Risk-Aware Scene Sampling for Dynamic
Assurance of Autonomous Systems

Shreyas Ramakrishna, Baiting Luo, Yogesh Barve, Gabor Karsai, and Abhishek Dubey
Institute for Software Integrated Systems, Vanderbilt University

Abstract—Autonomous Cyber-Physical Systems must often
operate under uncertainties like sensor degradation and shifts
in the operating conditions, which increases its operational risk.
Dynamic Assurance of these systems requires designing runtime
safety components like Out-of-Distribution detectors and risk
estimators, which require labeled data from different operating
modes of the system that belong to scenes with adverse operating
conditions, sensors, and actuator faults. Collecting real-world
data of these scenes can be expensive and sometimes not feasible.
So, scenario description languages with samplers like random
and grid search are available to generate synthetic data from
simulators, replicating these real-world scenes. However, we point
out three limitations in using these conventional samplers. First,
they are passive samplers, which do not use the feedback of
previous results in the sampling process. Second, the variables to
be sampled may have constraints that are often not included.
Third, they do not balance the tradeoff between exploration
and exploitation, which we hypothesize is necessary for better
search space coverage. We present a scene generation approach
with two samplers called Random Neighborhood Search (RNS)
and Guided Bayesian Optimization (GBO), which extend the
conventional random search and Bayesian Optimization search
to include the limitations. Also, to facilitate the samplers, we use
a risk-based metric that evaluates how risky the scene was for
the system. We demonstrate our approach using an Autonomous
Vehicle example in CARLA simulation. To evaluate our samplers,
we compared them against the baselines of random search, grid
search, and Halton sequence search. Our samplers of RNS and
GBO sampled a higher percentage of high-risk scenes of 83%
and 92%, compared to 56% 66% and 71% of the grid, random
and Halton samplers, respectively.

Index Terms—Cyber-Physical Systems, Dynamic Assurance,
Scenario Description Language, Bow-Tie Diagram

I. INTRODUCTION

The widespread use of autonomous Cyber Physical System
(CPS has often required them to operate under uncertainties
like sensor degradation and shifts in the operating conditions,
which increase its operational risk. Design-time Assurance
Case [1]] with risk assessment information is used to argue the
system’s safety at runtime. However, the dynamically changing
operating conditions of the system at runtime potentially
invalidate the design-time assumptions and the safety argu-
ments [2[]. So, a dynamic assurance approach with proactive
safety assessment components like Out-of-Distribution (OOD)
detectors [3|] and dynamic assurance monitors [4]] is required
for runtime safety assurance. Designing these components of-
ten requires labeled data from different operating modes of the
system that belong to scenes with adverse operating conditions
and sensor or actuator faults. These scenes are referred to as

ICPS with Learning Enabled Component (LEC)

risky scenarios [3]] or safety-critical scenarios [6[]; in this paper,
we refer to them as high-risk scenes.

Often the data related to high-risk scenes are under-
represented in the training sets [7]], leading to a data imbalance
problem. If we can generate these under-represented events,
they can be used to design the safety assessment components
required for dynamic assurance and retrain the controller
LECs to improve their accuracy [8]]. However, collecting real-
world data of such high-risk scenes can be expensive and
slow in real-world conditions. Synthetic data from simulators
have been used to address this problem in engineering design
and testing applications. Samplers are used to generate data
across the search space created by the system parameters.
For example, tools like Dakota [9]] provide efficient samplers
like incremental sampling, importance sampling, and adaptive
sampling for uncertainty quantification in engineering design.
Recently, this concept of sampling-based data generation is be-
ing adapted for autonomous systems [3]], [10]-[12]]. Domain-
specific Scenario Description Language (SDL) like Scenic [8]],
and MSDL [13] with conventional samplers like random and
grid search are integrated with simulators like CARLA [14]]
to generate high-risk scenes.

Despite their success in generating high-risk scenes, we
point to several limitations in using the conventional samplers.
First, they perform passive sampling, which does not use the
feedback of previous results in the sampling process. Second,
the scene variables (e.g., environmental conditions) being sam-
pled typically have sampling constraints and co-relations that
need to be considered. For example, environmental conditions
(e.g., precipitation) may have physical constraints on their
values that govern their temporal evolution. Applying these
constraints is necessary for generating meaningful scenes [J8].
However, the conventional samplers do not include these
sampling constraints. Third, conventional samplers do not
balance the exploration vs. exploitation trade-off. For example,
random and Halton searches prioritize uniform search space
coverage, so they only explore. In contrast, grid search aims
to cover a given grid exhaustively, so they only exploit it.
However, as discussed by Jerebic, Jernej et al. [15]], balancing
these strategies can result in higher coverage diversity which
is commonly measured using clustering properties like the
number of clusters and cluster population.

To address these limitations, we present a scene generation
approach that has a domain-specific SDL integrated with
two sampling approaches for generating high-risk simulation
scenes. The key contribution of this work is two sampling
approaches called Random Neighborhood Search (RNS) and
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Fig. 1: AV system model designed for the CARLA autonomous challenge [[17]]
setup. The AV is primarily driven by an LEC-based navigation controller
adapted from Chen et al. [[18]. We have augmented an Automatic Emergency
Braking System (AEBS) supervisor for emergency braking.
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Guided Bayesian Optimization (GBO), which perform active
sampling by using previous simulation results in the sampling
process. They also include sampling constraints that govern the
evolution of scene variables. In addition, they provide explicit
hyperparameters to control the tradeoff between exploration
vs. exploitation of the search strategy. Further, to facilitate
the samplers, we use a novel risk-based scoring function that
evaluates how risky the scene was for the system. We demon-
strate our approach using an Autonomous Vehicle (AV) case
study in the CARLA simulator [[14]]. To evaluate our samplers,
we compared them against the baselines of random search,
grid search, and Halton sequence search [16] in terms of
three metrics that measure the total high-risk scenes sampled,
the sample diversity, and the search times. Our experimental
evaluation shows that the RNS and GBO outperform the
baselines in terms of the total high-risk scenes and diversity
metrics. Also, the RNS sampler had comparable search times
to the baselines, but the GBO sampler has a higher search
time. The source code is available online?]

The outline of this paper is as follows. In Section we
introduce the background needed to understand this work. In
Section we describe the problem statement, followed by a
description of our approach in Section In Section [V] we
implement and evaluate the samplers in the context of an AV
case study in the CARLA autonomous driving challenge [17].
This setup requires an AV (See Fig. [1) to navigate an urban
town setting with complex traffic scenarios, adverse weather
conditions, and sensor faults. Finally, we present related re-
search in Section |VI| followed by conclusions in Section

II. BACKGROUND
A. System Design Procedures

The typical design procedure of autonomous CPSs include
the design, training, testing, and deployment phases, which we
categorize into five steps for designing our systems: (1) De-
sign Phase, which involves system analysis, hazard analysis,
and Assurance Case construction. (2) Training Phase, which
involves collecting training scenes and training the LECs on
these scenes. (3) Calibration Phase, which involves calibrat-
ing the detectors [3[], [19]], and dynamic assurance monitors

Zhttps://github.com/scope-lab-vu/Risk-Aware-Scene-Generation-CPS

(Section [II-B). Calibration requires curating a calibration set
that includes scenes with sensor faults and adverse weather
in addition to the training scenes. To generate these scenes,
we use both random and grid samplers. We use the random
sampler to find the conditions affecting the system and then
use the grid sampler to generate more scenes around it. (4)
Testing Phase, which involves generating high-risk scenes
for testing the trained system. (5) Deployment Phase, which
involves deploying the trained and tested system to operate.

In particular, the design phase is important because it
consists of gathering and documenting information about the
system’s goals, requirements, operating conditions, and com-
ponent faults. It also includes designing the system models like
the architecture model (e.g., Fig. [I) and the system function
breakdown model. Following this, the designers perform an
hazard analysis, which involves identifying the hazards to the
system that will result in a system consequence. The system
could have a collection of hazards {H;, Ho, -+, H,} stem-
ming from its operation, functioning, software components,
and hardware components. For example, in the context of
an AV, operational hazard elements can be the movement of
traffic participants including pedestrians, and other vehicles.
Any of these hazards in a given condition can result in
a system consequence. This enables creation of Bow-Tie
Diagram (BTD) [20]], a model describing the chain of events
ti = by = etop — by, — ¢;, Where t; are system threats, b,
are preventive barriers, e, is a top event, b,,, is a mitigation
barrier, and c; is a system consequence. Fig. [2| describes the
operational hazard of “roadway obstruction” for the AV case
study. The BTD has two system threats: vehicles (T1) and
pedestrians (T2) in the path of the ego vehicle. These threats
can escalate to become a top event (TOP) if not prevented by
the preventive barriers B1 and B2. Next, the TOP event can
escalate to become a system consequence if not mitigated by
the barrier B3. During the design, these hazard analyses are
used to create assurance cases [1f], showing that the top-level
goals of the system are satisfied. Further, the BTD allows for
dynamically monitoring the likelihood of system consequences
through a technique called dynamic assurance.

B. ReSonAte

To perform dynamic assurance, we leverage our previously
developed tool called Runtime Safety Evaluation in Au-
tonomous Systems (ReSonAte) [4], which uses an augmented
BTD derived from the hazard analysis. The augmentation adds
various event probabilities for each causal chain, conditioned
on the state of the system and the environment, including
sensor failures, actuator failures, the output of anomaly de-
tectors, and environmental conditions. Specifically, we need
to estimate the (a) the conditional probability of the barrier’s
success in each state fi,(z = (B;, s)), and (b) the frequency of
occurrence of a threat f.(7;,s) in each state. We infer these
conditional relationships from the calibration dataset gath-
ered during the previously discussed calibration phase. The
estimated probabilities are stored in Lookup Tables (LUTSs)
and used at runtime to calculate the hazard rate A and the
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Fig. 2: Bow-Tie Diagram for the AV case study adopted from our previous work [4]]. Each block includes information about the event type and its description.
The conditional probability and the threat LUT's are estimated from calibration data, which is discussed in Section

likelihood of the hazard occurrence in each time unit (t) as
1—e M,

III. PROBLEM FORMULATION

We consider the autonomous CPS to be operating in an en-
vironment, characterized by two sets of variables E : x — R+
and S : y — R x N. E are the environmental variables like
rain, traffic density, time-of-the-day. S are structural variables
related to roadway features and are characterized by waypoints
w denoted by a two-dimensional matrix of latitude and longi-
tude. Also, we can map each waypoint to a road segment. In
addition, we consider the set of faults in the system sensors and
actuators F' : x — 0, 1. For a particular operating environment,
there can be several environment variables e € [E, several
possible waypoints w € S, and several sensors in the system
that can fail f € F. The CPS is trained through a collection
of scenes, where each scene s; is an ordered sequence of k
sampled observations < E;, S;, FF; >f:1. We collectively refer
to these variables as the scene variables s,. Given each scene,
we can associate the hazard rate A for every hazard identified
for the system. The system can have a collection of hazards
{Hy,Hs,--- ,H,} stemming from its components (e.g., soft-
ware, hardware) or its operating conditions. Each identified
hazard will have an associated hazard rate estimated using
the dynamic assurance routines (DA : s; — ) introduced in
Section We can use the estimated hazard rate to compute
the likelihood of the hazard occurrence (1—e~*"*) in each time
unit ¢. The likelihood of hazard for different hazard conditions
put together constitutes the system’s operational risk Sg;sk-

Also, given a sequence of samples in the scenes, physical
constraints govern the temporal evolution of the sampled
values. For example, a constraint on an environmental variable
e € E governs that |s§ — s¢ ;| < o € RT. Similarly,
the waypoints across a scene are governed by routability
property. To explain this, we use the sampling constraints SC
in Table [ which we applied for an AV case study, discussed
in Section The constraint governs the road segment such
that the distance between any two selected waypoints cannot
exceed 10 meters. This constraint regulates that the road

Variable Type Name Range Constraints
Structural Road (iesg)ments [0,9] wp1 —wp2 < 10m
Precipitation (P) | [0,100] P, — Piy1 <5%
. Time-of-Day (T) [0,90] T; — Tip1 < 10°
E tal
nvironmenta Cloud (©) [0,100] | C; — Cir1 <5%
Traffic Density 0.20] TD; depends on RS;
(TD) ’ TD; —TD;y1 <10
Cam Blur [0,1]
Faults Cam Occlusion [0,1] N/A

TABLE I: Scene Variables, their distribution ranges and sampling constraints
for the CARLA AV case study introduced later in Section M

segment is orderly selected. The environmental variables have
constraints on how their values change between consecutive
scenes. The traffic density has constraints on its value and is
also dependent on the type of road segment (e.g., crossroads,
intersections). Also, we do not place any constraints on the
fault variables. Now, given this setup, we want to address the
following problem.

Problem. Given a threshold § (computed across the cali-
bration set of scenes), sample N scenes that maximizes the
risk max(sum(Sgisk — 0)). In addition we want to ensure
that the scene variables are diverse. We call a scene with
(Srisk — ) > 0 as a high risk scene.

While the first objective measures the sampler’s capability
to sample high-risk scenes, the second measures its coverage
diversity, representing its capability to balance exploration vs.
exploitation of the search space. A sampler with high diversity
is desirable for better coverage of the search space [15]. We
measure diversity in terms of a quantitative metric (measured
using the number of the optimal clusters, as measured using
silhouette score [21]]) and a qualitative metric (measured using
the variance of risk across each scene across all clusters).

IV. PROPOSED APPROACH

We now describe the approach we use to generate high-
risk scenes for AV in simulation. Overview of the approach is
illustrated in Fig. 3| and described in detail below.
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scene sample {
type int
type string
class scene_info {
town: town_description
weather: weather_description
road: road_segments
traffic: traffic_density
faults: sensor_faults }
entity town_description{
id:string
map:string }
entity weather_description {
precipitation: distribution
cloudiness: distribution
time-of-day: distribution }
entity distribution ({
low: int
high: int }
}

Fig. 4: This listing shows a fragment of the scene description for CARLA
simulation that was generated using our SDL.

A. Scene Generation

We have designed a scene generation approach, which
includes a SDL integrated with samplers to sample scenes
over different scene variables introduced in Section [IIl The
SDL is designed using the textX [22] meta-language and it
has two components. (a) grammar, which consists of a set
of rules required to define a scene in the meta-language.
(2) meta-model, which defines the concept of a scene using
scene variables and their distribution ranges. In this setup, a
scene s = {eq,ea,....e; } is a collection of entities, where each
entity is a tuple < s,,v4,v. > of the scene variables s,,
distribution properties vq (e.g., distribution type, ranges) and
variable constraints v.. The SDL also has an interpreter to
generate the scene artifact files that run the simulator. The
interpreter also abstracts the complexity of the SDL from the
user by providing a scene specification file with scene variables
and samplers that can be chosen to generate different scenes.
A fragment of the scene description for CARLA simulation is
shown in Fig. @]

B. Scoring Function

We have designed the Risk Score metric (Sg;si) to evaluate
the sampled scene. This score is a weighted combination of
two utility functions and is computed as Sg;sp = w1 - RS +
wy - 1.5. The utility functions are. (1) ReSonAte Score (RS),
which measures the system’s risk in an operational scene using
the hazard rates calculated by the ReSonAte framework. (2)
Infraction Score (1.5), which measures the actual infractions
performed by the system. We use equal weights of wy = wy =
1 for both these utility functions to ensure that the estimated
risk and the actual risk caused by infractions are weighted
equally in the subsequently sampled scenes. In the future, we
will formulate this metric as a multi-objective optimization
problem as performed by Viswanadha, Kesav, et al. [12].

1) ReSonAte Score (RS): Measures the average risk of the
system’s failure across a scene. We leverage the ReSonAte
framework which estimates th%hazard rate A\, which is aver-

aged across the scene using .’17:217T1 to compute the system’s

risk or the ReSonAte score. Where A is the estimated hazard
rate and 77, T5 are the start and end time of the scene.

2) Infraction Score (1S): Measures the system’s actual
infractions across a scene. This score can include a variety
of infractions like route deviation, lane violation, and traffic
rule violation. These infractions (/) can also be weighted
(wyg) according to their severity and later summed together
to compute a unified infraction score IS = Y ., wy - I.
To illustrate, the infraction score for the AV case study was
computed as [.S = 0.7-Ig+0.8-Ir+1rp. Where Ig is running
a stop sign infraction, I is running a red-light infraction, and
Irp is the deviation in the route taken by the AV. We adopted
these weights from the CARLA challenge setup [17].

Assuming these scores are available at the end of each
scene, we compute the risk score Sg;sk. Further, a scene is
classified to be of high-risk if Sg;sx — 0 > 0. Where ¢ is
the risk threshold computed across the previously encountered
calibration scenes. Considering these scenes are sampled from




Algorithm 1 Random Neighborhood Search

Algorithm 2 Guided Bayesian Optimization

Parameter: number of iterations ¢, explored list £, neighborhood size k
Input: search space D, sampling constraints SC, scene variables s,,, threshold
é

Output: List of scenes

1: forz =1,2,...,t do

2: if Sgpisk < 6 or (Sgisk > 6 and N > k) then

3: Randomly sample s, within D to generate random scene R
4: else

5: Apply SC to create bounded search area 3

6: Randomly sample s, within B to generate neighboring scene N
7: Apply kd-tree to find if there are atleast k£ neighbors (V) in £
8: end if

9: Use the sampled variables to generate the scene artifact files

10: Simulate the scene and compute the Sg;sk

11: Append sampled variables and Sg;sx to €

12: end for

Parameter: number of iterations ¢, initial iterations k, explored list £
Input: search space D, sampling constraints SC, scene variables s,,, threshold
4
Output: List of scenes

1: forz =1,2,...,t do

2 if z < k then

3 initialize GP model with random samples s, from D

4: else

5: Apply SC to create bounded search area 3

6: Use pt and o in the UCB function to sample s, within B
7 end if
8: Use the sampled variables to generate the scene artifact files

9: Simulate the scene and compute the Sg;sk
10: Append sampled variables and Sg;sx to €
11: Update the GP model using £. Update p; and o¢
12: end for

the same underlying distribution, we select the threshold at the
95th percentile of Sy, for every scene in the calibration set.

C. Samplers

We have developed two samplers called the Random Neigh-
borhood Search and Guided Bayesian Optimization, which
are extensions of the conventional random and Bayesian
Optimization (BO) search. The extensions are. (1) active
sampling, we use a feedback loop of previous results to sample
the next scene variables. (2) constraints-based search, we
create sampling constraints SC to add constraints on the scene
variables. Table [I| shows the constraints that we applied for an
AV case study. (3) exploration vs. exploitation trade-off, we
introduce explicit hyper-parameters to balance the strategies.

1) Random Neighborhood Sampler (RNS): This sampler
extends the conventional random search by including the kd-
tree nearest neighborhood search algorithm [23[]. We aim
to add the missing exploitation capability to random search
with this extension. Briefly, the approach works as follows. It
initially explores a scene through random sampling and then
exploits the area around the explored scene using the sampling
constraints and the nearest neighbor search. Algorithm
illustrates the steps involved, and it works as follows.

First, the algorithm explores the search space D by ran-
domly sampling the scene variables s, from their respective
distribution range vg. These randomly selected variables are
used to generate the scene artifact files, run the simulator and
compute the risk score Spr;si for the scene.

Second, if the Sgi;sr < 0, the statistics of the scene are
stored, and the scene variables are re-sampled again from
their respective distribution range vy. However, if the Sy
> 0, the neighborhood around the randomly sampled scene
R is exploited to generate more scenes. For this, we create
a bounded region B around R by applying the sampling
constraints SC to the distribution ranges of the scene variables.

Third, the algorithm uses the kd-tree nearest neighborhood
search to find if there are at least &k scenes generated in the
neighborhood of the explored scene R. That is, it checks if R
has at least k£ similar scenes in £. To measure the similarity,
we use the [y distance metric (d(z,R) = ||z — R||2) and
identify the similar scenes as N = {Vs; € £|d(R,s;) < T}.

Where R is the currently sampled scene, and s; are previously
explored scenes in the explored list £. This step returns a list
of neighbors whose distances to R are smaller than a threshold
7. If the number of the neighbors N > k, the search around R
is stopped. Then, the first step is repeated to randomly explore
a new scene in the entire search space D. However, if N <
k, then the search around R is continued. In this sampler, &
is the hyperparameter used to control the exploitation.

Although the sampler can both explore and exploit, the
exploration is performed uninformed without strategic knowl-
edge about the search space. This could result in high-risk
regions of the search space left unexplored.

2) Guided Bayesian Optimization (GBO): The uninformed
exploration of the RNS sampler is addressed by our second
sampler, which has two components to perform informed
exploration and active sampling. First, a probability function
model is fitted across all the previously explored variables.
This feedback allows the model to learn the search space
region with large uncertainty that will return a higher objective
value. A Gaussian Process (GP) model is most used to fit
the function. Second, an acquisition function that strategi-
cally finds the succeeding variables to optimize the objective
function. We use the Upper Confidence Bound (UCB) [24]]
acquisition function that provides the [ hyperparameter to
control the exploration vs. exploitation trade-off (See Eq. (I)).
We also include the sampling constraints to restrict the region
where the acquisition function looks for the next sampling
variables. Algorithm [2] shows the operation of the GBO
sampler, which is discussed below.

First, the GP model with properties u[0] and o[0] is
initialized for first k iterations. During these iterations, the
scene variables s, are randomly sampled from their respective
distribution range v,. These randomly selected variables are
used to generate the scene artifact files, run the simulator and
compute the risk score Sg;s that is added to the exploration
list £ along with the sampled variables. After the k initial
iterations, the initialized GP model is fitted across all the
entries in £ to calculate new posterior distribution f(x,,) with
updated pl[x,,] and o[x,].

Second, the algorithm uses the sampling constraints SC
to create a smaller search space B in which the acquisition
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Fig. 5: Screenshots of different scenes generated for the CARLA AV case study. The description of these scenes are provided below the images.

function will sample the succeeding variables. The updated
posterior distribution and the bounded search space created by
the sampling constraints are used by an acquisition function
to strategically select the following scene variables that will
optimize Sg;sk. In this work, we use the UCB [24] as the
acquisition function, which is given below.

Tni1 = argmax pfz,] + 52 - ofw,] (1)
x€D

Where x,,1; are the newly selected variables that have the
largest UCB. p[z,,] and o[x,,] are the properties of the updated
GP model. 5 is a parameter that allows for exploitation and
exploration tradeoff. A larger value of [ allows for higher
exploration, and a lower value allows for exploitation. So, 3
needs to be carefully selected for optimizing the two strategies.
The newly selected variables are used to run the simulation
and compute Sp;sk, which is added to the list £ along with
the selected variables. The steps of the algorithm are repeated
for a specified number of iterations ¢.

The sampler has two problems that arise because of using
the GP model. (1) Cold-start, which requires the model to
be trained from scratch each time the sampler is used. This
increases the sampling time. To address this, we use the
knowledge of randomly sampled scenes from the previous
runs to “warm start” the search process. (2) Scalability, the
GP model suffers from a cubic time complexity [25], which
limits its applicability to a large number of executions.

V. EVALUATION
A. AV Case Study

Our testbed is an AV in the CARLA autonomous driving
challenge [17] setup, which is needed to navigate an urban
town with adverse weather conditions and sensor faults while
avoiding collisions with vehicles and pedestrians in its travel
path. The experiments with the simulator were performed on
a desktop computer with AMD Ryzen Threadripper 16-Core
Processor, 4 NVIDIA Titan XP GPUs, and 128 GiB RAM.
The details of AV setup are discussed below.

1) System Model: The system block diagram of the AV
is shown in Fig. [} It uses a total of 9 sensors including,
three forward-looking cameras, two radars, an Inertial Mea-
surement Unit (IMU), a Global Positioning System (GPS), and
a speedometer. It has a LEC based navigation controller, which

is adapted from Chen et al. [[18]. This controller uses a nav-
igation planner that takes the waypoint information from the
scene artifact file generated by our scene generation approach
and divides the distance between the waypoints into smaller
position targets. Then, it uses the GPS and IMU sensors to get
the vehicle’s current position and the next position to reach.
Next, the position information is fed into a velocity planner
to compute the vehicle’s desired speed. The desired speed and
camera images are fed into a perception LEC, which predicts
the throttle and steering angle errors. These signals are sent
to PID controllers to compute the throttle, brake, and steer
control signals. Besides the LEC, there is also an AEBS, which
uses the radar estimated object distance (r4) with the vehicle’s
current speed to compute a “safe braking distance” (bg). If
rqg < bg, a brake alarm is issued. The alarm overrides the
throttle signals from the LEC. Finally, these control signals
are sent to the simulator.

2) System Operational Phases: The AV is designed and
operated in the following phases. In the Design phase, we
design the system model and perform a hazard analysis to
identify the operational hazards to the AV. Next, we identify
sensor faults (camera blur and occlusion) that affect the
AV’s performance. In the Training phase we use an autopilot
controller to collect data for training the perception LEC using
the procedure discussed in [18]]. In the Calibration phase, we
train the detectors and the ReSonAte risk estimator. We train
the detectors on the training set and the risk estimator on
a calibration set, including scenes from the training set and
additional scenes with sensor faults and adverse weather con-
ditions, collected using random and grid samplers. Finally, in
the Testing Phase, the trained LEC and the safety components
are tasked to operate in 250 scenes generated by our samplers.
These scenes included varying the weather conditions (cloud
(C), precipitation (P)), time-of-day (T), traffic density (TD),
road segments (RS), and sensor faults (F). The distribution
ranges of these scene variables and their sampling constraints
are listed in Table [} Fig. [§ illustrates the screenshots of a few
CARLA scenes generated by our samplers.

3) Detectors: To detect camera-related faults such as
blurred images and occluded images, each of the three cameras
is equipped with OpenCV based blur detector and occlusion
detector. The blur detector uses the variance of the Laplacian
operator [26] to measure the blur level in the images. A
high variance shows that the image is not blurred, and a low



variance (< 50) shows the image is blurred. The occlusion
detector is designed to identify large blobs of continuous
black image pixels. In our setup, if an image has connected
black pixels > 10%, then the image is said to be occluded;
otherwise, it is not. The blur and occlusion detectors had an
Fl-score of 97% and 98% on the calibration set.

In addition, we designed a reconstruction-based (5-VAE
OOD detector [3] to identify shifts in the operating scenes. The
detector model has four convolutional layers 16/32/64/128
with (3x3) filters and (2x2) max-pooling followed by four
fully connected layers with 2048, 1000, and 250 neurons. It
also has a symmetric deconvolutional decoder structure and
hyperparameters of $=1.2 and latent space=100. We trained
the detector for 150 epochs using the 6000 camera images
curated for training the AV. We tested the detector on a test
set that included images from the training set and several
images with high scene brightness, adverse conditions, and
camera faults. For these images, the detector had an F1-score
of 95.9%. At runtime, the reconstruction mean squared error of
the detector is used with Inductive Conformal Prediction [27]]
and power martingale [28] to compute a martingale value. We
compared the martingale value with a threshold of 20, which
was empirically selected for OOD detection.

4) Risk Score: To compute Sg;sk, we first compute the
ReSonAte score using the BTD with the hazard of “roadway
obstruction” shown in Fig.[2] To compute the collision rate A,
we analyze the conditional relationships of BTD barriers and
threats using the calibration set. The probability function of
barriers B1 and B2 are dependent on the continuous-valued
output of the OOD detector and the binary state of the anomaly
detectors, which we capture using the following equation.

Plald)

fol@ = (B, B2),s) = (1 = P(a|s.m.LEC)) - |] 0.4

deSB2

P(m‘SmLEC) _ (1 + 670'049'(t-7n'LE075-754))71 (2)

Where, P(z|s.m.LEC) is a sigmoid function used to cap-
ture the continuous values of the OOD detector, the discrete-
valued probability of the anomaly detectors that constitutes
the state-variables in SZ2. In our example, B1 and B2 were
affected by the image quality, which we detect using the
blur and occlusion detectors whose probabilities are reported
in Fig. 2] Also, fs is the failure rate of the sensors, which is
assumed to be constant for both the camera and the radar
sensors on which the barriers are dependent. Further, the
probability function of B3 is conditionally dependent on the
precipitation levels and the operation of the radar as shown
in Fig. These conditional relationships were inferred by
clustering the calibration scenes based on the precipitation
levels. In a similar approach, we also estimated the frequency
of threat occurrence. In this example, the frequency of threats
T1 and T2 depended on the road segments. An intersection
had a higher frequency of threats than a side road. Finally, we
use these probabilities to compute the dynamic collision rates
and the ReSonAte score as discussed in Section

Next, we compute the infraction score using I.S = 0.7 -
Is +0.8-Ir+ Irp. Where Ig is a stop sign infraction, Ip

is a red-light infraction, and Irp is the deviation in the route
taken by the AV. This score is added to the ReSonAte score
to compute the Sg;sr. Finally, we compute the risk threshold
J to be 0.65, as discussed in Section

B. Baselines and Comparison Metrics

We compare our sampler to state-of-the-art baselines. (1)
Random Search is a technique that samples the scene variables
uniformly at random from their respective distributions. (2)
Grid Search is a technique that exhaustively samples all the
combinations of the scene variables in a given grid. (3) Halton
Sequence Search [16] is a pseudo-random technique that
samples the scene variables using co-prime as its bases. We
compare these baselines using the following metrics, which
align with the sampler objectives discussed in Section [

1) Total Risk Scenes (TRS): The proportion of the high-
risk scenes sampled to the total scenes sampled (V).

N
TRS(%) = %;5 if Shiok >0 3)
Where S%,., is the risk across the i*" sampled scene, and §
is the risk threshold computed across the calibration set.

2) Diversity (D): We measure the coverage diversity using
two cluster-based quantities. (1) the number of optimal clusters
that can be generated from the N sampled scenes, as measured
using silhouette score [21f]. (2) the risk variance across each
scene across all the clusters. These quantities are combined
into computing the diversity score as follows.

len(C)
Diversity = UQ{W( Z Skisk)|VC € N} “)
i=1

Where C is a cluster of scenes generated on the scene
variables. S}éisk is the risk of the i*" scene in a cluster. To
select the optimal number of clusters, we perform k-means
clustering [29] using silhouette score as the selection metric.

3) Search Time: The overall time taken by the sampler to
sample NN scenes and execute them in the simulator.

C. Results

To compare our samplers against the baselines, we executed
each sampler for 250 iterations. We started the samplers at
the same initial condition with time-of-day = 45° (noon)
and a value of zero for the other variables. Also, instead
of starting the GBO sampler from scratch, we provide it
a “warm start” using the results from the random sampler.
Further, we empirically selected the following parameters
for controlling the exploration vs. exploitation tradeoff. (1)
Number of neighbors K = 6, and threshold 7 = 10 for the
RNS sampler, and (2) 8 = 30 for the UCB function of the
GBO sampler. The simulation operates at a fixed rate of 20
Frame Per Seconds in these experiments. Fig. [6] shows the
qualitative comparison of the scenes sampled by the samplers.
The random and Halton samplers explore the search space, but
they cannot exploit it because of their passive search strategy.
On the other hand, the grid sampler orderly exploits every
point in the grid, limiting its exploration. In comparison, the
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Fig. 6: Comparison of the 250 scenes sampled by the different samplers. While random and Halton samplers only explore the space, grid sampler only
exploits. Our samplers balance the exploration vs. exploitation, which is evident from the dense scene clusters in different regions of the search space.

Total Diversity Search
Sampler Risk Cluster Selection Diversity Time
Scenes # of Silhouette Score (mins)
(%) Clusters score
Random 66 3 0.34 0.02 323
Halton 71 2 0.27 0.07 315
Grid 56 2 0.71 0.135 309
RNS 83 6 0.56 0.193 332
GBO 92 4 0.62 0.632 897

TABLE II: Comparing the sampling approaches using the comparison metrics.
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Fig. 7: (Top) Total OOD scenes and (Bottom) Total scenes with infractions
sampled among the total 250 scenes. Our samplers sampled a higher percent
of OOD scenes and scenes with infractions.

RNS and GBO samplers performs balanced exploration and
exploitation. This is evident from the dense scene clusters at
different regions of the search space. Further, we compared
the samplers using the comparison metrics.

Total Risk Scenes: Table [I] lists the total risk scenes
generated by different samplers. As seen, the random, Halton,
and grid samplers sampled 66%, 71%, and 56% of high-
risk scenes, respectively. In comparison, the RNS sampler
sampled 83% and GBO sampled 92% high-risk scenes among
the 250 scenes that were sampled. Also, Fig. [/| illustrates
the number of OOD scenes and scenes with infractions that
were generated by the samplers in 250 iterations. As seen, the
GBO and the RNS samplers generated higher OOD scenes
compared to the baselines. Also, the RNS sampler sampled the
highest scenes with infractions followed by GBO and Halton
samplers. The actual infractions are low even when the risk is
high for the following reasons. (1) the LEC controller was
sufficiently trained to avoid AV infractions, (2) the AEBS
worked sufficiently well to stop the AV.

We also started the simulator at 5 different initial conditions.

Total Risk
Scenes (%)
at
o
I

L T

Starting Conditions
| Random £ Halton [ Grid I RNS sl GBO |

Fig. 8: Total high risk scenes sampled by samplers starting from different
initial conditions. Generally, our samplers sampled higher percent of risky
scenes across all the starting conditions.

(1) T=0° (dusk), (2) T =45° (noon), (3) T =90° (noon), (4) T
= 45° (noon), P = 50%, C = 50%, and (5) T = 45°, P = 0%, C
= 50%, and the other variables were set to zero. Each sampler
was executed for 50 iterations from these initial conditions.
Fig. [8] shows the high-risk scenes generated by the different
samplers. The RNS and GBO samplers generated high-risk
scenes across the different starts as compared to the baselines.
Among the baselines, the grid search generated higher high-
risk scenes than the other two samplers. To note, different
stating conditions did not affect the Halton sampler.

Diversity: To compute diversity, we classified the sampled
scenes into clusters by applying k-means clustering analysis
along with silhouette score. As seen in Table [II} the scenes
generated by the RNS and GBO samplers could be classified
into a higher number of clusters (6 and 4) as compared to the
Halton, grid, and random samplers that could only be classified
into 2, 2, and 3 clusters, respectively. We used these clusters to
compute the diversity score in Eq. (). As seen, the GBO and
RNS samplers had a higher diversity score of 0.63 and 0.19
as compared to the Halton, random, and grid samplers, which
had scores of 0.07, 0.02, and 0.13, respectively. The GBO
and RNS samplers had higher coverage diversity because they
sampled a higher number of scenes around a scene that was
previously found to be of high risk to the AV.

Search Times: We report the search times of the samplers
in Table [lIl The random, Halton, grid, and RNS samplers have
comparable search times of 323, 315, 309, and 332 minutes,
respectively. However, the GBO sampler required the highest
search time of 897 minutes because of its scalability issue
discussed in Section [[V-C2] Further, for a direct comparison,
we counted the number of scenes sampled by each sampler
within a fixed budget of 60 minutes. The random, Halton, grid
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Fig. 9: The variance of Spg;sr across scene clusters generated by different
samplers. Our samplers generate more clusters with a high variance of Sg;sk.
Y-axis shows the number of clusters, and the Y-axis shows the Sg;sx score.

and RNS samplers sampled 47, 51, 49, and 46 scenes in 60
minutes. But, the GBO sampler only sampled 19 scenes.

D. Discussion

The key takeaways from the experiments are. First, we
observe that the RNS and GBO samplers outperform the
baselines by generating a higher percentage of high-risk scenes
(first objective). Second, we observe that the scene generated
by the RNS and GBO samplers have a higher diversity score
as compared to the baselines (second objective). Third, the
GBO sampler is the most effective in generating high-risk
scenes, and its informed exploration results in diverse search.
However, the use of GP model increases the search time, which
we plan to address in the future using a scalable GP model. In
comparison, the RNS sampler is efficient and requires lower
search times to generate high-risk scenes.

Lastly, the high-risk scenes identified by our samplers can
be used to improve the system’s LECs. To illustrate, the AV
system in our case study was susceptible to scenes from dusk
with high precipitation (7" < 45 and P > 50) as identified
by our samplers. So, we trained a new LEC controller model
M ctrain On a dataset that contained both the original train
scenes and 50 high-risk scenes sampled by the RNS sampler.
We trained the model for 50 epochs and saved several model
weights, and utilized the weights that optimized the AV’s
driving proficiency. We then compared the performance of
the original model M,,;;, (model trained on original training
scenes) and the retrained model M, c¢pqin in terms of the
actual system infractions, which included collision, running
a red light or stop sign, and route deviation. The comparison
is shown in Fig. [I0] and for this, we curated 80 operational
scenes that included random scenes and scenes where the
system previously failed. We observed that M, ;pqin had
only 6 scenes with infractions as compared to 11 scenes of
M,,iq. Retraining the model on the high-risk scenes reduced

Retrained Model

Original Model

cloud
cloud

@Scene with no Infractionse Scene with Infractions

Fig. 10: Performance of M;etrain and Mor,ig models. Mietrqin model had
fewer infractions, especially in the scenes from the region highlighted.

the system infractions, especially those from the highlighted
region where it previously had higher infractions. Additionally,
we observed that M, ¢;rq:n had improved driving proficiency
with fewer route deviations for the high-risk scenes. However,
both models performed several red-light infractions in general,
and retraining did not address the problem.

VI. RELATED WORK

Tools like Dakota [9]] with sampling approaches like incre-
mental sampling, importance sampling, and adaptive sampling
have been long available for uncertainty quantification in engi-
neering design. Such samplers have recently gained interest for
sampling simulation-based scenes in the AV domain. Several
domain-specific SDLs like Scenic [8] and MSDL [13]] have
been designed for specifying scenarios of complex traffic con-
ditions and operating conditions to identify counterexamples
that affect the system’s safety. These languages use proba-
bilistic samplers that sample scenes across the entire search
space formed by the combination of scene variables. For
example, Grid search is a popular passive sampler, which takes
a single risky scene as the starting condition and generates
similar risky scenes around it. However, manual tuning makes
the grid sampler labor-intensive and time-consuming. For
accelerating the search process, an alternate approach [10] uses
importance sampling to identify important scene variables and
sample scenes using them. Worst-Case Scenario Evaluation [5]]
is another approach that uses model-based optimization to
identify the weakness of the system and uses this information
to generate worst-case disturbances. VERIFAI [11] software
toolkit has several passive samplers like random search, Halton
search [|16], and active samplers like cross-entropy optimiza-
tion and Bayesian Optimization. However, these samplers do
not effectively balance the exploration vs. exploitation trade-
off. Viswanadha, Kesav, et al. [|12] recently proposed a multi-
armed bandit sampler that balances the two strategies.

Also, recently, there has been growing interest in using
generative models for generating risky scenes [6]], [30]—[32]. In
this approach, scenes are randomly sampled from a distribution
learned by a generative model instead of sampling from the
entire search space (as performed by the samplers discussed
above). For example, Ding, Wenhao, et al. [6]] use an autore-



gressive model to factorize the scene variables into conditional
probability distributions, which are then sampled to generate
risky traffic scenes. In a prior work [30], they have also used
a Variational Autoencoder to project high-dimensional traffic
information into a lower-dimensional latent space, which is
sampled to generate critical traffic scenes. Vardhan et al. [31]
uses a Gaussian Mixture Model to find the corner case scenes
in the training set that is not well learned by the system.
Another approach [32] uses generative adversarial imitation
learning to perform adaptive importance-sampling to learn rare
events from an underlying data distribution.

VII. CONCLUSION

We presented a scene generation approach that integrates a
Scenario Description Language with two samplers and a risk-
based scoring function for generating high-risk scenes. Ran-
dom Neighborhood Search and Guided Bayesian Optimization
are the proposed active samplers that perform constraint-based
sampling and balance the exploration vs. exploitation to guide
them towards sampling clusters of high-risk scenes. We ap-
plied these samplers to an AV case study. Our evaluations show
that the proposed samplers could sample a higher number of
high-risk scenes that could be clustered into a higher number
of clusters than the conventional baselines.
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