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Overview 
Transportation accounts for 28% of the total energy use in the United States1 and as such, it is 
responsible for immense environmental impact, including urban air pollution and greenhouse gas 
emissions, and may pose a severe threat to energy security. As we encourage mode shift from 
personal vehicles to public transit, it is important to consider that public transit systems still require 
substantial amounts of energy; for example, public bus transit services in the U.S. are responsible 
for at least 19.7 million metric tons of CO2 emission annually2. As such it is absolutely crucial that 
we study the bottlenecks to energy efficiency in public transit and develop new algorithms that 
can help the public transit agencies, especially those that are still operating mixed fleets, which 
may consist of Electric vehicles (EVs), hybrids (HEVs), and internal combustion engine vehicles 
(ICEVs), optimize the operations by deciding which vehicles are assigned to serving which transit 
trips.  
 
Since the advantage of EVs over ICEVs varies depending on the route and time of day (e.g., the 
advantage of EVs is higher in slower traffic with frequent stops, and lower on highways), the 
assignment can have a significant effect on energy use and, hence, environmental impact. The 
Chattanooga Area Regional Transportation Authority (CARTA), in collaboration with academic 
partners at Vanderbilt University, the University of Houston, the University of South Carolina in 
addition to the Chattanooga Department of Transportation and the East Tennessee Clean Fuels 
Coalition, is developing mechanisms to precisely solve this problem. The key aspect of the project 
is the development of accurate energy consumption predictors developed using high resolution 
telemetry gathered from the fleet and use these models within a real-time operation and network 
guidance system. 
 
Our approach is to use continuous monitoring sensors on the complete mix of CARTA transit 
buses and to develop predictors and optimization mechanisms using the data. These required 
specific activities detailed further later in the article (a) Acquire high-resolution (updated every 
minute) spatio-temporal telemetry data from CARTA vehicles and exogenous data sources, such 
as traffic and weather; (b) Develop an efficient framework to store and process the operational 
data and external data, including street and elevation maps; (c) Create multi-scale energy 
predictors using the real-world data; (d) develop guidance and network optimization algorithms 
that use the energy predictors and real-world data to optimize operations; and (e) codify the 
results in to visualization dashboards and simulators that can be used by other agencies for 
knowledge transferences.  
 
The key contributions of our project are as follows: (a) we developed and demonstrated an 
efficient big data infrastructure of managing real-time telemetry data from transit vehicles at a 
resolution of 1 Hz and merging it in real-time with other transit related data including occupancy 

 
1 EIA, “U.S. Energy Information Administration: Use of energy explained – energy use for transportation (2018),” 
https://www.eia.gov/energyexplained/use-of-energy/transportation.php, Accessed: May 31st, 2020, 2018. 
2 Office of Transportation and Air Quality, “Fast facts: U.S. transportation sector greenhouse gas emissions 1990–
2017,” Tech. Rep. EPA-420-F-19-047, June 2019. [Online]. Available: https://nepis.epa.gov/Exe/ZyPDF. 
cgi?Dockey=P100WUHR.pdf  



statistics and trip level statistics encoded in real-time General Transit Feed Specifications (GTFS) 
(b) we have developed large datasets that can be shared with the community to highlight the key 
features and covariates that effect transit energy performance (c)  We have developed machine 
learning models to be able to predict energy prediction of a future trip assignment depending upon 
the weather and expected traffic congestion at both macro and micro resolutions. Macro 
resolution focuses on trip level statistics and micro resolution focuses on vehicular dynamics. 
Lastly, (d) we have developed optimization algorithms that can use our data infrastructure and 
the machine learning models to help the transit agencies decide on an energy optimal trip 
assignment roster. Most of these works have appeared in peer reviewed articles. A list is available 
at the website of our project3.   
 
Note that our project improves the state of art because as described by our recent paper4, most 
attention in the literature is focused on passenger cars. In contrast, our project is focused on 
energy estimation of mixed transit vehicles that includes diesel, electric and hybrid buses. 
Methodologies of existing models can be roughly classified into rule-based and data-driven. Rule- 
based models adopt a “white-box” approach that follows some fundamental physics laws and 
mimic the dynamics and interactions of various vehicle/powertrain components to estimate energy 
consumption. Data-driven models draw on a “black-box” approach so that users do not need to 
understand the physical process of electricity generation and consumption, or even the principles 
governing vehicle dynamics and powertrain operation but rely on the exploration of statistical 
relationship between inputs and energy outputs with certain assumptions or statistical techniques. 
Among the data-driven approaches, regular linear or multiple linear regression models are the 
most common approaches in electric passenger car energy prediction models. Limited studies 
have adopted machine-learning based methods, e.g., ANN, etc. (As indicated by our results, we 
have found that neural networks are better suited for learning these models). 
 
We now discuss the key highlights and results from our work.  

Acquiring High Resolution Data Telemetry from Transit Vehicles 
 
CARTA operates a mix of vehicle types, including gasoline powered vans, diesel and diesel-
hybrid buses, battery-electric shuttles, and battery-electric buses, with production dates ranging 
from 1998 to 2016. CARTA provides service with 17 fixed routes, 3 neighborhood demand-
response routes, 2 downtown circulator routes, and a complementary ADA paratransit service. 
The team configured operating data associated with vehicle routes, passenger counts, bus 
operators, and baseline performance for analysis. CARTA selected and installed a telematics kit 
produced by ViriCiti LLC on each CARTA fleet vehicle, to provide a real-time data stream at a 
minimum 1 Hz resolution of all available vehicle operating parameters, as well as GPS positioning 

 
3 https://smarttransit.ai/publications/ 
4 Chen, Y., Wu, G., Sun, R., Dubey, A., Laszka, A., and Pugliese, P., “A Review and Outlook of Energy Consumption 
Estimation Models for Electric Vehicles”. https://arxiv.org/abs/2003.12873 



for each record. In total, we have already obtained around 32.3 million data points for electric 
buses and 29.8 million data points for diesel buses. 
  
In addition, we collect static GIS elevation data from the Tennessee Geographic Information 
Council5. From this source, we download high-resolution digital elevation models (DEMs), derived 
from LIDAR elevation imaging, with a vertical accuracy of approximately 10 cm. We join the DEMs 
for Chattanooga into a single DEM file, which we then use to determine the elevation of any 
location within the geographical region of our project. We also collect weather data from multiple 
weather stations in Chattanooga at 5-minute intervals using the DarkSky API. This data includes 
real-time temperature, humidity, air pressure, wind speed, wind direction, and precipitation. In 
addition, we collect traffic data at 1-minute intervals using the HERE API, which provides speed 
recordings for segments of major roads, which provides data in the form of timestamped speed 
recordings from selected roads. Every road segment is identified by a unique Traffic Message 
Channel identifier (TMC ID). Each TMC ID is also associated with a list of latitude and longitude 
coordinates, which describe the geometry of the road segment. 
 
The table showing the complete datasets available to us is shown below. 
 
Data Source Frequency Scope Features Schema/Format 

Diesel 
vehicles 

ViriCiti and 
Clever Devices 

1 Hz 50 vehicles GPS, fuel-level, fuel 
rate, 
odometer, trip ID, driver 
ID 

ViriCiti SDK and 
Clever API 

Electric 
vehicles 

ViriCiti and 
Clever Devices 

1 Hz 3 vehicles GPS, charging status, 
battery current, 
voltage, state of charge, 
odometer 

ViriCiti SDK and 
Clever API 

Hybrid 
vehicles 

ViriCiti and 
Clever Devices 

1 Hz 7 vehicles GPS, fuel-level, fuel 
rate, odometer, 
trip ID, driver ID 

ViriCiti SDK and 
Clever API 

Traffic HERE and 
INRIX 

1 Hz Chattanoog
a region 

TMC ID, free-flow 
speed, 
current speed, jam 
factor, confidence 

Traffic Message 
Channel 
(TMC) 

Road 
network 

OpenStreetMap Static Chattanoog
a region 

Road network map, 
network graph 

OpenStreetMap 
(OSM) 

Weather DarkSky 0.1 Hz Chattanoog
a region 

Temperature, wind 
speed, 
precipitation, humidity, 
visibility 

DarkSky API 

 
5 Tennessee Department of Finance and Administration. (2019) Elevation data. [Online]. Available: 
https://www.tn.gov/finance/sts-gis/gis/data.html 
 



Elevation Tennessee 
GIC 

Static Chattanoog
a region 

Location, elevation GIS - Digital Elevation 
Models 

Fixed-line 
transit 
schedules 

CARTA Static Chattanoog
a region 

Scheduled trips and trip 
times, 
routes, stops 

General Transit Feed 
Specification 
(GTFS) 

Video 
Feeds 

CARTA 30 
Frames/Sec
ond 

All fixed line 
vehicles 

Video frames Image 

APC 
Ridership 

CARTA 1 Hz All fixed line 
vehicles 

Passenger boarding 
count 
per stop 

Transit authority 
specific 

 

An Efficient Framework to Store and Process Operational Data 
 

Given the 
volume and the 
rate of the data 
being collected, 
we had to design 
a new data 
architecture for 
the project. The 
purpose of this 
architecture is to 
store the data 
streams in a way 
that provides 
easy access for 
offline model 
training and 
updates as well 
as real-time 

access for system monitoring prediction. This architecture consists of a publish-subscribe cluster 
implemented with Apache Pulsar, which stores topic-labeled sensor streams, and a MongoDB 
database backend. An overview of the data architecture is provided in the figure above. 
 
This architecture solves two challenges. The first challenge is the persistent storage of the high-
velocity, high volume data streams. The second challenge is that the data is highly unstructured 
and irregular and different data streams have to be synchronized and joined efficiently. With this 
architecture, we stream each data source to a topic-based publish-subscribe (pub-sub) layer that 
persistently stores each data stream as a separate topic. Further, we used a three-tiered naming 

Data architecture overview - real time data is streamed to an Apache Pulsar cluster consisting of 5 
broker/bookie nodes and 5 zookeeper nodes running on-site in VMWare. A MongoDB cluster running in 
Google Cloud reads from the Pulsar cluster, continuously updating its data view and adding spatial indexing 
for monitoring and dashboard applications. 
 



convention for topic labeling. The first tier represents the name of the data tenant and all 
authentication and access are managed at this level. The second tier is the data category, i.e., 
vehicle telemetry, traffic, weather, etc. The third tier is the topic name, which represents the data 
source or provider, such as ViriCiti, HERE, or DarkSky. For ViriCiti, the fleet name is appended 
to the topic name to separate electric, diesel, and hybrid vehicles. The tenant, category, and topic 
names together form a topic, which downstream applications can use to access the data streams. 
We persistently store all messages on each topic in an append only ledger. Therefore, the topic 
can be used to read data in near real-time or to playback previous data streams to synchronize 
new downstream applications. All replication is handled at the ledger level, which allows 
downstream storage and applications to adapt and expand without concern for data resiliency. 
For this system we used Apache Pulsar6 due to its native support for authentication and access 
at the tenant level and high throughput. We run Pulsar on-site on a VMWare cluster. 
 
We include two methods for long term, structured access to the data streams. First, Pulsar 
includes support for Presto SQL which is a distributed SQL query engine for big data. Presto SQL 
integrates with the Pulsar data stores to provide an SQL interface on top of the Pulsar topics. This 
is useful for analytics teams comfortable with SQL, however as it is designed for large scale batch 
queries and does not support geospatial indexing it is not optimal for user-centric applications 
such as visualization dashboards. Therefore, we implemented a downstream MongoDB cluster 
running in Google Cloud. MongoDB was chosen for its native support of geospatial, r-tree 
indexing which optimizes our system for aggregate geospatial queries for monitoring and 
visualization applications discussed later in the report. 
 
As our framework has expanded, we are running numerous streaming join functions within Pulsar. 
An example is provided in figure 2, which outputs a data stream that is used for our energy 
prediction models and energy 
dashboard. The input is the telemetry 
data from ViriCiti, route, trip and driver 
data from Clever Devices, weather 
from DarkSky, traffic from HERE and 
the video feeds. Additionally, our 
predictive models rely on road level 
information from OSM. As this data is 
static the latest OSM network is 
stored in a MongoDB collection which 
the function queries each evening to 
keep up to date. These data sources 
are merged at 1 second time 
windows, which is the resolution 
required by the predictive models. 

 
6 https://pulsar.apache.org/ 

An example stream data join. Real-time telemetry and routing data from Clever Devices and ViriCiti are combined with weather 
from DarkSky, traffic from HERE and the video feed. The output stream includes all fields from these sources, as well as static 
data from OSM, GTFS and elevation. The output stream is updated periodically in real-time 
 



Data Analysis Dashboards 
To help in analysis of the big data collected and being collected as part of the project we have 
developed data dashboards 
through which the users can 
query based on time, fleet and 
route. The data is presented to 
the user over the map of 
Chattanooga as shown in the 
figure on the right and as a 
series of statistical 
visualizations, one of which is 
energy per fleet as shown in 
the figure as well. This 
dashboard is used by the data 
management team and 
CARTA to monitor the 
performance of the CARTA 
fleets over time and is 
available to the public7. 
Additionally, we developed a 
ridership dashboard to 
visualize occupancy of the 
vehicles throughout the bus 
transit network. The 
presentation of the occupancy 
dashboard is similar to the 
energy dashboard and is 
available to the public as well. 
8 

Machine Learning 
Models for Energy Usage Estimation 
 
One of the first machine learning models we built was a macro-scale energy predictor9 that can 
provide planning foresight by estimating energy consumption at the level of route segments. To 
develop this model, we used the following features for EVs: timestamp, GPS-based position 
(latitude and longitude), battery current (A), battery voltage (V), battery state of charge (%), and 

 
7 https://smarttransit.ai/energydashboard/ 
8 https://smarttransit.ai/cartadashboard/ 
9 A. Ayman, et.al., Data-Driven Prediction and Optimization of Energy Use for Transit Fleets of Electric 
and ICE Vehicles, ACM Transactions of Internet Technology, 2020. 

The average energy statistics across route are shown over the map. The figure above shows the average statistics for 2020 across 
the region for electric fleet. 

The dashboard also allows the visualization of daily averages for the whole fleet. 



charging cable status (0 or 1). For diesel and hybrid vehicles, instead of battery data, the team 
collected fuel level (%) and the fuel used, in gallons. We had to remove all data points that were 
recorded when the vehicle was in the garage or was charging (for EVs). Next, the team calculated 
energy consumption by integrating the product of the measured current and voltage values and 
verified that these consumption values coincided with changes in state of charge. For diesel and 
hybrid vehicles, the team performed similar steps with fuel used.  
 
We discovered that different 
neural network structures work 
best for electric and diesel 
vehicles. This is perhaps due to 
the way different features affect 
the powertrain of the vehicles. 
For electric vehicles, the best 
model has one input, two hidden, 
and one output layer. The input 
layer has one neuron for each 
predictor variable. The two 
hidden layers have 100 neurons 
and 80 neurons, respectively. 
For diesel, the best model 
required five hidden layers 
compared to the electrical 
vehicle model. The five hidden layers have 400, 200, 100, 50, and 25 neurons, respectively. We 
use sigmoid activation in all hidden layers and linear activation in the output layer. With these 
models we saw that the relative prediction error is generally lower for longer trips; this is expected 
as the individual errors of large numbers of samples cancel each other out with an unbiased 
prediction model. In addition, we compared the neural network models with other machine 
learning models including 
decision trees and linear 
regression and found that the 
mean error was least with the 
neural network models.  
 
In addition to the macro 
energy models, which are 
applicable for route specific 
analysis, we have also 
developed micro models10 
that have been finely tuned 
for individual vehicles. These 

 
10 Ruxiao et.al Hybrid electric buses fuel consumption prediction based on real-world driving data. 
Accepted for Publication in Transportation Research Part D. Available at 
https://smarttransit.ai/files/microprediction2020.pdf 

Energy prediction error plotted against the trip duration with neural 
networks (ANN), decision trees (DT) and linear regression (LR) 

(Left) Electric Vehicles:  Mean and 95% confidence interval of absolute percentage errors of microscopic energy 
prediction for electric vehicles with trip duration for different models. (Right) Mean and 95% confidence interval 
of absolute percentage errors of microscopic energy prediction at with respect to the vehicle specific power. 



models are essential for estimating energy consumption under various traffic control and 
operational strategies. Thus, they are widely used by researchers and transportation practitioners 
in evaluating benefits and comparing traffic control and operational strategies. 

Energy Optimal Trip to Vehicle Assignment 
 
Based on the energy prediction models, the team set up an optimization problem that focuses on 
minimizing fuel and electricity use by assigning vehicles to transit trips and scheduling them for 
charging, while serving the existing fixed-route transit schedule in Chattanooga. The problem 
formulation is general and applies to any transit agency that has to provide fixed-route transit 
service using a mixed fleet. To solve the problem, the team introduced an integer program, a 
greedy algorithm, and a simulated annealing algorithm. 
 
The team evaluated these algorithms on CARTA’s transit routes using the macro-level energy 
predictors to evaluate the objective of total energy costs of the operations during the day. The 
results showed that the proposed algorithms are scalable and can reduce energy usage and, 
hence, environmental and operational costs. For CARTA, the proposed algorithms could save 
$48,910 in energy costs and 175 metric tons of CO2 emission annually. 
 

Conclusion 
 
The team has completed the tasks associated with this phase of the project, with the development 
of the vehicle telemetry system, data store and analysis framework, and initial testing of macro 
and micro level prediction models. The effectiveness of the developed energy usage estimation 
models and the developed optimization algorithms can be judged from the point that they can 
save $48,910 in energy costs and 175 metric tons of CO2 emission annual operations. We are 
actively working on improving the optimization algorithms and developing comprehensive graph 
neural networks to improve the prediction results.  Note that the deployment of a vehicle telemetry 
system across legacy transit vehicles of various ages and powertrain systems was more 
challenging than anticipated. Additional development was necessary to convert older SAE J1708 
communications to SAE J1939 format represented on newer vehicles and obtaining unique and 
proprietary data protocols from vehicle manufacturers often proved difficult. 
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