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ABSTRACT
Cyber-Physical Systems (CPS) are expected to perform tasks with
ever-increasing levels of autonomy, often in highly uncertain envi-
ronments. Traditional design techniques based on domain knowl-
edge and analytical models are often unable to cope with epistemic
uncertainties present in these systems. This challenge, combined
with recent advances in machine learning, has led to the emergence
of Learning-Enabled Components (LECs) in CPS. However, very lit-
tle tool support is available for design automation of these systems.
In this demonstration, we introduce an integrated toolchain for
the development of CPS with LECs with support for architectural
modeling, data collection, system software deployment, and LEC
training, evaluation, and verification. Additionally, the toolchain
supports the modeling and analysis of safety cases – a critical part
of the engineering process for mission and safety critical systems.

CCS CONCEPTS
• Software and its engineering→ Application specific devel-
opment environments;
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1 INTRODUCTION
Cyber-Physical Systems (CPS) are often required to operate in
highly uncertain environments, with significant degree of auton-
omy. For such systems, it is typically not feasible to explicitly design
for all possible situations within the environment. CPS designers are
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increasingly using data-driven methods such as machine learning
to overcome this limitation. We define Learning-Enabled Compo-
nents (LEC) as software components that have been created using
machine learning methods. Such LECs have demonstrated good
performance for a variety of traditionally difficult tasks such as
object detection and tracking [3], robot path planning in urban
environments [12], and attack detection in the power grid [9].

CPS are commonly used in mission-critical or safety-critical
applications which demand high reliability and strong safety assur-
ance. Assuring safety in these systems requires supporting evidence
from testing data, formal verification, expert analysis, etc. Tech-
niques for formal verification of learning-enabled systems are an
active area of research [13] and will need to be incorporated into
the safety assurance of such systems. Additionally, traceability and
reproducibility in all phases of the development cycle is necessary
for safety-critical systems and should be automatically handled by
an appropriate toolsuite.

2 OVERVIEW
Our team is developing a model-driven development environment
for such systems called the Assurance-based Learning-enabled CPS
(ALC) Toolchain. Our approach combines multiple Domain Specific
Modeling Languages (DSMLs) to support various tasks including
architectural modeling, experiment configuration/data generation,
LEC training, performance evaluation, and system safety assur-
ance. The architecture of the ALC toolchain is centered around
the WebGME infrastructure [6]: a web-based, collaborative, meta-
programmable modeling environment. Users may access the envi-
ronment from most web-browsers without the need for any special-
ized hardware. Computationally intensive tasks (LEC training, sim-
ulation execution, etc.) are executed remotely on servers equipped
with the required hardware, and all generated data is stored on a
remote file server and managed with a version control system.

The toolchain supports a variant of the block diagram mod-
els from the SysML [8] modeling standard for system architecture
design. Components are abstract building blocks of the system archi-
tecture, and may be hierarchically composed into complete system
models. Components may contain one or more concrete implemen-
tation alternatives which fulfill the component’s functional require-
ments. For example, a software object detection component may
include implementation alternatives based on conventional (analyt-
ical) algorithms and machine-learning based methods. For software
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Figure 1: LEC Development workflows for supervised learn-
ing (Top) and reinforcement learning (Bottom).

components, implementation nodes contain the information neces-
sary to load, configure and initialize the software node when the
system is deployed as well as the business-logic associated with its
runtime implementation. Currently, all software components are
implemented using the Robot Operating System (ROS) [11].

An assembly model is a refinement of a system model where a
specific implementation is selected from the available options for
each component. Experiment models allow the user to configure and
execute an assembly in the context of its simulation environment
(or gym) (eg. UUV Simulator 1 [5], CARLA 2) Experiments and their
campaigns over multiple environmental configurations are used to
collect data from a system often for the purpose of performance
evaluation or LEC training.

The ALC toolchain supports workflows for training Learning
Enabled Components (LECs) using either supervised or reinforce-
ment learning techniques [7] as shown in Figure 1. In a supervised
learning setup, an LEC model is trained against previously collected
data. Then, new experiment or campaign models deploy the system
with the trained LEC(s) for integrated testing and evaluation. In a
reinforcement learning setup, the LEC is trained during execution of
the system and is updated based on the environment response (state
and reward) to the generated action. The training is repeated for a
specified number of episodes, with each episode lasting a specified
maximum time-limit or step-size. The trained LEC is evaluated by
executing the reinforcement learning setup in a non-training mode.

Safety assurance is a critical component of any CPS which op-
erates in mission-critical or safety-critical applications, and the
ALC toolchain supports Goal Structuring Notation (GSN) [4] for
the construction of safety case arguments (For a comprehensive
introduction to safety cases and GSN, see [2]). Our toolchain also
integrates new formal verification techniques [1] and dynamic as-
surance monitors [10] for machine learning components.

3 DEMONSTRATION EXAMPLE
As an example, we consider the design and implementation of a
learning-enabled controller for an Unmanned Underwater Vehicle
(UUV) tasked with following a pipeline on the seafloor. The con-
troller components are integrated using ROS middleware with the
UUV Simulator - an open source model of UUV and its environ-
ment - executed in Gazebo simulation engine. The UUV used in this
1uuvsimulator.github.io
2carla.org/

example is equipped with four control fins, one propeller/thruster,
a forward-looking camera, and vehicle speed and position sensors.

The controller uses the image stream from the camera and the
vehicle odometry data to produce actuator commands suitable for
following the pipe at a desired separation distance. The task is di-
vided among two components: a path planner and a lower-level PID
controller. The path planner uses an LEC based on a Convolutional
Neural Network to determine a suitable heading for the vehicle to
follow based on camera images. The PID controller translates this
heading into control commands for all four fins and the thruster.

We will demonstrate the design and implementation of this con-
troller using the ALC toolchain including: design of the various
models within the WebGME environment, execution of the system
in a simulated environment, and integration with Jupyter Note-
books3 for interactive execution and performance evaluation. Wire-
less connectivity during the demonstration is preferable, but not
required. Additionally, a poster describing the ALC toolchain and
the underlying model-based methodology will be shown.
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