
Short Paper: Towards An Edge-Located Time-Series
Database

Timothy Krentz, Abhishek Dubey, Gabor Karsai
Institute for Software Integrated Systems

Vanderbilt University, Nashville, TN, 37211

Abstract—Smart infrastructure demands resilient data storage,
and emerging applications execute queries on this data over time.
Typically, time-series databases serve these queries; however,
cloud-based time-series storage can be prohibitively expensive.
As smart devices proliferate, the amount of computing power
and memory available in our connected infrastructure provides
the opportunity to move resilient time-series data storage and
analytics to the edge. This paper proposes time-series storage
in a Distributed Hash Table (DHT), and a novel key-generation
technique that provides time-indexed reads and writes for key-
value pairs. Experimental results show this technique meets
demands for smart infrastructure situations.

I. INTRODUCTION

Emergence of the Edge: The proliferation of cloud com-

puting has spawned edge computing [1], where software

services are run on or in close proximity to the devices that

need them. This has supported the development of the Internet

of Things (IoT), each ’smart’ thing communicating with and

supporting each other. Infrastructure such as the smart grid is

better served by the edge paradigm than the cloud [2], and

this is a particularly exciting application area for IoT devices

to supervise, optimize and support a critical infrastructure

of modern society. Infrastructure with edge computing often

uses dispersed sources of information from user terminals or

sensors. For example, a smart power grid may use several

Phase Measurement Units (PMUs) attached at various points

on the grid to characterize loads and sources, and use their

phase measurements to optimally manage power.

Extant Challenges: As with any physical phenomena, these

measurements represent state at a particular point in time,

and many applications require time-indexed data from sensors

like PMUs. Devices joining the network or recovering from

a fault may participate in an extant application and require

the previous system state. Software platforms like RIAPS

[3] provide completely distributed service discovery and pro-

gramming paradigms for smart infrastructure applications. In

[3], the authors describe a distributed traffic controller, where

traffic-light timings respond to traffic density sensors and

communicate their actions. Supposing a traffic-light controller

was recovering from a faulty state, it would require a temporal

history of traffic density to re-synchronize with the desired

traffic flow. This type of query is usually supported by one of

many Time-Series Databases (TSDB); however, many current

TSDBs are designed to run in a centralized manner, in a data

center, aligned with the cloud computing paradigm. Many

do not support the time resolution necessary for some real-

time applications, nor provide excessively rich indexing that

could hurt performance. Cloud-based solutions aren’t viable

for some applications that require low latency and/or low

operating cost, both of which are properties more accessible

to edge computing.

Contributions: In order for us to continue development of

smart infrastructure, a low-cost time-series database built for

edge-computing is required. Distributed Hash Tables (DHTs)

work well in peer-to-peer and edge computing applications,

but don’t support time-indexed retrieval for a stored key. In

this paper we propose a novel key structure that enables a

DHT to access and store time-series data and discuss how

modifications of this structure affect performance properties

of this system. Section II will review the current work in this

area, Section III will introduce the time-factored key, Section

IV will discuss the how modifications of this key affect DHT

performance, Section V will showcase performance of the

initial implementation, Section VI will discuss how to improve

upon this work, and Section VII will conclude.

II. RELATED WORK

The focus of this work is adding a dimension to key-value

storage to implement a TSDB on edge computing hardware.

There are many TSDB solutions already available that provide

higher-dimensional storage and retrieval.

Cassandra [4] is a popular distributed datastore designed

for high write throughput without sacrificing read efficiency. It

uses a notion of ownership, relating data keys to the node keys

on a circularly organized keyspace. However, each node caches

the entire cluster’s keys locally, thus reducing the lookup

message count to 1. Cassandra further permits multiple keys

per query, where the first key relates to a specific column, the

rest used to access that data as structured according to the

user. Cassandra is the underlying storage to KairosDB [5].

InfluxDB[6] is probably the best known centralized time-

series database. Measurements are stored in a series, made

up of timestamped points. Points may have both fields and

tags; fields are required for every datapoint, whereas tags

are optional. For example, a PMU datapoint would have its

required timestamp and field (phase angle), but could be

tagged with a bus ID. Subsequent queries for phase data on

that bus would be retrieved by looking at points indexed by

that tag. InfluxDB further supports retention policies for each

series, allowing the configuration of how long it keeps data,

151

2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC)

978-1-7281-0151-4/19/$31.00 ©2019 IEEE
DOI 10.1109/ISORC.2019.00037

when it is transferred to long-term storage, and how many

times data are replicated.

OpenTSDB [7], like InfluxDB, supports tags to increase

the dimensionality of its interface. Its underlying storage is

built upon HBase, but it does not support write-time analytics.

Furthermore, it only supports millisecond resolution, which is

insufficient for real-time application like power management.

Storacle [8] is a time-series storage scheme idealized for

smart grid applications, proposing a tiered use of memory,

disk, and cloud writes for historical data. Though technically

edge storage, Storacle still relies on a centralized TSDB

to be hosted, carrying cost and single-failure implications.

Furthermore, it is not specified that distributed applications

can easily find and retrieve historical data from other Storacle

nodes.

These systems are all successful but very general; they

support very flexible access methods like tags, which incur

a significant performance hit. Some also do not support the

time resolution necessary for real-time phenomena that operate

on the sub-millisecond scale, such as the power grid. For this

application, a simpler solution was created. The Berkeley Tree

Database (BTrDB) [9] is a centralized time-series storage solu-

tion designed for storing simple data (timestamps and scalars)

at very high throughput. BTrDB sets the bar for storage of

PMU data. Part of its success is due to supporting only very

simple data, a timestamp and a float. Its underlying structure is

a time-partitioned tree; traversing the tree, each vertex contains

summary statistics of its subtrees, until eventually the leaves

are the raw data points. By maintaining running statistics at

each vertex, read requests that would otherwise calculate a

statistic from the raw data can retrieve it from a vertex of the

desired resolution directly.

BTrDB is an excellent solution for storage and analytics

on high-throughput real-time data like phase measurements.

However, it was not designed to be distributed, which is a

fundamental paradigm of some applications. Therein lies the

motivation to create a simple TSDB that operates in a highly

distributed manner, which carries the benefits of being resilient

to node failures and tolerant of changes in topology.

III. TIME-FACTORED DHT KEYS

Distributed Hash Tables are lightweight, highly distributed

datastores that provide key-value storage and retrieval for

clients. Keys are structures (often strings) that clients provide

to the DHT along with data they want to store, and again when

they want to retrieve said data. The keys are hashed into a DHT

ID such that requests of a certain key can be efficiently routed

to some subset of all nodes participating in the DHT whose

IDs are "closest" to the key. That subset can store the value

and reply to requests to read from that ID. DHTs are highly

resilient to failures as the values are stored on multiple nodes,

so if the node closest to an ID fails, the value is preserved on

some subset of peers and can be migrated to a new node to

maintain the system’s replication factor. Both data keys stored

and the DHT nodes themselves have unique IDs, all residing

in an abstract space.

This paper implements a DHT similar to Kademlia [10],

using 160-bit IDs and the XOR of a key ID and a node’s ID

interpreted as a number as a metric for "closeness". Typically,

this ID is the SHA-1 hash of the key a client application

uses to keep track of the value. As such, the bits within

the ID are meaningless to a Kademlia DHT as anything

other than some location in an abstract space. The client,

however, sees the provided key in whatever manner it likes;

for example, the name of a Smart Grid PMU can be the

key to its phase measurements, hashed to find the DHT ID,

and provided to the DHT to retrieve a value for said PMU.

A PMU could write its phase measurements to the DHT,

where the closest nodes would store its timestamped data

in a local time-indexed container. Unfortunately, for any one

measurement this ultimately resembles a centralized model of

storage, albeit with some replication. It still suffers a potential

traffic bottleneck at this subset of nodes, and reduces the

number of failures a particular value can tolerate. A better

solution for routing queries for time-indexed data in a DHT

is needed.

To better utilize the entire network to store and access time-

series data, we propose dividing the ID for a key into two parts,

a "time quantum" in which the current value was acquired, and

the hashed key. This time quantum represents a constant-length

segment of physical time, where all time quanta combined

represent all of continuous time. Any specific time in which

the value of a key-value pair was created, e.g. the timestamp of

a measurement from a PMU, should only exist in a single time

quantum. Finally, each time quantum should have a unique

identifier which is hashed to create the second part of the DHT

ID. This paper maintains the Kademlia standard of using 160-

bit keys and routing them based on the XOR distance metric,

but the first and last 80 bits are separately generated from

the relevant time quanta’s identifier and the key provided by

the application. The identifier is the UNIX time (number of

seconds since Jan 01, 1970) defining the beginning of that time

quantum. In this paper, the time-quantum length is 10 seconds,

so any UNIX timestamp rounded down to the nearest multiple

of 10 results in said timestamp’s time quantum identifier.

Concerns regarding SHA-1 collisions can be alleviated by

simply routing based off longer hashed keys, but for the scale

and longevity of the experiments herein this was considered

unlikely. By structuring keys this way, the entire time-series for

a key is sharded into blocks of values within their respective

time-quanta.

IV. BEHAVIOR OF TIME-FACTORED KEYS

By factoring an ID into time-key subsections, several ben-

eficial properties emerge; that said, as Kademlia’s notion of

distance is an XOR of IDs interpreted as a number, the order

of the hashed time quanta identifier and hashed key portions

of the ID have a significant effect on how a measurement

is stored in the DHT, thus changing the emergent properties.

These properties will be discussed separately for Quanta-First

IDs and Key-First IDs.

152

A. Quanta-First IDs

Fig. 1. Querying a time-indexed key using the Quanta-First ID Format

In Quanta-First IDs (QFIs), the first 80 bits of the DHT ID

are the hash of the relevant time quanta’s identifier, and the

last 80 are the hash of the key provided by the application, as

in Figure 1. Though the identifier only changes by one digit

every time quanta, SHA-1 produces highly-variable hashes for

similar inputs, so shards should disperse very evenly through-

out the network. This is a result of Kademlia’s interpretation of

distance; the most significant factor affecting how close a node

is to a measurement’s ID is the hash of whatever time quanta

that measurement occurred in. As shards are dispersed evenly

throughout the network, the bulk of any measurement’s history

spanning some non-trivial number of time quanta is highly

resilient to single node failure. As such, the system could stand

reducing the DHT’s replication factor for applications that can

tolerate some gaps in the measurement’s history, improving the

underlying DHT’s performance. Should an application need to

retrieve a specific time-series for a key, it needs only construct

a set of IDs to lookup by hashing the identifiers for the time

quanta covering the timespan of the request, and prepend the

first 80 bits of each hashed quanta identifier to the first 80

bits of the hashed key. The resulting set of IDs can be used in

parallel read requests, so retrieval times should be independent

of the history length requested.

B. Key-First IDs

In Key-First IDs (KFIs), the first half of the ID comes

from the value hash, and the second from the time quanta

identifier hash. As the key should remain constant for the data

series, the changing time quanta identified has minimal effect

on which nodes the query is routed to, because Kademlia’s

distance metric will first consider bitwise differences between

node IDs and hashed key portion of the queried ID. The

resulting behaviour here is that shards are most likely stored

on the same subset of nodes whose IDs are closest to the

hashed key, resulting in the more centralized appearance of

data storage as described in Section III. As only a subset

of nodes owns the key, there is greater likelihood of node

Fig. 2. Querying a time-indexed key using the Key-First ID Format

failures jeopardizing the value history. This is resolved with

replication in the underlying DHT, so ultimately Key-First IDs

closely represent regular DHT usage. KFIs will still allow

time-indexed lookups, but the parallel requests will likely all

go to the same subset of nodes. TSDB functionality will be

present, but localizing the data to a specific subset of node

means a query of arbitrary history length should ultimately

occur with one request, rather than a request for each shard

covering the history.

V. EVALUATION

A simple DHT was built in Go [11], borrowing the 160-

bit IDs and XOR distance metric from Kademlia. All data

was stored in memory in a hashmap, mapping the ID to

a slice of timestamped measurements. As per Kademlia,

all communication happens through Remote Procedure Calls

(RPCs). This implementation runs RPCs over HTTP, using

Go’s net/rpc package, while serialization was done with

encoding/gob. The experiment was deployed to an 18-

node cluster of BeagleBone Blacks (BBB), running Ubuntu

18.04 on a single-core ARM-A8 32-bit processor. The BBBs

were connected in a flat network topology of unmanaged

switches and a single router. The experimental DHT runs

multiple goroutines1 to handle concurrent requests and protect

the local storage.

To evaluate the performance of time-factored key writes, it

is assumed that the DHT has been running for some time.

As DHTs typically offer request-reply interfaces, data must

be stored with aggregated writes, rather than streams. It is

assumed that the time to establish and execute a write-RPC is

significantly more than the time it takes to serialize the data

to be written. Therefore, to establish a lower bound on write

latency, the experiment has a single node execute 10,000 single

measurement (timestamp, value) store-requests and measures

total completion time. This was repeated for replication factors

of 1 (no data replication), 4, and 7.

For time-factored key reads, we evaluate whether the length

of time being requested (and therefore the number of time

1Goroutines are lightweight threads in the Go language.

153

quantas) has a significant effect on read time. In our exper-

iment, we wrote 10,000 PMU measurements at 60Hz, then

allowed a different node to request that PMU’s data for a range

of elapsed time. The time to complete this request - including

computing the relevant IDs, making requests for each time-

quanta, and aggregating the results - was measured for time

periods of 10, 80, and 150 seconds.

Table I summarizes the write performance for Quanta-

First and Key-First IDs. For this implementation, writing with

Quanta-First IDs induces a minimum of ~4.5ms write time,

which grows as replication is increased. The results are fast

enough to keep pace with a PMU writing individual datapoints

at 60Hz, as even with 7-way replication writes complete in

~4ms on average - less than the 16.6ms write period.

Table II summarizes the read performance for Quanta-

First and Key-First IDs. Requesting a single time quanta (10

seconds) produces much faster read times than groups of time-

quanta (80 and 150 seconds), even though read queries for

separate time quanta were parallelized. The drop in read-time

from ~4 seconds for 80 seconds of history to ~3 seconds for

150 seconds of history can be explained by very high variance

in the data collected. Read latencies like these - on the order

of seconds - would be usable in the RIAPS traffic-controller

case, as we can naturally assume second-length latencies are

tolerable compared to the rate at which traffic changes.

TABLE I
WRITE PERFORMANCE (MS/WRITE) VS REPLICATION FACTOR

Key Replication Factor

Format 1 4 7

QFI 4.54 10.9 14.1

KFI 5.05 10.1 13.4

TABLE II
READ PERFORMANCE (S/READ) VS REQUEST TIMESPAN

Key Time-Series Length(s)

Format 10 80 150

QFI 0.176 4.33 3.54

KFI 0.081 3.354 2.45

VI. FUTURE WORK

This work currently supports time-indexed storage and

retrieval of data, but these are only part of modern use cases

for TSDBs. Many applications using TSDBs also require real-

time analytics of the data stored, so an addition to be made is

a method for tracking and providing analytics of data series

as they are written into the DHT. This might be done at the

time-quanta level, and where a read-request simply retrieves

the summary from that quanta, similar to how BTrDB reads

analytics from tree vertices as opposed to the raw data. As

metadata such as this is much smaller than the raw data itself,

metadata could be stored and accessed using KFI keying; the

resulting property of single nodes holding all the metadata

allows them operate upon and track metadata without any

additional DHT lookups. Time-series data is also frequently

provided as a stream. This is dissonant to classical DHT

client-server requests, so a modification is necessary to allow

datastreams to reach their desired DHT node. Finally, though

clients of this TSDB can request any continuous time-interval

of data, they receive that interval padded with the data of the

enclosing time quanta. An improved method for storing values

within time quanta that allows trimming around a specific

timestamp is needed, in order to prevent giving the client more

data than they asked for.

VII. DISCUSSION AND CONCLUSION

This paper presented a novel strategy for using distributed

hash tables to store and access time-series data. By considering

datapoints to exist within a unique time quanta, and using

that quanta as part of DHT routing and ownership, historical

data can be written and retrieved for arbitrary lengths of

time by aggregating separate requests of specific time-quanta.

These results show that time-factored keys provide time-

indexed queries to data stored in a DHT. These queries can

meet demand for Smart Grid PMU storage and traffic density

monitoring.

Acknowledgment: This work was funded in part by the

Advanced Research Projects Agency-Energy (ARPA-E), U.S.

Department of Energy, under Award Number DE-AR0000666.

The views and opinions of authors expressed herein do not

necessarily state or reflect those of the US Government or any

agency thereof.

REFERENCES

[1] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino,
A. Iamnitchi, M. Barcellos, P. Felber, and E. Riviere, “Edge-centric
computing: Vision and challenges,” SIGCOMM Comput. Commun.
Rev., vol. 45, no. 5, pp. 37–42, Sep. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2831347.2831354

[2] EPRI, “Transforming smart grid devices into open application
platforms,” Electric Power Research Institute Report 3002002859,
July 2014. [Online]. Available: http://www.epri.com/abstracts/Pages/
ProductAbstract.aspx?productid=000000003002002859

[3] S. Eisele, I. Mardari, A. Dubey, and G. Karsai, “Riaps: Resilient
information architecture platform for decentralized smart systems,” in
2017 IEEE 20th International Symposium on Real-Time Distributed
Computing (ISORC), May 2017, pp. 125–132.

[4] A. Lakshman and P. Malik, “Cassandra: A decentralized structured
storage system,” SIGOPS Oper. Syst. Rev., vol. 44, no. 2, pp. 35–40, Apr.
2010. [Online]. Available: http://doi.acm.org/10.1145/1773912.1773922

[5] “Kairosdb.” [Online]. Available: http://kairosdb.github.io/
[6] “Influxdata (influxdb) | time series database monitoring & analytics.”

[Online]. Available: http://www.influxdata.com/
[7] “Opentsdb - a distributed, scalable monitoring system.” [Online].

Available: http://opentsdb.net/overview.html
[8] S. Cejka, R. Mosshammer, and A. Einfalt, “Java embedded storage for

time series and meta data in Smart Grids,” 2015 IEEE International
Conference on Smart Grid Communications, SmartGridComm 2015, pp.
434–439, 2016.

[9] M. P. Anderson and D. E. Culler, “Btrdb: Optimizing storage system
design for timeseries processing,” Fast’16, pp. 39–52, 2016. [Online].
Available: https://www.usenix.org/conference/fast16/technical-sessions/
presentation/andersen

[10] P. Maymounkov and D. Mazières, “Kademlia: A peer-to-peer infor-
mation system based on the xor metric,” in Peer-to-Peer Systems,
P. Druschel, F. Kaashoek, and A. Rowstron, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2002, pp. 53–65.

[11] “The go programming language.” [Online]. Available: https://golang.org/

154

