
Short Paper: Towards Low-Cost Indoor Localization
using Edge Computing Resources

Shweta Prabhat Khare Janos Sallai Abhishek Dubey Aniruddha Gokhale
Institute for Software Integrated Systems, Vanderbilt University Nashville, TN 37221, U.S.A.

Abstract—Emerging smart services, such as indoor smart
parking or patient monitoring and tracking in hospitals, incur a
significant technical roadblock stemming primarily from a lack of
cost-effective and easily deployable localization framework that
impedes their widespread deployment. To address this concern, in
this paper we present a low-cost, indoor localization and naviga-
tion system, which performs continuous and real-time processing
of Bluetooth Low Energy (BLE) and IEEE 802.15.4a compliant
Ultra-wideband(UWB) sensor data to localize and navigate the
concerned entity to its desired location. Our approach depends
upon fusing the two feature sets, using the UWB to calibrate the
BLE localization mechanism.

I. INTRODUCTION

A significant technical roadblock that impedes the

widespread deployment of smart applications such as smart

parking, patient monitoring and indoor navigation systems,

stems from a lack of an inexpensive entity localization solu-

tion. Existing localization solutions are either too costly (e.g.

LIDAR, imaging sensors, radar), or incur high installation

costs, requiring power and communications wiring for a large

number of sensors. To address this limitation, in this paper we

present our low-cost indoor localization and navigation sys-

tem, which performs continuous and real-time processing of

Bluetooth Low Energy (BLE) and IEEE 802.15.4a compliant

Ultra-wideband(UWB) sensor data on low-cost edge devices.

The approach we propose in this paper is to combine the

two modalities, i.e., BLE Received Signal Strength Intensity

(RSSI) fingerprinting and UWB RF positioning using a com-

putation architecture that allows us to fuse this information

in real-time. We expect that frequent visitors, e.g. drivers

with permits, parking patrol vehicles, nurses in hospitals, will

be equipped with both UWB tags and BLE-enabled Android

devices, and contribute to building and maintaining the RSSI

fingerprint map. For entities without UWB tags, we rely on

indoor positioning by BLE RSSI fingerprint matching. Since

RSSI fingerprint maps go “stale” quickly due to fast fading

of the BLE channel characteristics, we rely on such dual-

modality-equipped frequent occupants of these indoor spaces

to keep the fingerprint map up-to-date. Streaming all the sensor

data to the cloud for processing will incur a prohibitively large

latency which is highly undesirable for these applications.

Hence, we have used Intel Edsion boards as low-cost edge

devices to process the sensor data at the edge (near the source

of data). This is the key concept behind Fog Computing [1]

and Mobile-Edge [2] computing paradigms.

Our approach is supported by prior research which suggests

that fingerprint based localization using WiFi [3], [4], [5], [6],

[7] or IEEE 802.15.4 compliant radios [8], [9] can yield an

average positioning accuracy under 3m. However, it has been

observed that BLE is substantially more susceptible to fast

fading than IEEE 802.15.4 or WiFi [10], since BLE beaconing

operates on a much narrower, 2 MHz wide channel as opposed

to the 22 MHz wide channel used by WiFi and 5 MHz wide

channel used by 15.4. Hence, our solution also relies on the

more accurate Ultra-wideband (UWB) Radio Frequency (RF)

time-of-flight based ranging and positioning as the ground-

truth for periodically updating the fast-fading BLE RSSI

fingerprints. UWB is another indoor localization technology

that has reached maturation and has broken a low price point

(e.g., transceivers from vendors such as Decawave [11] are

available in the sub-$10 range). Decimeter-scale accuracy has

been reported indoors with direct line of sight between UWB

beacons and a wireless tag which is to be localized. However,

since these UWB radios are not in current handheld devices,

this technology alone is not sufficient for indoor localization

that can be used by general public.

A. Related Work

A wealth of research work exists in the field of indoor

localization. Broadly, approaches for indoor localization can

be categorized into: angle-based, fingerprinting-based and

ranging-based solutions [12]. Angle-based approaches require

expensive and specialized directional antenna which is un-

suitable for widespread adoption [12]. Fingerprining [13] and

Radio RSSI (Wifi, Bluetooth, ZigBee) based solutions [14],

[15], [16], [17] are the least expensive solutions, requiring

no specialized hardware, which makes them amenable for a

wide variety of consumer applications. Prior efforts [17], [18],

have explored the BLE transmission model, i.e., reception

probabilities at varying distances even in the presence of

obstruction, and have successfully demostrated the use of BLE

for localization.

Although, RSSI-based methods are easily accessible, they

are less-accurate and require prior-site information, cost-

intensive fingerprinting and continuous updating to accomo-

date time varying channel characterisitcs. Similar to previous

efforts which rely on crowd-sourcing [19], [20], we rely on

frequent visitors like patrol vehicles in a parking garage, to

keep the fingerprints up-to-date. Time-of-arrival (TOA) based

ranging methods, such as UWB ranging [21], are much more

robust and accurate. However, UWB technology is still under

development and is not available on current handheld devices.
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Fig. 1. A representative histogram of RSSI values received from a beacon.
The three peaks correspond to the mean RSSI value received on each of the
three advertising channels. Though the association between beacon messages
and the corresponding channels is not available through the Android BLE
API, by modeling the histogram as a mixture of three Gaussian kernels, the
mean and variance of the RSSI values can be estimated on a per-channel
basis.

Hence, our solution combines low-accuracy, easily-accessible

BLE RSSI fingerprintng with high-accuracy UWB ranging.

II. RSSI FINGERPRINTING

BLE operates on a 2.4GHz ISM band which is divided

into forty 2 MHz wide channels. Out of these 40 BLE

channels, three are dedicated as advertising channels, and the

rest are used for data exchange. BLE beacons are a special

class of BLE devices which are limited to BLE transmission-

only functionality and use the BLE advertising channels for

periodic beaconing. However, we found that the BLE channel

number of the incoming beacons is not exposed through any

of the Android APIs, which makes RSSI fingerprinting-based

localization challenging with Android devices.

Hence, we model the RSSI value of a beacon on a given

BLE advertising channel as a Gaussian random variable.

Therefore, as shown in Figure 1, the set of received RSSI

values from a given beacon can be treated as a mixture of

three Gaussians (one for each advertising channel). Collecting

a sufficient number of RSSI observations at a given position

allows us to characterize the empirical distribution of the re-

ceived RSSI values. Intuitively, the measured distribution (i.e.,

the position and magnitude of peaks, etc.) will be characteristic

of the given position, and will be sufficiently different even

if the position changes by as little as a meter. Furthermore,

by increasing the number of BLE beacon devices, we expect

that the efficiency of distinguishing positions by BLE RSSI

fingerprints will increase, as more data is available from a

spatially diverse set of beacons.

Ideally, we would like the fingerprint map to remember

the shape of each beacon’s empirical RSSI histogram at each

grid point of the discretized coverage area. Storing the actual

histograms, however, is not beneficial as it would have an

unnecessarily large memory footprint. Moreover, the empirical

histograms often contain transient peaks that are artifacts

of fast fading, and capturing these would adversely affect

localization accuracy. Hence, we have devised two methods

for representing RSSI fingerprints: Expectation Maximization

(EM) and Tercile-based methods.

In the EM-based method, we use the Expectation Maxi-

mization algorithm to find the parameters < prior, μ, σ > for

each of the three Gaussian kernel components, where prior is

the weight of the kernel, μ and σ are the mean and standard

deviation, respectively. If there are N BLE beacon devices

deployed in the system, the fingerprint map for each grid

position will comprise N , 9-field long vectors.

Since the EM algorithm is computationally expensive, and

may not be suitable for devices with power or computational

constraints (our Edison Nodes), we devised a lightweight

fingerprinting solution relying on finding the terciles of the

empirical RSSI distributions. Assuming that a beacon trans-

mits equal number of messages on all three channels and that

the standard deviation of the RSSI values is the same for

each channel, the lowest third of the received RSSI values

will correspond to the beacons received on the channel that

has the highest path loss of the three. Similarly, the highest

third will correspond to the channel with the lowest path

loss, leaving the middle third coming on the third channel.

Therefore, we use the medians of these three parts, i.e., the

1st 6-quantile, the 3rd 6-quantile (which is the median of the

entire population), and the 5th 6-quantile as fingerprints. The

tercile-based approach yields 3N -long feature vectors per grid

position, where N is the number of beacons. The tercile-based

approach trades off computational efficiency for accuracy.

Unlike EM, this technique does not capture the variance of the

RSSI values nor does it adapt to scenarios when the number

of beacon messages received on different advertising channels

is asymmetric.

For localization, it is sufficient to compare the Euclidean

norm (L2 distance) of the feature vectors of the target entity’s

unknown position with the precomputed feature vectors of

all grid positions, and return the grid position for which

the L2 distance is the smallest. Our experiment results show

that Tercile-based localization has sub-milisecond latency and

comparable performance with the more expensive EM-based

localization, hence it is well suited for real-time indoor local-

ization and navigation.

III. IMPLEMENTATION AND EXPERIMENTAL SETUP

We implemented our ideas and conducted a number of

experiments to validate our claims. One of these experiments,

reported in this paper was performed in a 6.4x5.5 meter area

which was divided into a logical grid composed of 1x1 meter

grid-cells. In this experiment, an Intel Nuc (with 1.6GHz

Intel Core i5 processor, 3 MB cache and 16 GB memory)

is used for processing of RSSI and UWB messages to carry

out fingerprinting and localization. However, when the UWB

devices are not in use we can do the localization on the edisons

themselves.

Six Intel Edison Arduino boards were used to act as

BLE beacons in this experiment using open source Bleno

[22] and Noble [23] libraries for beaconing. Additionally, 12

DWM1000 UWB sensors (i.e., Decawave) were used. We
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Fig. 2. Indoor localization experiment setup with 6 Intel Edison boards acting
as BLE beacons; 12 UWB Decawave sensors; centralized server for sensor
processing and the android tablet whose position is to be localized.

expect these receivers (battery operated) to be hung at different

locations in the space where the localization solution is being

implemented. An Android tablet was used to simulate both the

entity with the decawave sensor (high accurancy line of sight)

as well as the target for BLE beacon based localization (after

turning off the decawave), see Figure 2.

The Android tablet relays the RSSI messages received from

all the beacons to the node doing the localization using

Lightweight Communications and Marshalling (LCM) [24]

publish-subscribe messaging library. LCM uses UDP Multicast

for messaging and is well-suited for high-bandwidth and

low-latency applications such as sensor-based localization.

The localized tag’s position information from the Decawave

sensors is also received by the server on LCM (only when the

decawave tag on the tablet was on). The server receives these

RSSI messages and decawave based localized tag positions

on two different LCM receiver threads. After every 300 mil-

liseconds, a fingerprinting thread is scheduled by the server to

re-compute and update the grid fingerprints. The fingerprinting

thread recomputes both Expectation Maximization (EM) and

Tercile-based grid fingerprints in parallel on a thread pool. The

server also runs a localization thread every 30 milliseconds to

perform beacon based localization of the android tablet.

During fingerprinting, the Decawave-based tag position is

used as the ground truth to determine which grid-cell the

tag/Android tablet is in. For a given grid-cell that the tablet

is in (determined by the current Decawave-based position),

200 RSSI messages are collected per beacon (1 message

is generated every 20 ms) before computing that grid-cell’s

fingerprint. Hence, 1,200 RSSI messages (6 beacons and 200

messages per beacon) are used for computing a grid-cell’s

fingerprint. Figure 3 shows how the RSSI distribution per

beacon for adjoining grid-cells in row 3 differs from each

other.

A grid-cell’s RSSI messages for a beacon are maintained

in a circular buffer, wherein new updates replace the old

Fig. 3. Per-beacon RSSI histogram for adjacent grid cells in row 3.

RSSI values in a FIFO order. When the fingerprinting thread

comes up, it determines which grid-cell’s RSSI values have

been updated and uses the same snapshot of the updated grid-

cell’s RSSI values to recompute both EM and Tercile-based

fingerprints in parallel.

For RSSI fingerprinting based localization, the fingerprint

of target’s unknown location is compared against the pre-

computed fingerprints of all grid-cells to find the best match.

For tercile based fingerprinting, the best match fingerprint

is the one that minimizes the least squared distance from

the unknown cell’s fingerprint. The least squared distance

for the tercile strategy is defined as sum of squares of the

difference between corresponding tercile medians of unknown

grid-cell u and fingerprinted grid-cell g for all six beacons.

For EM based fingerprinting, the best match fingerprint is

defined as the one that minimizes the least squared distance

between the reconstructed Gaussian curves of unknown grid-

cell u and fingerprinted grid-cell g for all six beacons. We

reconstruct the Gaussian curve as represented by equation :

P (x) = 1
σ
√
2π

e−(x−μ)2/2σ2

for RSSI values ranging from -90

to -35 using the mean and standard deviation provided by EM.

Experiment Results: We recorded the RSSI and UWB

sensor data received while walking around the indoor location

and this recorded sensor input was played back to perform

multiple localization experiments. We changed the number of

RSSI readings that are collected per beacon, also referred

to as the “window” size for computing the fingerprint of

the unknown grid location, so as to observe the effect of

changing window sizes on the accuracy and computation time

of fingerprinting. Each localization experiment was performed

for different window sizes: 20, 40, 60, 80, 100 and 200 by

playing back the same recorded sensor data file. Figure 4

shows the computation time of tercile and EM approaches

with increasing window sizes. Though EM’s computation time

decreases with decreasing window sizes, EM is significantly

more expensive than the tercile approach which has a compu-
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Fig. 4. Computation time and average error for EM and Tercile fingerprinting
strategies with increasing window sizes.

tation time of less than 1 millisecond even for larger window

sizes.

Figure 4 also shows the average error in meters for the two

fingerprinting approaches. This error is the Euclidean distance

between the localization result from EM or tercile strategy

and the UWB based position information which is considered

as the ground truth for assessing the accuracy of the two

fingerprinting strategies. Since the average error for the two

approaches across all window sizes is comparable (EM shows

much higher error for window size=20), the tercile approach

with sub millisecond computation time is preferable for fast

beacon-based localization.

IV. CONCLUSION

In this paper, we described our composite solution for

low-cost, multi-modal indoor localization based on Bluetooth

Low Energy (BLE) RSSI fingerprinting and IEEE 802.15.4a

compliant Ultra-wideband (UWB) RF time-of-flight based

positioning. We think that this method can be extended to other

indoor localization modalities such as using accelerometer

and magetometer data. The user’s android device forwards

the received BLE signals to the central server, hence the

energy consumption on user’s end-device is minimal. We can

further adaptively modify the frequency at which the BLE

messages are forwarded to conserve energy. We additionally

plan to distribute our localization and navigation algorithm

over available edge devices by taking energy and resource

restrictions into consideration.
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