com-
ponent has a set of interfaces that it exposes to other components and to the
underlying framework. Once deployed, each component works by executing op-
erations placed on its component message queue. Each component is associated
with a single executor thread that handles these operation requests. These ex-
ecutor threads are scheduled in conjunction with a known set of highly critical
system threads and low priority best-e�ort threads. Furthermore, the application
threads are also subject to a temporally partitioned scheduling scheme. System
assumptions include (1) knowledge of the sequence of computational steps of
known duration that are executed inside each component operation, (2) knowl-
edge of the worst-case estimated time taken by each computational step, and
(3) the estimated worst-case time taken to initiate a remote function call and to
process the response, accounting for network-level delays. Using this knowledge
about the system, the problem here is to ensure that the temporal behavior of all
the application components lies within the bounds laid out by the system spec-
i�cations. Ideally, this is achieved by verifying such system properties as lack of
deadline violations for component operations. For scenarios where the system
design isn't complete, e.g. application thread priorities are unknown, the paper
describes the utility of an approach to identifying the subset of system behaviors
that satisfy timing requirements and provide useful information to designers, e.g.
partial thread execution orders.

5 Colored Petri net-based Modeling

This section brie�y describes how CPN can be used to build an extensible, scal-
able analysis model for component-based software applications. To edit, simulate
and analyze this model, we use the CPN Tools [14] tool suite.



Fig. 2: Hierarchical CPN Analysis Model

The CPN model captures the behavioral semantics of our component model
described in [4], using knowledge of several factors that resolve the deployment
of the component-based application. These factors include the following system
properties: (1) con�guration of temporal partition scheduling on each node of
the distributed system, (2) location of each component being deployed (which
temporal partition and which computing node) (3) properties of the component
executor threads (thread priority), (4) properties of timers (period and o�set),
and (5) component interactions and assembly (i.e. the 'wiring').

Figure 2 shows a top-level structure of the CPN-based analysis model. The
place Component Threads holds a token with a list of all executor threads re-
sponsible for component interactions. This list is maintained based on thread
priorities on each node so that the highest priority ready thread is always cho-
sen �rst by the OS scheduler. Timers maintains a list of all infrastructural timers
in the application. All timer expiries at a speci�c clock value1 are handled by the
transition Timer Expiry. A timer can be used in our component model to trigger
the execution of a component operation. DREMS components are dormant by
default. Once initialized, a component executor is not eligible to run until there
is an operation added to the component message queue. To start a sequence of
component interactions, periodic or sporadic timers can be used to trigger an
operation of a component.

If a timer triggers a component execution, this component is identi�ed as a
candidate for scheduling by Schedule Thread. This transition always schedules
the highest priority thread that is ready to execute in the active partition on
each node. If two threads of equal priority are eligible, the scheduler picks one
at random and maintains a round-robin scheduling scheme. If the highest pri-
ority thread is not already servicing an operation request, the highest priority
operation from its message queue is dequeued and scheduled for execution.

The Component Message Queues place is a list that manages the message
queues of all components across all nodes. Every time a component thread exe-

1 The clock values are integers.



(a) Component Assembly (b) Timing Diagram

Fig. 3: Trajectory Planning Application

cutes an operation, the completion of this operation could trigger another com-
ponent into execution. For instance - the completion of an RMI query on a client
component triggers a server-side RMI operation that this server will have to ex-
ecute. Such interactions are derived from the modeling tools and appropriate
tokens are generated in place Interactions. When executing component threads,
Execute Thread checks to see if the execution has any e�ect on the running
thread or on other threads. Therefore, when the client thread completes an RMI
query, this thread is moved to Blocked Threads and a server RMI operation is
placed in Waiting to Enqueue. Later, when the server thread is scheduled, the
client is unblocked appropriately.

6 State Space Analysis

Given a CPN model (that was generated from a component architecture and
deployment model), a state-space of the system can be constructed using the
semantics of CPN. This state space is in�nite, however, in practice, it is often
su�cient to consider some �nite subset, starting from a initial state up to a
few hyperperiods of the partition scheduler. In order to describe the utility of
state space analysis, we consider a simple trajectory planning application (TPA).
The component assembly for this application is shown in Figure 3a. A Sensor
component periodically publishes on a trigger topic, notifying the Trajectory
Planner of the existence of new sensor data. Once the noti�cation is received,
the Trajectory Planner makes an RMI call to retrieve the data structure of sensor
values, using which the satellite trajectory is updated. The sequence of steps in
each of these operations is referred to as the business logic of the operation.
This business logic is modeled using a textual language in the modeling tools, in
which the designer speci�es the macro execution steps in a component operation
along with worst-case estimated time taken on each step. Figure 3b shows the
expected timing diagram.

The analyzable states of this system are observed in the markings of the
various CPN places in the model. Using the built-in state space analysis in CPN

Tools a bounded state space of the system is generated. Using both standard



and user-de�ned queries, this state space is searched to check system properties
like lack deadline violations and deadlocks, bounds on response times etc.

Deadline Violation Detection: Each time a component operation is sched-
uled, the clock value of the node is recorded as the "start time" of the operation.
If this operation is incomplete when the clock reaches the operation's deadline, a
deadline violation is detected. Using the SearchNodes function in CPN Tools, the
deadline violations on any component operation can be identi�ed by observing
all component operations each time the node-speci�c clock progresses. In Figure
3b, the DDS_OP on the Trajectory Planner takes 56 ms to complete, measured
from when the operation was enqueued and marked as ready. If the deadline
of this operation is set to 50 ms, a state space search would reveal a deadline
violation when the clock reaches 51 ms.

Worst-case Trigger-to-Response Time Calculation: For a known trig-
ger operation and desired response operation, the worst-case trigger-to-response
time can also be calculated from the generated state space. Using the names of
the trigger and response operations, a state space node that presents the earliest
completion of the trigger operation and the latest completion of the response
operation within the set period is identi�ed. In the Trajectory Planning applica-
tion, considering the TIMER_OP to be the trigger and the trajectory planning
DDS_OP to be the response, the worst-case response time is found to be 68 ms
(Trigger completes earliest at 8 ms and response completes latest at 76 ms).

Partial Thread Execution Order Generation: In development scenarios
where an application developer is aware of the operation-speci�c timing require-
ments but not thread priorities, the analysis is capable of identifying partial
thread execution orders that satisfy the requirements. If all unknown thread pri-
orities are set to a common value, the generated partial state space will then
encapsulate the set of non-deterministic thread execution orders that arise from
the scheduling. Using timing requirements of the form - Once Operation A on

Component A on Node A completes, Operation B on Component B on Node

B must complete within 150 ms, a state space node satisfying this requirement
can be identi�ed by querying the generated state space. A backtrace from this
node enables assigning thread priorities to ensure the satisfaction of the timing
requirement.

Scalability Testing: The size of the generated state space is dependent on
the amount of concurrency in the behavior. If all the executing threads had
unique priorities, the thread execution order is a constant as the scheduling
is priority-based. However, for large systems with groups of applications and
increased concurrency, an equally large state space is required to observe the
tree of possible thread executions and operational behaviors. This analysis model
has been identi�ed to scale well for medium-sized applications, tested up to 100
components distributed on up to 5 computing nodes. Table 1 summarizes these
results.



Table 1: Scalability Results

Scenario Nodes Partitions
/ Node

Threads /
Partition

Hyper-
periods

State
Space

Generation
Time

TPA 5 2 1 10 180 0.981s
Sample2 2 5 5 10 124,469 14.1m
Sample3 5 5 4 10 485,552 36.5m

7 Analysis Model Generation

As mentioned in Section 5, the control �ow and timing details of component op-
erations are directly integrated into the design-time modeling framework. Using
the formal domain-speci�c model of the system, the con�guration of the partition
scheduling and component assembly are derived and translated into meaningful
CPN tokens. The business logic of each component operation is expressed using
a textual language with one attribute per interaction per instance of each com-
ponent being deployed. Model interpreters parse through this complete design
model, instantiating CPN model templates and combining these instances to
generate a single integrated .cpn �le to analyze the entire system.

8 Future Work

In order to generalize this analysis model and provide �exibility, one possible ex-
tension to this approach is to cater to other commonly used scheduling schemes,
such as EDF, for component operation scheduling; and novel interaction pat-
terns (e.g. reliable broadcast). Also, the current analysis approach inherits the
bene�ts and the drawbacks of using pessimistic estimates for execution times.
Another possible extension to this approach would be to provide a stochastic
schedulability analysis allowing for a trade-o� between reliability and cost of
resources required by the system.

9 Conclusions

Distributed real-time systems operating in dynamic environments, and running
mission-critical applications face strict timing requirements to operate safely.
This paper presents a Colored Petri Net-based approach to capture the archi-
tecture and temporal behavior of such applications for both qualitative and
quantitative schedulability analysis. This analysis model includes a compact,
scalable representation of high-level design, accounting for the dynamics of real-
time thread execution while exploiting knowledge of component execution code.
Exhaustive state space search enables veri�cation and validation of useful and
necessary system properties, reducing development costs and increasing reliabil-
ity for such time-critical systems.
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