
Model-Based Design for CPS with Learning-Enabled
Components

Charles Hartsell
Institute for Software Integrated Sys.

Vanderbilt University
charles.a.hartsell@vanderbilt.edu

Nagabhushan Mahadevan
Institute for Software Integrated Sys.

Vanderbilt University
nag.mahadevan@vanderbilt.edu

Shreyas Ramakrishna
Institute for Software Integrated Sys.

Vanderbilt University
shreyas.ramakrishna@vanderbilt.edu

Abhishek Dubey
Institute for Software Integrated Sys.

Vanderbilt University
abhishek.dubey@vanderbilt.edu

Theodore Bapty
Institute for Software Integrated Sys.

Vanderbilt University
theodore.a.bapty@vanderbilt.edu

Taylor Johnson
Institute for Software Integrated Sys.

Vanderbilt University
taylor.johnson@vanderbilt.edu

Xenofon Koutsoukos
Institute for Software Integrated Sys.

Vanderbilt University
xenofon.koutsoukos@vanderbilt.edu

Janos Sztipanovits
Institute for Software Integrated Sys.

Vanderbilt University
janos.sztipanovits@vanderbilt.edu

Gabor Karsai
Institute for Software Integrated Sys.

Vanderbilt University
gabor.karsai@vanderbilt.edu

ABSTRACT
Recent advances in machine learning led to the appearance of
Learning-Enabled Components (LECs) in Cyber-Physical Systems.
LECs are being evaluated and used for various, complex functions
including perception and control. However, very little tool support
is available for design automation in such systems. This paper
introduces an integrated toolchain that supports the architectural
modeling of CPS with LECs, but also has extensive support for the
engineering and integration of LECs, including support for training
data collection, LEC training, LEC evaluation and verification, and
system software deployment. Additionally, the toolsuite supports
the modeling and analysis of safety cases – a critical part of the
engineering process for mission and safety critical systems.

CCS CONCEPTS
• Software and its engineering→ Application specific devel-
opment environments;

KEYWORDS
cyber physical systems, machine learning, model based design
ACM Reference format:
Charles Hartsell, Nagabhushan Mahadevan, Shreyas Ramakrishna, Ab-
hishek Dubey, Theodore Bapty, Taylor Johnson, Xenofon Koutsoukos, Janos
Sztipanovits, and Gabor Karsai. 2019. Model-Based Design for CPS with
Learning-Enabled Components. In Proceedings of DESTION ’19: Design Au-
tomation for CPS and IoT, Montreal, QC, Canada, April 15, 2019 (DESTION
’19), 9 pages.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DESTION ’19, April 15, 2019, Montreal, QC, Canada
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6699-1/19/04. . . $15.00
https://doi.org/10.1145/3313151.3313166

https://doi.org/10.1145/3313151.3313166

ACRONYMS
ALC Assurance-based Learning-enabled CPS
CPS Cyber Physical System
CNN Convolutional Neural Network
DSML Domain Specific Modeling Language
GSN Goal Structuring Notation
LEC Learning Enabled Component
UUV Unmanned Underwater Vehicle
ROS Robot Operating System

1 INTRODUCTION
Cyber Physical Systems (CPSs) are often required to operate in
highly uncertain environments, with significant degree of auton-
omy. For such systems, it is typically infeasible to explicitly design
for all possible situations within the environment. CPS designers are
increasingly using data-driven methods such as machine learning
to overcome this limitation. Learning Enabled Components (LECs)
have demonstrated good performance for a variety of traditionally
difficult tasks such as object detection and tracking [18], robot path
planning in urban environments [37], and attack detection in smart
power grids [29]. Some systems have even used end-to-end learning
components for complex CPS tasks, such as the NVIDIA DAVE-2
[4] which used a Convolutional Neural Network (CNN) to map im-
ages from a front-facing camera directly to steering commands for
an autonomous vehicle. However, component-based design where
only selected functionality is implemented with LECs remains the
more widely used approach.

Development of CPSs requires strong coordination between mul-
tiple engineering disciplines, challenging the traditional principle
of "separation of concerns". Each discipline relies on their own
specialized modeling languages and methods, typically supported
by numerous software tools (e.g. simulators, analysis tools, CAD
software, etc) with little to no support for the methods of other
disciplines. Previous work with the OpenMETA tool suite [39]

1

https://doi.org/10.1145/3313151.3313166
https://doi.org/10.1145/3313151.3313166

DESTION ’19, April 15, 2019, Montreal, QC, Canada C. Hartsell et al.

addressed this problem with the introduction of the CyPhyML
model-integration language and supporting model and tool inte-
gration platforms. However, the platform focused on CPSs using
conventional components based on analytical understanding of
the domain. Such techniques do not account for epistemic uncer-
tainties in the models of the physical components as well as their
environments. Data-driven techniques, including machine learning
methods, are a promising approach to account for these limitations.
In this work, we consider how the concepts developed for the Open-
META platform can be extended to learning-enabled systems and
their assurance.

CPSs are commonly used in mission-critical or safety-critical
applications which demand high reliability and strong assurance
for safety. Assuring safety in these systems requires supporting
evidence from testing data, formal verification, expert analysis, etc.
Machine learning relies on inferring relationships from data instead
of deriving them from analytical models, leading many systems
employing LECs to rely almost entirely on testing results as the
primary source of evidence. However, test data alone is generally
insufficient for assurance of safety-critical systems. Techniques for
formal verification of learning-enabled systems are an active area
of research [35][42] and will need to be incorporated into the safety
assurance of such systems.

Additionally, evidence used for safety assurance should be trace-
able and reproducible. Manual data management across the complex
toolsuites often used for CPS development is a time consuming and
error-prone process. This issue is even more pronounced for sys-
tems using LECs where training data and the resulting trained mod-
els must also be properly managed. Clearly, the task of maintaining
traceability and reproducibility in all phases of the development cy-
cle should be automatically handled by an appropriate development
environment. In this paper, we introduce a model-driven design
methodology for Assurance-based Learning-enabled CPS (ALC)
and present the supporting development environment called the
ALC Toolchain. Our approach combines multiple Domain Specific
Modeling Languages (DSMLs) to support various tasks including
architectural modeling, experiment configuration/data generation,
LEC training, performance evaluation, and system safety assur-
ance. All generated artifacts - including system models, simulation
data, trained networks, etc. - are stored and managed to allow for
both traceability and reproducibility. Methods are provided for con-
structing static, design-time safety assurance arguments as well as
dynamic, run-time assurance monitors. Certain artifacts, such as
formal verification results and testing evaluation metrics, may be
referenced as evidence in static system assurance arguments.

The rest of this paper is organized as follows. First, Section 2
discusses various related research efforts. Section 3 explains our
methodology and the various modeling languages used to support
it, followed by a description of the tool chain implementation in
Section 4. Next, Section 5 provides illustrative examples of the
methodology applied to multiple CPS platforms. Finally, Sections 6
and 7 discuss possible directions for future research and concluding
remarks respectively.

2 RELATED RESEARCH
Various existing architectural description languages provide in-
tegration with analysis tools, such as the Architecture Analysis
and Design Language (AADL) [12]. AADL is a standard for mod-
eling and analyzing real-time embedded systems. Components in
AADL may represent hardware, software, or system entities, and
connections between components are used to model component
interactions. AADL allows for analysis of various system properties
including performance, schedulability and reliability. OMG’s SysML
[28] provides a general-purpose modeling language for systems en-
gineering. SysML can be extended with the Modeling and Analysis
of Real-time and Embedded systems (MARTE) profile for UML [16]
to allow for system analysis similar to AADL. These languages and
tools offer strong support for general-purpose system development,
but are not well equipped for many domain-specific tasks. In par-
ticular, they do not consider how data-driven techniques such as
machine-learning may be integrated into the development of these
systems.

DeepForge [6] is a machine learning development environment
which aims to reduce the barriers to entry and development times
for deep learning models. It provides a DSML with modeling con-
cepts for describing neural network architectures and their training
pipelines. Additionally, DeepForge uses a version control system
to ensure traceability and reproducibility during the design of a
deep learning model. The Google Colaboratory 1 is another inter-
active environment for machine-learning research, but provides a
free-form environment to the user instead of following any prede-
fined methodology. Similarly, OpenAI Gym [5] provides another
machine-learning toolset focused on reinforcement-learning tech-
niques. However, these environments only consider the develop-
ment of machine learning models, and do not address how these
models may be incorporated into a larger development framework
for CPS. In particular, they do not integrate LEC assurance and
verification techniques which may be essential for systems used in
safety-critical applications.

While machine learning offers several significant advantages
over conventional design techniques, it also poses some unique
challenges. In [34], the authors consider the hidden costs of ma-
chine learning with the idea of technical debt. They identify several
ways in which machine learning can incur significant costs for
long-term maintenance of a system, and propose development tech-
niques to mitigate these costs. Many of these techniques (eg. using
appropriate levels of abstraction and careful management of data
dependencies between components) can be enforced with an ap-
propriate methodology and should be automated supporting tools.

Recent work has shown that many machine learning techniques
are susceptible to adversarial examples where small input perturba-
tions can cause the model to produce incorrect outputs with high
confidence [14]. This is particularly troublesome for LECs used in
safety-critical applications. The authors of [32] address this issue by
introducing DeepXplore - a whitebox testing framework for deep
learning models. DeepXplore provides an algorithm for generating
test inputs which exercise the corner cases of a particular learning
model. Also, the authors introduce the concept of "neuron coverage",
analogous to branch coverage in traditional software testing, for

1colab.research.google.com

2

colab.research.google.com

Model-Based Design for CPS with Learning-Enabled Components DESTION ’19, April 15, 2019, Montreal, QC, Canada

systematically measuring the amount of a learning model exercised
by a given test set. This approach significantly improves testing
of machine-learning models, providing more confidence that the
system will perform as expected. However, testing alone is not suf-
ficient for safety-critical systems and will need to be supplemented
with other safety assurance techniques.

The Model-based Demonstrator for Smart and Safe Cyber Physi-
cal Systems (MoDeS3) [40] combined several model-based design
languages and techniques for the development of a model railway
system. The authors specified the system architecture with SysML
block diagrams and the component level behavior with the Gamma
Statechart Composition Framework [24]. Code generation tools
provided by the Gamma framework were used for implementa-
tion of the software components. Both design-time and run-time
safety assurance techniques were applied including formal verifi-
cation methods and run-time monitors. The authors successfully
demonstrate the effectiveness of Model Based Systems Engineering
(MBSE) for CPS. However, MoDeS3 does not consider the integra-
tion of machine learning with CPS. Additionally, MoDeS3 does not
provide a unifying tool-chain for the MBSE methodology used.

Other projects have developed DSMLs specifically for machine
learning applications in CPS. The authors of [17] advocate for a
fine-grained learning approach which operates on small regions of
a larger data set, as opposed to typical coarse-grained approaches
which learn global behavior patterns from the complete data set.
Their approach combines system properties learned from this fine-
grained approach with properties derived from domain knowledge
of the system, and the authors present a DSML derived from UML
class diagrams for modeling this combination.

3 METHODOLOGY
Our methodology combines multiple DSMLs to support common
tasks for CPS development including architectural modeling, exper-
iment configuration/data generation, performance evaluation, and
system safety assurance. Special considerations are made for CPS
which use LECs with LEC training models for both supervised and
reinforcement learning methods. The following sections describe
each DSML and how they fit into the development workflow.

3.1 System Architecture Model
The CPS development workflow begins with high-level specifica-
tion of the system architecture, and our approach supports a subset
of the block diagram models from the SysML modeling standard for
system architecture design. Components are abstract building blocks
of the system architecture, and may be hierarchically composed
into complete systems. Components are first defined in a block
library before instances of a component can be created in a system
model. This approach promotes reusability and maintainability of
components across many system models. Component interfaces are
defined using ports which can represent signal, power, or material
flows. Software components use directional signal ports to model
data flow between components, and each signal port produces or
consumes a particular message type. Message types are similar to
C-style data structures, and must be defined in a message library.
Physical components use acausal power and/or material ports.

Components may contain one or more concrete implementation
alternatives which fulfill the component’s functional requirements.
For example, a software object detection component may include
one implementation based on conventional (analytical) methods
and another based on machine-learning methods. For software
components, implementation models contain the information nec-
essary to load, configure, and initialize the software ’nodes’ when
the system is deployed as well as the business-logic associated with
its runtime implementation.

3.2 Development Workflow Model
Once the system architecture is established, the developer executes
one of two LEC development workflows – supervised or reinforce-
ment learning - shown in Figure 1. Supervised learning begins with
the collection of training data using one or more experiment or
campaign models. In a supervised learning setup, an LEC model is
trained against the collected data set, with the option to train run-
time assurance monitors as well. Then, new experiment or campaign
models may deploy the system with the trained LEC for integrated
system testing and evaluation.

In a reinforcement learning setup, the LEC model is trained while
the system or environment is being executed (or simulated). Dur-
ing training, the LEC model is updated based on the environment
response (state and reward) to the input action. The training is
repeated for a specified number of episodes, with each episode
lasting a specified maximum time-limit or step-size. The trained
LEC is evaluated by executing the reinforcement learning setup in
a non-training mode.

3.3 Experiment Model
The experiment model captures all information necessary for con-
figuration and execution of a system. First, the architecture model
of the system under test is refined to an assembly model where
one specific implementation from the available alternatives is se-
lected. This is done for each component that includes multiple
implementation alternatives. Execution of the assembly model re-
quires additional parameters divided into three sets: environment,
mission, and execution. Environment parameters define any envi-
ronmental variables (terrain, weather conditions, etc.) and provide
the files necessary for launching the simulation.Mission parameters
define the objective for the system (eg. Track and follow a pipeline
on the seafloor) and the relevant parameters to set up the exper-
iment. Execution parameters define miscellaneous parameters for
simulator management, data server configuration, etc.

An experiment model can be enriched with a Campaign model
which configures iterations of a experiment. Campaigns include a
parameter sweep block for varying system or environment parame-
ters over a range of possible values. Campaigns are commonly used
to tune system parameters for optimal performance, or to gather
data in a variety of environments for LEC training.

3.4 Training LECs
Integration of model-based design with learning-enabled compo-
nents is a focus of our methodology. Therefore, LEC training is
an essential part of this methodology, and models for supervised
[25] and reinforcement [38] learning are provided. Both techniques

3

DESTION ’19, April 15, 2019, Montreal, QC, Canada C. Hartsell et al.

Figure 1: LEC Development workflows for supervised learning (Top) and reinforcement learning (Bottom).

utilize the LEC model concept, which allows for learning architec-
tures to be defined graphically or through code. Currently, the LEC
model supports specification of deep neural networks.

The model for supervised learning setup includes the LEC model
to be trained, the training data set(s), the training code, and any
necessary hyper-parameters. The training data provides a reference
to the desired data sets, which are typically results from previous
experiments or campaigns. The parameter block captures hyper-
parameters relevant to the specific training exercise (e.g. batch size,
number of epochs, etc.).

Unlike supervised learning, reinforcement learning involves
training the LEC online (i.e. interacting with the environment).
Just as in the experiment model setup, the reinforcement learning
model includes an assembly model where the specific component
implementation(s) are selected from the possible alternates. The
setup definition includes the LEC model to be trained, underlying
reinforcement learning algorithm, associated rewards function for
agent action given the current state of the system, and any training
hyper-parameters.

3.5 Safety Assurance
Safety assurance is a critical component of any CPS which operates
in mission-critical or safety-critical applications, but certification
requirements and techniques vary between different regulating
bodies. Safety cases are one such method of system certification
which have been accepted by certain industries for years (eg. UK
Ministry of Defense [26]). Safety cases are essentially structured
arguments, often represented graphically, with supporting evidence
that a particular system is acceptably safe. They have gained pop-
ularity in areas including CPS software development, and more
regulating bodies have published guidelines and standards for their
use (eg. Appendix D of FAA Unmanned Aircraft Systems Opera-
tional Approval document [2]).

Our methodology uses Goal Structuring Notation (GSN) [19]
to allow for construction of safety cases. GSN is a language for
representing structured arguments in a tree-like graphical form
where primary goals are decomposed into logical combinations
of subgoals, often in a hierarchical manner. Goals at the lowest
level are represented by leaf nodes in the tree and are supported
by solution nodes which provide evidence that the goal is satisfied.
Strategy nodes can be used when composing multiple subgoals into
a single, higher-level goal to provide a detailed explanation for the
reasoning of the argument. Any assumptions made during the con-
struction of a safety case can be explicitly stated with Assumption
blocks, which may be attached to any node in an argument. A more
comprehensive introduction to hierarchical safety cases and the
GSN standard can be found in [10].

As part of our development of the Systems Engineering And As-
surance Modeling (SEAM2) toolsuite, we extended the GSN models
and integrated them with system architecture models to provide
context to each branch of the assurance case argument. GSNmodels
- integrated with system architecture and fault propagation mod-
els - were used to build assurance cases for radiation-reliability of
CubeSat payloads with commercial off the shelf parts[3]. The assur-
ance arguments were grounded in Reliability and Maintainability
standards (NASA-STD-8729.1 3) established by NASA’s Office of
Space and Mission Assurance (OSMA) for space flight systems[15].

The ALC toolchain builds upon the extensions to GSN from
SEAM. GSN goals and solutions often address one particular com-
ponent or subsystem. Model reference blocks provide a reference
from a GSN node to a block in the system architecture model to
make this relationship explicit. Similarly, solution nodes can provide
a link to any supporting data - formal verification results, testing
evaluation metrics, etc. - using evidence source blocks.

2https://modelbasedassurance.org/
3https://standards.nasa.gov/standard/nasa/nasa-std-87291

4

https://modelbasedassurance.org/
https://standards.nasa.gov/standard/nasa/nasa-std-87291

Model-Based Design for CPS with Learning-Enabled Components DESTION ’19, April 15, 2019, Montreal, QC, Canada

3.6 Verification and Run-Time Assurance
Currently, assurance of LEC-based systems is heavily reliant on
testing results and such systems often require constant supervi-
sion from a human operator for acceptance [27]. To supplement
testing-based assurance, our methodology also supports new formal
verification techniques [43] as well as dynamic assurance monitors
[31] and provides modelling concepts for both. However, there is
a fundamental problem with LECs: the training set is finite and it
may not capture all possible situations the system encounters at
operation time. For such unknown situations the LEC may produce
incorrect or unacceptable results – and the rest of the system may
not even know that. Hence, the safety assurance of CPS with LECs
is very problematic. One concept that might help to mitigate this
situation is to use continuous monitoring on the LEC to its per-
formance and indicate when the level of confidence in the output
of the LEC is low – i.e. if the LEC does not perform as expected.
This monitoring process is termed ’assurance monitoring’, which
oversees the LEC and gives a clear indication of problematic sit-
uations. These assurance monitor techniques are an active area
of research, and a more detailed explanation can be found in [30].
Once a problematic indication is given, a higher-level control loop
– or a ’safety-controller’ – may take over and perform a safe action
(e.g. slow down the vehicle) to mitigate the lack of performance in
the LEC. Note that the ’safety controller’ must be independently
designed and verified such that an overall safety assurance case
can be constructed for the complete system, and executed in a way
that allows hot-swapping.

4 IMPLEMENTATION
The physical architecture of our toolchain is shown in Figure 2,
and is centered around the WebGME infrastructure [23]: a meta-
programmable collaborative modeling environment which provides
several advantages. First, theWebGME user interface is a web-based
environment that can be accessed from most web browsers and al-
lows for real-time collaboration between multiple users. WebGME
supports a flexible meta-modeling paradigm that allows for de-
velopment of customized DSMLs. Further, WebGME API provides
support to write custom code for model visualization and inter-
pretation. While WebGME allows for code to be executed within
the browser, it is not intended for execution of computationally
intensive tasks such as simulation or LEC training. Instead, these
jobs are dispatched to execution servers equipped with appropriate
hardware. All generated data resulting from execution of a job is
uploaded to a central fileserver, with only the relevant metadata
being returned to WebGME and stored in a version-controlled data-
base. Each aspect of this architecture is discussed in more detail in
the following sections.

4.1 Modeling Language
In WebGME, the meta-model for a DSML can be created from
scratch or it can be built on top of a library of existing DSMLs. The
ALC DSML borrows upon existing meta-model libraries: SEAM 2,
DeepForge 4 and ROSMOD 5. Our toolchain provides an integrated
modeling framework that supports multiple models including:
4http://deepforge.org/
5https://cps-vo.org/group/ROSMOD

Figure 2: Toolchain architecture overview.

• A system architecture model based on SysML Internal Block
Diagrams allows the user to describe the system architecture
in terms of the underlying components (hierarchical blocks)
and their interaction via signal, energy, and material flows.

• An experiment configuration model allows the users to con-
figure execution instances for data collection, training of
LECs with supervised or reinforcement learning, deploy-
ment and evaluation of trained LECs.

• Assurance case models based on GSN allows the user to
create assurance arguments for the safety, performance, and
reliability of the system.

The ALC toolchain uses the WebGME visualization and decora-
tor framework to customize the visualization based on the model
context. It borrows upon the WebGME CodeEditor to allow the
users to develop and edit their code within the context of an ALC
model.

4.2 Execution
The ALC toolchain uses the WebGME plugin and executor frame-
work to launch execution instances on appropriate server machines
(labeled "Execution Servers" in Figure 2). These execution instances
could be a system execution (or simulation) for data collection or
training exercises of LECs. Such simulation and training exercises
are often computationally intense, and usually require Graphics
Processing Units (GPU) or other forms of hardware acceleration.
The ALC toolchain extends upon the DeepForge Pipeline model
and its execution to allow remote deployment of computationally
intense tasks on appropriately equipped servers. This enables de-
velopers of CPS to configure and launch computationally intensive
simulation and training exercises on powerful machines from lo-
cal web browsers, while collaborating with a distributed team of
developers.

4.2.1 Interactive Execution and Debugging. The toolchain sup-
ports embedded Jupyter notebooks within the context of an experi-
ment, training, or evaluation model. The toolchain can configure
the code in the Jupyter notebook to execute the model. This allows
users to launch their execution instances in an interactive manner
and debug their code if required. Additionally, it allows users to
write custom code to evaluate the system performance.

5

http://deepforge.org/
https://cps-vo.org/group/ROSMOD

DESTION ’19, April 15, 2019, Montreal, QC, Canada C. Hartsell et al.

4.3 Data Management
Simulation environments often generate large amounts of data,
which are needed for effective LEC training. In the ALC toolchain,
large data sets (eg. simulation data and trained LEC models) are
stored in a dedicated file server as shown in Figure 2. Currently, the
implementation uses SSH File Transfer Protocol (SFTP) [13] with
the standard ext4 Linux filesystem. Once a data set is uploaded, a
corresponding metadata file is returned to the WebGME server and
stored in the model. The metadata files provide enough information
for retrieving a particular data set from the file-sever when needed
for other tasks such as LEC training, performance evaluation, or
LEC deployment.

When the experiment results are uploaded to the file-server, con-
figuration files and other artifacts used to execute the experiments
are stored with the generated data. This allows for the experiment to
be repeated and for any generated data to be reproduced as needed.
Additionally, this pattern of uploading the data to a dedicated server
and only storing the corresponding meta-data in the model frees
WebGME from handling large files and improves efficiency as well
as model-scalability.

4.4 Traceability
Since we consider safety-critical systems, traceability and repro-
ducibility at every step in the development process is a primary
focus of our toolchain. WebGME provides a version control scheme
similar to Git 6 where model updates are stored in a tree structure
and assigned an SHA1 hash. For each update, only the differences
between the current state and the previous state of the model are
stored in the tree. This allows for the model to be reverted to any
previous state in the history by rolling back changes until the hash
corresponding to the desired state is reached. For a more detailed
explanation of this approach, see [23].

4.5 Experiment Gyms
The ALC toolchain is intended for both simulated and real-world
experiment environments, referred to as "gyms". Currently, we sup-
port three gyms using open-source simulation environments: UUV
Simulator, CARLA, and TORCS. UUV Simulator 7 [22] is an exten-
sion to the Gazebo 8 [21] simulation environment which provides
additional plugins for simulation of Unmanned Underwater Vehi-
cles (UUVs). CARLA 9 [11] is an automotive simulator intended
for the development of autonomous vehicles. The Open Racing Car
Simulator (TORCS) 10 [41] is another automotive simulator which
has been used in several research projects. Currently, all software
components are implemented using the Robot Operating System
(ROS) 11 [33] middleware.

Training and execution of LEC models is done using the Keras
neural network library [7] on top of the TensorFlow machine learn-
ing framework [1]. Additionally, Jupyter notebooks [20] have been
integrated into the WebGME environment which allows users to

6http://git-scm.com
7uuvsimulator.github.io
8www.gazebosim.org
9www.carla.org
10torcs.sourceforge.net
11www.ros.org

Figure 3: System architecture diagram of the UUV con-
troller.

interactively perform simulations, training, or performance evalua-
tion.

5 EXAMPLES
5.1 Unmanned Underwater Vehicle

5.1.1 System Overview. As an example, we consider the design
and implementation of a UUV controller tasked with following a
pipeline on the seafloor. The controller is built on the ROS middle-
ware, and experiments were performed using the Gazebo simulation
environment with the open-source UUV Simulator extension pack-
ages. The ECA A9 vehicle provided with UUV Simulator was the
chosen UUV. This vehicle is equipped with four control fins, one
propeller/thruster, a forward-looking camera, and vehicle speed
and position sensors. Additional sensors are available but were not
used for this example.

The controller was required to produce all actuator commands
necessary to follow the pipeline at a desired separation distance
using the image stream from the camera and the vehicle odometry
data as input. This task was further divided into two components:
a path planner and a lower-level PID controller. The path planner
component was responsible for determining a suitable heading
for the vehicle to follow based on images from the camera. This
heading is sent to the PID controller which then must produce
commands for all four fins and the thruster. The desired heading
was provided as a 3 dimensional vector with components for both
pitch and yaw control of the vehicle. However, the PID controller
used fixed setpoints for both depth and speed control of the vehicle,
and the pitch component of the desired heading was discarded.

A block library of components was created to model vehicle
sensors, actuators, and the controller. The controller block was
composed from two component blocks representing the path plan-
ner and the PID controller. Each component was assigned an im-
plementation with the ROS launch files necessary for configuring
and deploying the component. The path planner component con-
tains two implementations: an analytical planning algorithm and a
Neural Network based solution. The analytical planner had access
to ground truth information about the pipeline from the Gazebo
simulator, and was used to generate training data for the LEC based
implementation. Instances of the library blocks were then con-
nected into a system model, and the UUV controller section of this
model is shown in Figure 3. This figure shows an exploded view
of the path planner component with both conventional and LEC
implementation blocks.

6

Model-Based Design for CPS with Learning-Enabled Components DESTION ’19, April 15, 2019, Montreal, QC, Canada

Figure 4: Interactive plotting and evaluation of system per-
formance metrics through Jupyter notebook. Depth error
(upper) and separation distance (lower) plots are shown.

5.1.2 Data Generation and Training. An experiment was config-
ured using the UUV system model with the analytical implementa-
tion selected for the path planning component. For the experiments,
the environment was set to a world model with a flat seabed and
good water visibility. The experiment mission was for the UUV to
follow a pipe on the seabed. In order to generate sufficient training
data, campaign models were setup to run multiple iterations of the
experiment, with varying pipe layouts. The qualities of the pipe
(e.g. size or color) were not changed. Additionally, as part of the
data generation campaign, each experiment was executed twice:
first without disturbing the path of the vehicle, then with random
noise added. This was done to gather additional training data for
situations where the vehicle is in a non-optimal location relative to
the pipe.

A supervised learning model was constructed for the LEC im-
plementation of the path planner, and the data generated from the
campaign was referenced for training data. Initially, a simple CNN
architecture was chosen and trained. A second campaign model
was created using the LEC based path planner for evaluation of
the trained CNN. Multiple CNN architectures were trained and
evaluated in an iterative process before finally selecting a modified
version of the NVIDIA DAVE-2 [4] model. Additionally, training
hyper parameters such as batch size and number of epochs were
adjusted for optimal performance. Each CNN was evaluated based

Figure 5: Simplified safety case for UUV system with inter-
nal view of solution block shown.

on several metrics including: error between the CNN predicted
heading and the ideal heading from ground-truth data, how well
the system maintained the desired separation distance from the
pipe, and if the system successfully kept the pipe in view of the
camera at all times. Jupyter notebook integration allows for inter-
active plotting and evaluation of system performance metrics using
either provided utility functions, as shown in Figure 4, or custom
python functions written by the user. The upper plot in Figure 4
shows the error between the desired depth and the actual depth of
the UUV against time, while the lower plot shows the separation
distance between the UUV and the pipeline during the same time
range.

5.1.3 System Assurance. The primary safety goal for our UUV
is to avoid collision with the submerged pipeline at all times. Addi-
tionally, the system should also keep the pipe in view of the camera
while progressing at a set minimum speed. With this in mind, a
GSN safety case was developed for the complete system which
consisted of approximately 100 total blocks constructed hierarchi-
cally. However, due to space constraints, a simplified, single-level
version of this argument is used as an example here and is shown
in Figure 5. The primary goal of this argument has not changed,
but only the software controller portion of the system is considered.
Assumptions made in this argument are listed in the assumption
block connected to the top-level goal. The top level goal is broken
into two sub-goals: the neural network path planner outputs a safe

7

DESTION ’19, April 15, 2019, Montreal, QC, Canada C. Hartsell et al.

heading, and possible dangerous behaviors have been identified
and appropriately mitigated.

Solution blocks describe the evidence used to support each leaf
goal, and may contain direct links to the evidence itself. For in-
stance, the "Statistical analysis of system testing data ..." solution
block shown in Figure 5 contains a reference to the neural network
component in the system architecture model, as well as a reference
to the simulated testing data used for statistical analysis. Both of
these references are traversable, which allows the user to quickly
navigate to the relevant model artifacts. Formal verification tech-
niques for Neural Networks are an active area of research, and
the ALC toolchain is currently limited to reachable set estimation
methods [43]. While these methods are typically not sufficient for
safety assurance of a complete system, they can provide guarantees
for some system properties and should be used to supplement other
assurance measures including system testing. Additionally, solution
nodes may reference formal verification results as evidence, similar
to the testing data reference block.

5.2 DeepNNCar
This example deals with an environment that includes the hardware
in the loop. The testbed shown in Figure 6 includes a Traxxas Slash
2WD 1/10 Scale radio controlled car mounted with a Raspberry Pi
(RPi) (onboard computing unit) and two sensors - a forward-facing
RGB camera (30 FPS, resolution of 320x240) and an IR optocoupler
which measures wheel RPM to compute vehicle speed. The over-
all goal is to drive the car autonomously around a track without
violating any safety properties (e.g. do not cross track boundaries).

Figure 6: DeepNNCar platform

5.2.1 System Architecture. The system architecture includes a
LEC controller that uses a modified version of NVIDIA’S DAVE-II
CNN model [4]. The control architecture includes a lane-detection
based safety controller that serves as a back-up to keep the system
within the tracks. These controllers are part of a Simplex Archi-
tecture (SA) [36] with a decision manager that decides the actual
control command to the vehicle.

5.2.2 LEC Training. The LEC controller was trained and vali-
dated using the supervised learning setup with the data collected
from the testbed. Thereafter, the trained LEC was deployed and its
performance evaluated on multiple tracks. A reinforcement learn-
ing setup was employed to train and learn the arbitration logic
in the decision manager to meet the performance and safety con-
ditions. The training employed the Q learning algorithm to learn
the mapping from the states (current speed, weights for each con-
troller output) to actions (change in speed and change in controller
weights). In this setup, the reward value was computed based on
the distance from the center of the track and the current speed.

5.2.3 Assurance. An assurance case for the safety and perfor-
mance of the system was modeled in GSN. It takes into account
the performance of the individual components - the LEC controller,
the safety controller, the lane detection algorithm, and the decision
manager. The evidence to the GSN arguments is based on the per-
formance of each individual component as well as the integrated
system. Additionally, we are looking into how these individual evi-
dences can be combined to predict the safety and performance of
the overall system.

6 FUTUREWORK
Our toolchain is intended to support both simulated and real-world
environments. Currently, the toolchain has been integrated with
gyms that are simulation environments. We plan to integrate with
gyms or testbeds that correspond to physical systems that involve
hardware-in-the-loop such as DeepNNCar so that experiment con-
figuration, execution, data collection, training and evaluation could
be automated through the tool-chain.

Both formal verification and run-time assurance methods for
LECs are active areas of research with new techniques being rapidly
developed. These new techniques should be incorporated to our
tool-chain as they become available, and may require newmodeling
concepts to more tightly integrate with the overall system design.

Various techniques for quantitative evaluation of confidence in
safety case arguments have been developed (e.g. using Bayesian
Networks [9] or Dempster–Shafer theory [8]) in an attempt to for-
malize certain aspects of the safety assurance process. Integrating
these techniques with our methodology is another direction for
future research.

7 CONCLUSION
Modern Cyber Physical Systems demand ever-increasing levels of
autonomy while operating in highly uncertain environments. Con-
ventional components are often insufficient for these systems due to
the epistemic uncertainties present, leading many CPS developers
to utilize Learning Enabled Components. These systems are often
used in mission or safety critical applications where strong safety
assurance is necessary. In this paper, we introduced a model-driven
design methodology for Assurance-based Learning-enabled CPS
which combines multiple DSMLs to support various tasks including
architectural modeling, experiment configuration/data generation,
system safety assurance, and LEC training, evaluation, and ver-
ification. A supporting development environment known as the
ALC Toolchain allows for collaboration between multiple users
while maintaining reproducibility and traceability during all stages

8

Model-Based Design for CPS with Learning-Enabled Components DESTION ’19, April 15, 2019, Montreal, QC, Canada

of the development cycle. Additionally, the examples considered
show how the complete methodology may be applied during the
development of CPS using LECs.

ACKNOWLEDGEMENT
This work was supported by the DARPA and Air Force Research
Laboratory. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the author(s) and do
not necessarily reflect the views of DARPA or AFRL.

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Soft-
ware available from tensorflow.org.

[2] Federal Aviation Administration. Unmanned Aircraft Systems (UAS) Operational
Approval. online: https://www.faa.gov/documentLibrary/media/Notice/N_8900.
227.pdf , 2013.

[3] R. A. Austin, N. Mahadevan, A. F. Witulski, J. Evans, and A. F. Witulski. Radiation
assurance of cubesat payloads using bayesian networks and fault models. In 2018
Annual Reliability and Maintainability Symposium (RAMS), pages 1–5, Jan 2018.

[4] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat
Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Ji-
akai Zhang, et al. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316, 2016.

[5] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint
arXiv:1606.01540, 2016.

[6] Brian Broll, Miklos Maroti, Peter Volgyesi, and Akos Ledeczi. DeepForge: A
Scientific Gateway for Deep Learning. In Gateways 2018, 9 2018.

[7] François Chollet. Keras. https://keras.io/, 2015.
[8] Lukasz Cyra and Janusz Górski. Support for argument structures review and

assessment. Reliability Engineering System Safety, 96(1):26 – 37, 2011. Special
Issue on Safecomp 2008.

[9] E. Denney, G. Pai, and I. Habli. Towards measurement of confidence in safety
cases. In 2011 International Symposium on Empirical Software Engineering and
Measurement, pages 380–383, Sep. 2011.

[10] Ewen Denney, Ganesh Pai, and Iain Whiteside. Hierarchical safety cases. In
NASA Formal Methods Symposium, pages 478–483. Springer, 2013.

[11] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. CARLA: An open urban driving simulator. In Proceedings of the 1st
Annual Conference on Robot Learning, pages 1–16, 2017.

[12] Peter H Feiler, David P Gluch, and John J Hudak. The architecture analysis &
design language (AADL): An introduction. Technical report, Carnegie-Mellon
Univ Pittsburgh PA Software Engineering Inst, 2006.

[13] J. Galbraith and O. Saarenmaa. SSH file transfer protocol, Jul 2006.
[14] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and

HarnessingAdversarial Examples. arXiv e-prints, page arXiv:1412.6572, December
2014.

[15] Frank J Groen, John W Evans, and Anthony J Hall. A vision for spaceflight
reliability: Nasa’s objectives based strategy. In Reliability and Maintainability
Symposium (RAMS), 2015 Annual, pages 1,6. IEEE, 2015-1.

[16] Object Management Group et al. Uml profile for marte: Modeling
and analysis of real-time embedded systems, version 1.0. On line:
http://www.omg.org/spec/MARTE, 2010.

[17] Thomas Hartmann, Assaad Moawad, Francois Fouquet, and Yves Le Traon. The
next evolution of mde: a seamless integration of machine learning into domain
modeling. Software & Systems Modeling, pages 1–20, 2017.

[18] David Held, Sebastian Thrun, and Silvio Savarese. Learning to track at 100 fps
with deep regression networks. In European Conference on Computer Vision,
pages 749–765. Springer, 2016.

[19] Tim Kelly and Rob Weaver. The goal structuring notation–a safety argument
notation. In Proceedings of the dependable systems and networks 2004 workshop
on assurance cases, page 6. Citeseer, 2004.

[20] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica B Hamrick, Jason
Grout, Sylvain Corlay, et al. Jupyter notebooks-a publishing format for repro-
ducible computational workflows. In ELPUB, pages 87–90, 2016.

[21] Nathan P Koenig and Andrew Howard. Design and use paradigms for gazebo, an
open-source multi-robot simulator. In Proceedings of 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems. Citeseer, 2004.

[22] Musa Morena Marcusso Manhães, Sebastian A. Scherer, Martin Voss, Luiz Ricardo
Douat, and Thomas Rauschenbach. UUV simulator: A gazebo-based package for
underwater intervention and multi-robot simulation. In OCEANS 2016 MTS/IEEE
Monterey. IEEE, sep 2016.

[23] Miklós Maróti, Tamás Kecskés, Róbert Kereskényi, Brian Broll, Péter Völgyesi,
László Jurácz, Tihamer Levendovszky, and Ákos Lédeczi. Next generation (meta)
modeling: Web-and cloud-based collaborative tool infrastructure. MPM@ MoD-
ELS, 1237:41–60, 2014.

[24] Vince Molnár, Bence Graics, András Vörös, István Majzik, and Dániel Varró. The
gamma statechart composition framework. In Internation Conference on Software
Engineering. ICSE, 2018.

[25] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press,
2012.

[26] UK Ministry of Defense. Safety management requirements for defence systems,
June 2007.

[27] U.S. Department of Transportation. Preparing for the future of transportation:
Automated vehicles 3.0, Dec. 2018.

[28] OMG. OMG Systems Modeling Language (OMG SysML), Version 1.5, 2017.
[29] Mete Ozay, Inaki Esnaola, Fatos Tunay Yarman Vural, Sanjeev R Kulkarni, and

H Vincent Poor. Machine learning methods for attack detection in the smart grid.
IEEE transactions on neural networks and learning systems, 27(8):1773–1786, 2016.

[30] Harris Papadopoulos. Inductive conformal prediction: Theory and application to
neural networks. In Tools in artificial intelligence. InTech, 2008.

[31] Harris Papadopoulos, Vladimir Vovk, and Alexander Gammerman. Regression
conformal prediction with nearest neighbours. Journal of Artificial Intelligence
Research, 40:815–840, 2011.

[32] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. Deepxplore: Automated
whitebox testing of deep learning systems. In Proceedings of the 26th Symposium
on Operating Systems Principles, pages 1–18. ACM, 2017.

[33] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, and Andrew Y. Ng. Ros: an open-source robot operating
system. In ICRA Workshop on Open Source Software, 2009.

[34] D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Diet-
mar Ebner, Vinay Chaudhary, Michael Young, Jean-François Crespo, and Dan
Dennison. Hidden technical debt in machine learning systems. In NIPS, 2015.

[35] Sanjit A. Seshia and Dorsa Sadigh. Towards verified artificial intelligence. CoRR,
abs/1606.08514, 2016.

[36] Lui Sha. Using simplicity to control complexity. IEEE Software, 4:20–28, 2001.
[37] S. M. Sombolestan, A. Rasooli, and S. Khodaygan. Optimal path-planning for

mobile robots to find a hidden target in an unknown environment based on
machine learning. Journal of Ambient Intelligence and Humanized Computing,
Mar 2018.

[38] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
MIT Press, Cambridge, MA, USA, 1st edition, 1998.

[39] J. Sztipanovits, T. Bapty, X. Koutsoukos, Z. Lattmann, S. Neema, and E. Jack-
son. Model and tool integration platforms for cyber–physical system design.
Proceedings of the IEEE, 106(9):1501–1526, Sep. 2018.

[40] András Vörös, Márton Búr, István Ráth, Ákos Horváth, Zoltán Micskei, László
Balogh, Bálint Hegyi, Benedek Horváth, Zsolt Mázló, and Dániel Varró. Modes3:
model-based demonstrator for smart and safe cyber-physical systems. In NASA
Formal Methods Symposium, pages 460–467. Springer, 2018.

[41] Bernhard Wymann, Eric Espié, Christophe Guionneau, Christos Dimitrakakis,
Rémi Coulom, and Andrew Sumner. Torcs, the open racing car simulator. Software
available at http://torcs. sourceforge. net, 4:6, 2000.

[42] Weiming Xiang, PatrickMusau, Ayana A.Wild, DiegoManzanas Lopez, Nathaniel
Hamilton, Xiaodong Yang, Joel A. Rosenfeld, and Taylor T. Johnson. Verifi-
cation for machine learning, autonomy, and neural networks survey. CoRR,
abs/1810.01989, 2018.

[43] Weiming Xiang, Hoang-Dung Tran, and Taylor T. Johnson. Output reachable set
estimation and verification for multi-layer neural networks. IEEE Transactions
on Neural Networks and Learning Systems (TNNLS), March 2018.

9

https://www.faa.gov/documentLibrary/media/Notice/N_8900.227.pdf
https://www.faa.gov/documentLibrary/media/Notice/N_8900.227.pdf
https://keras.io/

	Abstract
	1 Introduction
	2 Related Research
	3 Methodology
	3.1 System Architecture Model
	3.2 Development Workflow Model
	3.3 Experiment Model
	3.4 Training LECs
	3.5 Safety Assurance
	3.6 Verification and Run-Time Assurance

	4 Implementation
	4.1 Modeling Language
	4.2 Execution
	4.3 Data Management
	4.4 Traceability
	4.5 Experiment Gyms

	5 Examples
	5.1 Unmanned Underwater Vehicle
	5.2 DeepNNCar

	6 Future Work
	7 Conclusion
	References

