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Abstract—Cyber-physical systems increasingly rely on dis-
tributed computing platforms where sensing, computing, actu-
ation, and communication resources are shared by a multitude
of applications. Such ‘cyber-physical cloud computing platforms’
present novel challenges because the system is built from mobile
embedded devices, is inherently distributed, and typically suffers
from highly fluctuating connectivity among the modules. Archi-
tecting software for these systems raises many challenges not
present in traditional cloud computing. Effective management of
constrained resources and application isolation without adversely
affecting performance are necessary. Autonomous fault manage-
ment and real-time performance requirements must be met in
a verifiable manner. It is also both critical and challenging to
support multiple end-users whose diverse software applications
have changing demands for computational and communication
resources, while operating on different levels and in separate
domains of security.
The solution presented in this paper is based on a layered

architecture consisting of a novel operating system, a middle-
ware layer, and component-structured applications. The compo-
nent model facilitates the construction of software applications
from modular and reusable components that are deployed in
the distributed system and interact only through well-defined
mechanisms. The complexity of creating applications and per-
forming system integration is mitigated through the use of a
domain-specific model-driven development process that relies
on a domain-specific modeling language and its accompanying
graphical modeling tools, software generators for synthesizing
infrastructure code, and the extensive use of model-based analysis
for verification and validation.
Index Terms—distributed systems, cyber-physical systems

I. INTRODUCTION

Distributed real-time embedded systems that interact with

the physical world are ubiquitous and pervasive. We are

relying on an increasing number of such systems that provide

services to a large number of users. Fractionated spacecraft

(i.e., cluster of satellites) that performs wide-area sensing of

the Earth, swarms of UAVs that survey storm damage, and

the intelligent power devices that are essential for a ‘smart’

(power) grid are just a few illustrative examples for this

new generation of systems. While distributed and real-time

systems have been built for many decades, there are some

novel properties and requirements for the engineering of such

systems that we need to recognize and address.

First, we have to note that these systems are ‘cyber-

physical’, that is, they interact with the physical world. Hence

all software design, implementation, and verification decisions

should be guided by the fact that physics imposes timing

constraints on the computational and communication activ-

ities, and the implementation must obey these constraints.

Furthermore, as the software system may effect changes in

its physical environment these changes must verifiably satisfy

safety requirements for the overall system.

Second, we have to understand that these systems are

platforms. That is, they are increasingly built not as a single
use, single function network, but as networked platforms that

can be used by many, possibly concurrent users. The platform

is relatively stable and provide common core services to

all applications. However, the applications those run on the

platform change fairly regularly due to software updates or

because new applications have been developed. Figure 1 shows

a typical node of this distributed platform on the left, along

with a cloud of nodes that are communicating via a network

where at least one of the nodes has a communication link to

a control node. Nodes can join and leave the cloud during

operation.

Sensor Device Actuator

Processing/Storage Network

Control Node

Fig. 1: Typical node and cloud of nodes.

Third, these systems are used for distributed applications.
Applications typically span multiple nodes, for reasons related

to the availability of resources: some nodes may have sensors,

some may have actuators, some may have the computing

or storage resources, some applications need more than the

processing power available on one node. Therefore, applica-

tions that use these resources have to be architected such that

they rely on loosely connected, interacting components, run-

ning on different processors. Applications can be organically
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assembled from components that provide specific services,

and components may be used (or re-used) by many active

applications. Obviously, the cluster of computing nodes runs

many applications concurrently.

Fourth, the platform is often a critical resource - possibly a

societal system, whose use must be carefully monitored and

controlled by a responsible owner. Therefore, these systems are

managed by some authority. Furthermore, as the platform can

be used and shared by many applications, possibly originating

from different organizations, the platform and thus the system

needs to be actively managed to avoid ‘tragedy of the com-

mons’ type failures. Additionally, because of the embedded

nature of the system, deployment and control of applications

need to ensure that the systems’ (often scarce) resources are

provisioned.

Fifth, security cannot be an afterthought. Information flows
in general and access to shared resources in particular should

be controlled under some overarching security policy. For

instance, high quality, sensitive customer data (from the elec-

tric grid) cannot be made available to untrusted applications

that are supplied by parties needing access to derived data

containing daily averages only – and those applications should

not have any means to access that high-grade, sensitive data.

Furthermore, applications supplied by users cannot be trusted,

and the platform must protect itself from abuse by such

applications. If multiple applications run on the platform

concurrently, and there is a need for some degree of data

sharing among the applications, the platform must permit that

while enforcing the security policies defined for the system.

Sixth, resilience is essential. Anything can go wrong at any
time: faults in the computing and communication hardware,

in the platform, in the application software. Moreover unan-

ticipated changes in the system (erroneous updates) or in the

environment must be survivable and the system should recover.

The system here includes both the platform, as well as the

distributed applications.

Reading the above list one might argue that existing cloud

computing platforms based on virtualization technologies al-

ready provide a solution for all these requirements. However,

this is not the case for the following reasons. Existing cloud

computing platforms were not designed with the requirements

of real-time embedded systems, where operating under re-

source constraints and timing requirements are essential. The

distributed applications here need to not only scale, but to

also satisfy timing and security requirements. Interactions with

physical devices (sensor, actuators, special purpose hardware)

is rarely an issue in conventional cloud computing platforms

– everything is virtualized, without consideration for the

management of resources that are part of the system but

not the computing platform. It appears that current cloud

computing platforms are not prepared for mission critical real-

time embedded systems, in general.

Arguably, the challenges listed above define a new a cat-

egory of systems that is emerging today. In this paper we

present some initial ideas and relevant research questions that

will hopefully be addressed by the research community. The
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Fig. 2: Layered architecture of the software platform running

in each node of the distributed system. The guarantees (as-

sumed and provided) are indicated between the layers.

next section discusses the issues of an overall architecture for

such systems. The section following discusses the needs for a

development toolsuite, which is followed by a section on some

initial results. A review of relevant related work is followed

by a summary and conclusions.

II. PLATFORM ARCHITECTURE

We aim at building a reusable software platform that can

be applied across many application domains, and many pro-

cessing and communication platforms. The software platform

should provide solutions to core resource management prob-

lems, support security, and provide services that are application

independent.

This platform can be built as a multi-layer architecture that

addresses these issues, as shown on Fig 2. At the lowest level,

an operating system kernel provides the core resource sharing

and management functions, as well as the isolation from

hardware specific details. The kernel is typically accessed via

‘system libraries’ that provide a convenient interface to kernel

services. Layered upon this foundation there is a middleware

layer to provide higher-level, reusable communication (i.e.

messaging) and resource management services. The next layer

up provides the component abstractions, in order to support

component-oriented development or distributed applications.

The platform should provide services for application config-

uration and lifecycle management (the deployment manager),

for application control (the mission manager), for the handling

of faults arising during operations (the fault manager), and for

the management of resources (the resource manager). Note that

by ‘managers’ here we mean critical, privileged applications

that run outside of the core operating system, and provide

complex and long-term management services.

Note that a layered architecture helps with establishing

assurances for the overall systems. At the bottom, the hardware

layer provides guarantees about correct behavior (that was
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verified by the hardware vendor). The kernel can assume these

and provide its own guarantees to the higher layers that, in

turn, provide their guarantees to the higher layers, etc.

A. Platform kernel

At the lowest layer of the software platform, the kernel

encapsulates device drivers and provides processor scheduling

and networking features, but it also needs to address the real-

time, resilience, and security requirements of the application

domain. Borrowing language from the computer security com-

munity, the kernel has to be part of the Trusted Computing

Base (TCB) that provides guarantees and is built and verified

to high-assurance standards [1].

Real-time requirements can be addressed by a number of

factors. Interrupt latencies (i.e. the worst-case delay elapsed

between the arrival of an interrupt and the release of an activity

the responds to that interrupt) should be bounded and known.

System calls should always be configurably time-bounded, and

should return with a timeout error in case of unexpected delays

to prevent the caller application from being unacceptably

delayed. The kernel should support a number of scheduling

policies that provide verifiable guarantees for timeliness of

task execution. Furthermore, it should allow application tasks

of different criticality levels to share the CPU. All tasks of

an application should run at the same criticality level and

this should be reflected in the available scheduling policies.

Because of the often critical nature of the applications, the

scheduling models provided by the kernel must support timing

analysis.

Schedulability analysis is very problematic in the most

general case, with completely unconstrained task behaviors.

However, it can become feasible when restrictions are placed

on the behavior of and the interaction amongst the tasks.

As discussed below, an application-level software component
model can provide such restrictions, such that the component-
level schedulability becomes manageable. However, the kernel

should be kept simple and provide only core scheduling

services that support potentially many component models.

According to experience, tasks should be able to operate within

a shared address space (i.e. threads) as well as separated

address spaces (i.e. processes). Finally, the kernel scheduler

should be able to take advantage of multi-core architectures

and be able to schedule tasks on different cores, possibly under

application control.

Communication links in a distributed system are a critical

resource, especially when they are scarce and highly dynamic,

as in mobile ad-hoc networks. Hence the communication

facilities, including the protocol stack, should be implemented

accordingly. As a minimum, the kernel should support a

multitude of transport protocols, preferably above a common

network protocol.

Real-time support must be available for the communications

as well. Datagrams (message blocks) should be time stamped

by the kernel such that message recipients are aware of the

message transfer delays. This necessitates clock synchroniza-

tion across the nodes; IEEE or IEEE 802.1AS can serve as

the facility to support that. Furthermore, the network layer

should support time-constrained real-time communications

with guarantees. For some classes of network traffic existing

best-effort approaches (like TCP/IP) are insufficient, and real-

time protocols are needed. The solution here necessitates a

multitude of network traffic classes, including sporadic but

highly critical traffic, guaranteed-bandwidth time triggered

traffic, rate constrained traffic, and best effort traffic1. The

kernel, as the ultimate resource manager is to support the

sharing of the communication link(s) and is to permit appli-

cations to select the traffic classes needed for their specific

network flows. Furthermore, if the communication channel is

not able to provide the expected performance anymore the

kernel should signal the application so that it can adapt to this

change.

Security (i.e. confidentiality, integrity, and authenticity) of

communications is a critical issue in some of the appli-

cation domains. On the lowest layers, features for secure

communication should be available, possibly supported by

the communication hardware itself and cryptography engines.

However, as the applications running on the platform are not

necessarily trusted, their communication capabilities need to

be constrained as well. Mandatory Access Control (MAC)

with Multi Level Security (MLS) [2] on the network and

the messages may be necessary, in which case the kernel

has to provide support for (1) the trustworthy configuration

of network communications and (2) labeled communications

between parties. The first means that only privileged, trusted

service processes are permitted to configure the network

and the communication flows in the network. We expect

that untrusted processes are not permitted to simply open a

communication channel to the network and talk to any network

address – only trusted service processes can create the network

connections, and once initiated the communication endpoints

are handed over to the untrusted processes for use. The second

means that, following the principles of labeled communica-

tions, each message transmitter and receiver is provided with

a label set, by an external authority. These labels are to be

used in each communication operation by the application, and

their correct use is validated and enforced by the TCB. Note

that while these technologies have been originally developed

for government applications, security awareness on a shared

computing platform necessitates their use.

A communication flow is valid only between parties

with labels that satisfy the rule that information can

flow only from lower to higher or between equal la-

bels (according to the domination relation). Assuming

an increasing order of sensitivity: Confidential <

CompetitionSensitive < ManagementOnly, e.g., a
CompetitionSensitive process for mission A can read
Confidential or CompetitionSensitive data for

mission A, but not ManagementOnly data for mission A or
CompetitionSensitive data for mission B. When the

transmitter wishes to transfer a message, it has to supply a

1The standard SAE AS6802: Time-Triggered Ethernet has similar traffic
classes
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message label that must match with one of the labels in its

own set, and satisfies the MLS rule. The kernel, which is part

of the TCB, performs this check on each message – both on the

transmitter and the receiver side. This machinery can ensure

that processes always follow the communication constraints

defined by a security policy.

The operating system runs processes; both application and

service processes. To distinguish between these a capability

mechanism is needed that controls what operating system

services a process can use. For example, in order to prevent

the unchecked proliferation of application processes, only priv-

ileged processes should be permitted to create new processes.

When a process is created, its parent process should specify

what capabilities the child has, which can only be a subset of

the capabilities of the parent.

B. Platform services

As mentioned above, platform services are needed to per-

form management functions on the running system that are

outside of the scope of typical applications. Note that platform

services perform critical functions that require privileges,

hence the platform services are part of the TCB. We envision

at least four kinds of management services:

Deployment management: As stated in the introduction,
the envisioned systems are managed by some management

authority, presumably over a network connection. Each node

in the system has to have a service that can download, install,

configure, activate, teardown, and remove the distributed appli-

cations. This service is essentially the top-level configuration

manager for the node. Note that it itself should be fault-

tolerant (i.e. able to manage faults during the deployment

process), should obey and enforce security policies, and should

be responsive (per real-time requirements).

Mission management: Beyond deployment, there is a need
for a service to manage the execution of applications. One

should be able to activate and de-activate applications based

on triggering events or the elapse of time. Triggering events

can be generated by applications or the services. Mission man-

agement should include support for system auditing (including

logging control) and debugging.

Fault management: Resilience to faults is a core require-
ment for the system. We envision that the fault management

is autonomous: the system attempts to restore functionality, if

possible, without external intervention. Obviously, it may be

necessary that the system cannot manage a fault on its own,

and it has to contact its management authority. While fault

management is inherently a shared responsibility of all layers

(including applications), there are some system-level issues

that can be addressed by a dedicated service. For instance, if an

application unexpectedly terminates, a fault management reac-

tion could be an attempt to restart the application, and if that

fails then attempt to restart the application on another node,

the capability facilitated by a fault management service. Note

that the software platform is not to define fixed policies for

fault management (e.g. try restart five times, then re-allocate),

rather it is to provide mechanisms that allow implementing

any such policies (e.g. by scripting the behavior of the fault

manager service).

Resource management: Embedded systems are typically
resource constrained, hence unbounded resource usage can-

not be permitted. This can be strictly managed by a static

quota system, where developers declare the resource needs of

their applications, then a system integrator verifies that such

resource needs are acceptable (i.e. the application is ‘admissi-

ble’), and then the software platform enforces these quotas. If

the application attempts to obtain more resources than it was

declared, the request will fail (and the application has to handle

this failure). This method is too strict, however, and may

use resources very inefficiently. A resource manager service

can implement a more complex, dynamic resource allocation

policy, where applications can dynamically request and release

resources, and the service honors or rejects these requests

while maximizing system utility. Note that a critical resource

is network bandwidth (if it is limited and/or fluctuating), and

the dynamic management of communication bandwidth that

maximizes system utility is a challenge.

C. Middleware

All modern distributed software systems are built using mid-

dleware libraries that provide core communication abstractions

for object-based systems. These abstractions are to facilitate

prototypical component interactions. Industry standards and

pragmatic experience shows that a well-defined, small set of

interaction patterns can provide a solid foundation for building

applications. The set includes: (1) Point-to-point interactions

when when an object wants to invoke specific services of

another object. The interaction can be synchronous (call-

return) or asynchronous (call-callback). Note that the client

and server are coupled and are involved in bi-directional

messaging. (2) Publish-subscribe interactions when a pub-

lisher generates data samples, which are then asynchronously

consumed by interested subscribers. Note that the publishers

are loosely coupled, and not directly known to each other.

While additional, more complex interactions may also be

needed, the interactions should be facilitated in conjunction

with overall system requirements. For instance, the interactions

can be subject to timing constraints, and the scheduling of the

message exchanges should be done accordingly. The interac-

tions are also subject to the security policies - only permitted

information flows can be utilized to facilitate an interaction.

The interactions have to be implemented in conjunction with

the fault management architecture: objects participating in the

interactions must become aware of faults (originating from

the network, for instance), and should be able to rely on fault

tolerant services, if available.

D. Component model

We envision a component-oriented software development

for the platform. Obviously, this necessitates a precisely de-

fined abstract component model that helps developers to build

robust systems from reusable components. The implementa-

tion of the component model must rely on a robust component
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framework that facilitates and mediates all interactions among

the components. The component model should clearly define

how component activities are scheduled, based on events or

the elapse of time, and what the component lifecycle is.

The component model is subject to all requirements men-

tioned above. It has to support real-time requirements: we want

to be able to predict the timing properties of the system based

on the timing properties of the components and their specific

interactions. The component model should support security

policies, and should provide for fault management, including

anomaly detection, diagnosis, and fault mitigation.

III. DEVELOPMENT TOOLS

Developing code for modern software platforms (e.g. An-

droid or iOS) cannot be done without sophisticated tool

support. This issue is compounded by the complexity of

distributed systems, where not only code development has

to be done, but also complex configuration and allocation

decisions have to be made and implemented.

As discussed above, the platform supports a component

model with complex interaction semantics. Coding for such

a component model by hand is quite difficult and error prone,

hence higher-level abstractions, such as models, are needed.

There is a need for a modeling language specific for the

component model that is easy to use and mitigates accidental

complexity. Furthermore, the modeling language should fa-

cilitate the composition of applications from components. As

we are building a distributed system, the models should also

encompass the (static or dynamic) configuration of the network

with computing nodes and communication links. Many cross-

cutting aspects, like resource quotas, fault management strate-

gies, security labels for secure communications, etc. should

also be represented. Finally, the allocation of applications

to computing nodes and information flows to network links

should also be modeled, either explicitly (to support static

allocation) or implicitly (to support dynamic allocation).

In summary, we envision a wide-spectrum domain-specific

modeling language that covers all of the above areas. General

purpose modeling languages (e.g. UML) or their specializa-

tions (e.g. MARTE) solve only part of the problem, and

often in a somewhat cumbersome way, e.g. using stereotypes.

Arguably, a dedicated, platform-specific modeling language is

a better approach.

The development toolchain should be able to support both

conventional (code-oriented) and model-based development of

software components. The first one is needed for general

purpose components, while the second one opens up the

opportunity to use the results of model-based development

tools (like Simulink/Stateflow). Tool integration to ensure

semantic interoperability across development tools is essential.

Finally, the development tools should include tools for

checking the correctness of the modeled applications and

analyzing system properties including schedulability and the

ability to compare alternative deployment strategies.

IV. PRELIMINARY RESULTS

DREMS2 is a software infrastructure for designing, im-

plementing, configuring, deploying and managing distributed

real-time embedded systems that consists of two major subsys-

tems: (1) a design-time toolsuite for modeling, analysis, syn-

thesis, implementation, debugging, testing, and maintenance

of application software built from reusable components, and

(2) a run-time software platform for deploying, managing, and

operating application software on a network of computing

nodes. The platform is tailored towards a managed network

of computers and distributed software applications running on

that network of nodes, i.e. a cluster.
The toolsuite supports a model-based paradigm of software

development for distributed, real-time, embedded systems

where modeling tools and generators automate the tedious

parts of software development and also provide a design-time

framework for the analysis of software systems. The run-

time software platform reduces the complexity and increases

the reliability of software applications by providing reusable

technological building blocks in the form of an operating

system, middleware, and application management services.

A. DREMS Architecture
DREMS is a complete, end-to-end solution for software

development: from modeling tools to code to deployed ap-

plications. It is open and extensible, and relies on open indus-

try standards, well-tested functionality and high-performance

tools. It focuses on the architectural issues of the software,

and promotes the modeling of application software, where the

models are directly used in the construction of the software.
Software applications running on the DREMS platform are

distributed: an application consists of one or more actors that
run in parallel, typically on different nodes of a network.

Actors specialize the concept of processes: they have identity

with state, can be migrated from node to node. Actors are

created, deployed, configured, and managed by a special

service of the run-time platform: the deployment manager - a

privileged, distributed, and fault tolerant actor, present on each

node of the system, that performs all management functions

for application actors. An actor can also be assigned a set of

limited resources of the node on which it runs: memory and

file space, a share of CPU time, and a share of the network

bandwidth.
Applications are built from software components - hosted

by actors - that only interact via well-defined interaction

patterns using security-labeled messages, and are allowed to

use specific sets of services provided by the operating system,

including messaging and thread synchronization operations.

Note that components use these indirectly: via the middleware.
The middleware libraries implement the high-level com-

munication abstractions: synchronous and asynchronous in-

teractions, on top of the low-level services provided by the

underlying distributed hardware platform. Interaction patterns

include (1) point-to-point interactions (in the form of syn-

chronous and asynchronous remote method invocations), and

2http://www.isis.vanderbilt.edu/drems
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(2) group communications (in the form of anonymous publish-

subscribe interactions). Component operations can be event-

driven or time-triggered, enabling time-driven applications.

Message exchanges via the low-level messaging services are

time-stamped, thus message receivers are aware of when the

message was sent. Hence temporal ordering of events can be

established (assuming the clocks of the computing nodes are

synchronized).

Specialized, verified platform actors provide system-wide

high-level services: application deployment, fault manage-

ment, controlled access to I/O devices, etc. Each application

actor exposes the interface(s) of one or more of its components

that the components of applications can interact with using the

same interaction patterns. Applications can also interact with

each other the same way: exposed interfaces and precisely

defined interaction patterns.

The DREMS Operating System - a set of extensions to the

Linux kernel - implements all the critical low-level services

to support resource sharing (including spatial and temporal

partitioning), actor management, secure (labeled and managed)

information flows, and fault tolerance. A key feature of the OS

layer is support for temporal partitions (similar to the ARINC-

653 standard): actors can be assigned to a fixed duration,

periodically repeating interval of the CPU’s time so that they

have a guaranteed access to the processor in that interval.

In other words, the actors can have an assured bandwidth

to utilize the CPU and actors in separate temporal partitions

cannot inadvertently interfere with each other via the CPU.

B. Run-time Software Platform

The implementation of the run-time software platform has

several layers. Practically all layers are based on existing and

proven open-source technology. Starting from the bottom, the

operating system layer extends the Linux kernel with a number

of specific services, but it strongly relies on the code available

in the Linux kernel (currently: version 3.2.17). This permits

the use of DREMS services for the actors, but also keeps the

Linux system calls for debugging and monitoring purposes.

These extensions are in the form of 120+ new system calls.

The C and C++ run-time support libraries (based on uClibc3

and libstdcpp4 implement the conventional support services

needed by the typical C and C++ programs. The C run-time

library has entry points to access the DREMS OS system

calls. These calls utilize data structures that have been de-

fined using the standard OMG Interface Definition Language

(IDL), and can be created and manipulated using generated

constructor and manipulation operators. The implementation

of the DREMS operating system calls checks the integrity

of all data structures passed on the interface. This enables

validation of the data structures on the interface, preventing

potential abuse of the system calls.

Layered on the C and C++ run-time libraries the Adap-

tive Communication Environment (ACE) libraries provide a

low-overhead isolation layer for the higher level middleware

3www.uclibc.org
4http://gcc.gnu.org/libstdc++/

elements that support CORBA and DDS. The CORBA imple-

mentation is based on The ACE ORB (TAO, currently: version

6.1.4) that implements a subset of the CORBA standard

for facilitating point-to-point interactions between distributed

objects. Such interactions are in the form of Remote Method

Invocations (RMIs) or Asynchronous Method Invocations

(AMIs). RMIs follow the call-return semantics, where the

caller waits until the server responds, while the AMIs follow

the call-return-callback semantics, where the caller continues

immediately and the response from the server is handled by a

registered callback operation of the client. The CORBA subset

implemented by the middleware has been selected to support

a minimal set of core functions that are suitable for resource-

constrained embedded systems. The DDS implementation is

based on the OpenDDS (currently: version 3.4) that imple-

ments a subset of the DDS standard for facilitating anony-

mous publish/subscribe interactions among distributed objects.

There are several quality-of-service attributes associated with

publishers and subscribers that control features like buffering,

reliability, delivery rate, etc. DDS is designed to be highly

scalable, and its implementations meet the requirements of

mission-critical applications.

CORBA and DDS provide for data exchange and basic

interactions between distributed objects, but in DREMS ob-

jects are packaged into higher-level units called components.

A component [3] publishes and subscribes to various topics

(possibly many), implements (provides) interface(s), and ex-

pects (requires) implementations of other interfaces. Note that

a component may contain several, tightly coupled objects.

Components may expose parts of their observable state via

read-only state variables, accessible through specific methods.

Components are configured via configurable parameters. Their

operations are scheduled based on events or elapse of time.

An event can be the arrival of a message the component

has subscribed to or an incoming request on a provided

interface. Time triggering is done by associating a timer

with the component that invokes a selected operation on

the component when a set amount of time elapses, possibly

periodically repeating the operation. Component operations

can perform computations, publish messages, and call out

to other components via the required interfaces. To avoid

having to write complex locking and synchronization logic for

components, component operations are always single threaded:

inside of one component at most one thread can be active at

any time. Actors are formed from interacting components, and

applications are formed from actors that interact with each

other via their interacting components. Actors (together with

their components) can be deployed on different nodes of a

network, but their composition and interactions are always

clearly defined: they must happen either via remote method

invocations or via publish/subscribe interactions.

Figure 3 shows an application where a Sensor component

periodically (P) publishes a message that a GPS component

subscribes to, and which, in turn, sporadically (S) publishes

another message that a NAVDisplay component consumes.

This last component invokes the GPS component via a pro-
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Fig. 3: Component-based distributed system example

vided interface, when it needs to refresh its own state. The

messages published can be quite small, while the method

invocation (that happens less frequently, and on demand) may

transfer larger amounts of data.

The run-time software platform includes a key platform

actor: the Deployment Manager (DM) that instantiates, con-

figures, activates, deactivates, and dismantles applications.

Every node on a network has a copy of the DM that acts

as a controller for all applications on that node. The DMs

communicate with each other, with one being the lead ‘clus-

ter’ DM. This, cluster leader orchestrates the deployment of

applications across cluster with the help of the node DMs. For

deployment, the binaries of application components should be

installed on each node, then the cluster lead DM is provided

a deployment plan that is generated from application models

and executes the plan, coordinating the activities of node level

DMs which start the actors, installs components, configures the

network connections among the components, etc., and finally

activates the components. This last step releases the execution

threads of the components. When the applications need to

be removed, the DM stops the components, withdraws the

network configuration, and stops the actors. A key feature

of the deployment process is that the network connections

among the parts: i.e. actors and components of the distributed

application are managed: the application business logic does

not have to deal with this problem; everything is set up based

on the deployment plan.

C. Design-time Development Platform

Configuring the middleware and writing code that takes

advantage of the component framework is a highly non-trivial

and tedious task. To mitigate this problem and to enable

programmer productivity, a model-driven development envi-

ronment is available that simplifies the tasks of the application

developers and system integrators.

In this environment, developers define via graphical and

textual models various properties of the application, including:

interface and message types, components types (in terms

interfaces and publish/subscribe message types), component

implementations, component assemblies, and applications (in

terms interacting components and actors containing them). Ad-

ditionally, the hardware platform for the cluster are modeled:

processors, network and device interfaces, network addresses,

etc. Finally, the deployment of the application(s) on the

hardware platform are also modeled, as the mapping of actors

onto hardware nodes, and information flows onto network

links. Models are processed by code generators that produce

several artifacts from them: source code, configuration files,

build system artifacts that facilitate the automated compilation

and linking of the components, and other documents. The

application developer is expected to provide the component

implementation code in the form of C++ code (currently, in

the future: any other, supported executable language) and add

it to the generated code. The compilation and debugging of

the applications can happen with the help of a conventional

development environment (currently: Eclipse) that supports

editing, compiling, and debugging the code. The result of this

process is a set of component executables and the deployment

plan - ready to be deployed on a cluster of nodes.

The model-driven approach has several benefits. (1) The

model serves as the single source of all structural and con-

figuration information for the system. (2) The tedious work

of crafting middleware ‘glue’ code and configuration files for

deployment is automated: everything is derived programmat-

ically from the models. (3) The models provide an explicit

representation of the architecture of all the applications run-

ning on the system - this enables architectural and performance

analysis on the system before it is executed. (4) Models can

also be used for rapidly creating ‘mockup’ components and

applications for rapid prototyping and evaluation.

D. Example: Cluster flight control and sensor processing

We have evaluated the DREMS prototype on several exam-

ples. The graphical modeling tool runs on Windows, the code

development and cross-compilation tools on a Linux platform,

while DREMS is on a set of networked embedded x86-

based devices (3 iBX-530 industrial computers). Deployment

and configuration is done from the Linux machine, via the

network. Several small scale tests were used to validate that the

platform is functional. A more realistic application involved

a distributed flight control software applications (2 actors on

each node, with 3-4 components each), and a sensor processing

application (dissimilar actors on each node). The flight con-

trol actors share critical, but low-bandwidth data, the sensor

application shares high bandwidth, but low criticality data.

The two sets of applications run in different security domains,

and in different temporal partitions. We were scheduling the

applications in partitions of 100 msec duration, and were

experimenting with variable bandwidth between the nodes. All

designed and implemented features were functional, including

component interactions, partition scheduling, security labeling

and information flow separation, application deployment and

control. The applications have been constructed using the

model-driven development toolchain; the model had about

100 distinct elements. Component code was hand inserted

into the skeleton code generated by the software generators,

followed by compilation using Eclipse with a cross-compiler

for the platform. The model-driven generation produced all

the infrastructure code, simplifying the task of the developer.

A detailed report of this experiments can be found in [4].
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V. RELATED WORK

There are several architecture description languages for

embedded systems, including the Architecture Analysis and

Design Language (AADL) [5], SysML [6] and the Modeling

and Analysis of Realtime and Embedded (MARTE) [7]

systems profile for UML. These are general purpose modeling

languages that can be used across a wide variety of systems.

Because of specific features that are tightly integrated into

our system, such as security labels and partition scheduling,

we designed a dedicated domain-specific modeling language

to describe DREMS systems and applications. However, au-

tomated transformation from our modeling language to these

general purpose languages is possible and may be used to

leverage some of their analysis capabilities.

A similar toolsuite that also uses a domain-specific approach

for component-based systems is described in [8]. That work

focuses primarily on support for highly dynamic environments

that require adaptation, and hence their environment supports

dynamic updating and reconfiguration of models based on

feedback from the running system. The biggest differences

between that work and DREMS are that DREMS supports

multiple messaging semantics and has built-in support for

security in both the kernel and middleware layers.

Our previous work in modeling component-based systems

includes the CoSMIC [9], [10] tool suite, which assists

with the model-based development, configuration and deploy-

ment of CORBA Component Model-based applications. While

DREMS is more extensive than CoSMIC and provides the

ability to model elements like hardware and task schedules,

experience from the CoSMIC project helped guide certain

design aspects of component modeling inside DREMS.

The ARINC-653 Component Model (ACM) [11], which

implements a component model for the ARINC-653 stan-

dard [12] for avionics computing, forms the basis for the

DREMS component model. DREMS extends the temporal

partitioning scheduling method used by ACM by allowing

multiple actors (processes) per temporal partition, a valuable

feature for components that interact through synchronous mes-

sages. Further, the DREMS component model is designed to

promote deadlock/race condition-free behavior in components.

The secure transport feature of DREMS is based on multi-

level security (MLS) [2]. All messages have a security label

and must obey a set of mandatory access control (MAC)

policies. The main novelty in DREMS with respect to MLS

is the concept of multi-domain labels [13] to support secure

communication among actors from different organizations.

A more detailed description of the system requirements for

DREMS and design principles used to meet those requirements

is available in [14].

VI. CONCLUSIONS

DREMS is a prototype, end-to-end solution for building

and running distributed real-time embedded applications. It

contains not only a run-time framework with a state-of-

the-art operating system extended with special features for

resource, application, and network management together with

a component framework with a precisely defined model of

computation, but also a model-driven development toolchain

that assists developers and integrators in managing the devel-

opment process.

But DREMS is only a partial prototype for a class of soft-
ware platforms outlined in the first two sections. We believe

that such software platforms are essential for implementing

the next generation of distributed real-time embedded systems.

Embedded systems are not black boxes anymore, but rather

platforms with an evolving and dynamically changing software

ecosystem.
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