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Abstract—The vision of the ’Smart Grid’ assumes a distributed
real-time embedded system that implements various monitoring
and control functions. As the reliability of the power grid is
critical to modern society, the software supporting the grid
must support fault tolerance and resilience in the resulting
cyber-physical system. This paper describes the fault-tolerance
features of a software framework called Resilient Information
Architecture Platform for Smart Grid (RIAPS). The framework
supports various mechanisms for fault detection and mitigation
and works in concert with the applications that implement the
grid-specific functions. The paper discusses the design philosophy
for and the implementation of the fault tolerance features and
presents an application example to show how it can be used to
build highly resilient systems.

Index Terms—component, fault tolerance, distributed systems,
smart grid

I. INTRODUCTION

Emerging Trends. The modern "Smart Grid" allows bi-

directional energy flows (where locally generated energy is

dynamically shared with other customers on the same network,

contrary to the traditional central generation model), demand-

response (where sudden and urgent energy needs are addressed

by rapidly reallocating generation resources), and transactive

energy (where distributed production and consumption are

dynamically balanced through market mechanisms). These

properties are possible because of the ubiquity of information

that is now available.

The increased complexity and dynamism in smart grids have

are difficult to handle with traditional monitoring and control

systems, motivating the industry and academia to investigate

decentralized control and computing solutions for the grid. To

ensure portability, most of these decentralized, real-time, em-

bedded computing solutions should be based on open software

application platforms conforming to industry standards and

protocols, such as those being developed by IEEE and IEC [1].

Having standards in place enables innovation and creativity

across all aspects of the grid, from enterprise applications to

local device control. Interaction protocols facilitate 1) two-way

data sharing, 2) measurement and state estimation, 3) lever-

aging of sensing device information for system availability

and stability assessment, 4) some local control/protection

activity, and 5) competitive transactions to encourage direct

engagement with consumers [2], [3]. But along with the open

protocol and its advantages, comes a strong need for security,

quality control, reliability, and resilience [3].

In this paper, we discuss the problem of reliability and

resilience in decentralized, real-time, embedded systems with

respect to fault detection and mitigation. We will describe

the design and implementation of the concepts in a software

framework called Resilient Information Architecture Platform

for Smart Grid (RIAPS) [4]. RIAPS is an open application
platform that distributes monitoring and control functions to

computing nodes on the edge of a network, reducing total

network traffic, improving reaction times by avoiding network

latency, and increasing reliability by reducing dependency on

the availability of and access to centralized resources. The

platform supports multi-tenancy and the controlled sharing of

computational and communication resources. The key concept

of RIAPS is to provide a “middleware” to facilitate the

interactions among networked computational actors that focus

on specific grid issues, such as state estimation, remedial

action schemes, and power and energy management, and time-

sensitive applications.

The problem of distributed fault tolerance is not new. The

past is filled with examples of critical failures [5], [6], [7]. The

problem is that even though there are multiple mechanisms

to achieve fault tolerance at both the hardware and software

level, very few implemented architectures are available for a

highly resilient, hierarchical fault management scheme. The

key idea is to make each layer robust such that faults from the

layer below it cannot propagate to the layer above and cause

a failure. The layer above can assume certain behavior about

the layer below and if that is violated, the layer below should

inform the layer above.

Of particular interest to fault tolerance is the choice of the

communication patterns in a distributed or decentralized sys-

tem. Even though most of the modern computation platforms

embrace component-based software engineering (CBSE) [8]1,

the choice of communication patterns still remains challeng-

ing. Designers have to evaluate their applications, decide

which interaction patterns to use (e.g. asynchronous publish/-

subscribe or synchronous request/reply, etc.) and then im-

plement the low-level mechanisms needed, while considering

fault tolerance requirements. We discuss the motivation of the

choices of communication patterns made available in RIAPS

and how it helps in achieving fault tolerance later in the paper.

Contributions: The specific contributions of this paper are

as follows:

1) We describe the detailed architectural interaction pattern of

RIAPS and use it to illustrate the anticipated failure modes.

1The guiding principles of CBSE are interfaces with well-defined execution
models [9], compositional semantics [10] and model-driven analysis [11]
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2) We describe the implementation of the fault-tolerance ar-

chitecture and how it provides the layered protection.

3) We finally present an evaluation of the design using a

complex transactive energy application [12].

Outline. We start with a background and related research on

fault tolerance. Then we describe the internal architecture and

interaction patterns of RIAPS. Then, we discuss the anticipated

failure modes and the fault-tolerance features that have been

designed to recover from those faults. We finish with a set of

case studies.

II. RELATED RESEARCH

There has been significant research on the development of

integrated platforms prior to RIAPS. In this section, we discuss

some of those technologies.

Volttron [13] is a real-time software platform developed

by the Pacific Northwest National Laboratory (PNNL) with

support from the US Department of Energy. It is a completely

language agnostic, agent-based, distributed framework that

provides interfaces for secure, scalable execution of power

systems applications. The Volttron architecture is comprised of

several modules that provide specific capabilities like secure

communication, resource monitoring, authentication and non-

volatile data storage to agents, which have specific roles.

Open Field Message Bus (OpenFMB) [14] is another dis-

tributed, intelligent platform for electrical power systems. It

was adopted by the North American Energy Standards Board

(NAESB) in 2016. Its primary goal is to enable interoperable

systems on modern power grids. It emphasizes a data-driven

approach comprised of peer to peer interconnected nodes. It

has a multi-layered architecture that specifies configuration

parameters, interaction patterns, and QoS requirements lever-

aging existing publish-subscribe middleware technologies like

DDS [15] and MQTT [16]. It also performs management level

tasks like release management and monitoring.

Neither of these platforms provides an extensive, hierarchi-

cal, resilient fault management framework to detect, report and

recover from faults at multiple levels of the architecture. They

also lack support for 1) a wide variety of communication pat-

terns (with the agents/nodes being limited to publish-subscribe

messaging), 2) distributed coordination protocols like leader

election and consensus, and 3) timing or synchronization

related features which are critical in modern real-time systems.

Similarly, other topic-based messaging platforms like ROS

[17] are not adequate to handle the complex control logic,

timing requirements and granular level resilience guarantees

for power systems applications. RIAPS addresses these needs

by providing a robust fault management architecture along

with necessary platform-level services for real-time coordi-

nation and control.

III. OVERVIEW OF RIAPS

RIAPS supports execution of distributed software appli-

cations that run on a network of computing nodes by 1)

facilitating deployment, 2) providing remote management of

applications on nodes, 3) supporting reliable communication

Fig. 1. RIAPS Architecture

Fig. 2. RIAPS component model.

patterns among computation units, including anonymous pub-

lish/subscribe, and synchronous/asynchronous remote method

invocation, 4) enabling distributed data management and re-

source sharing, 5) providing distributed coordination and high

precision time synchronization services between the nodes,

and 6) implementing a robust fault management framework

which enables the applications to be resilient and reliable

across all architectural layers. Additionally it provides a do-

main specific modeling language to define the application

deployments, including the target nodes, as well the the

application structure description model file. Details about the

RIAPS API and modeling language can be found in [18].

The RIAPS run-time system is composed of several layers

(see figure 1). The top layer contains the decentralized compu-

tational units below which reside the framework level services.

We discuss them in greater detail below.

1) Components and Actors. In the RIAPS modeling seman-

tics, a unit of deployment is called an Actor. It is analogous

to a process in Linux. An Actor contains one or more

reusable Components. The advantage of encapsulating mul-

tiple Components within an Actor is the reduction in the

cost of communication between Components since they are

part of the same process.

Components implement the business logic of the applica-

tion. RIAPS employs a single-threaded message passing

based programming model for the Components, which

simplifies the timing and synchronization constraints. A

RIAPS Component can have different kinds of ports: re-

quest, reply, client, server, query, answer, publish, subscribe

and a special type called a timer port. These ports have
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specific properties that are applied for suitable communi-

cation patterns. Request-reply and client-server is used for

synchronous send-receive operations, query-answer is used

for asynchronous coupled request and response, publish-

subscribe is used for asynchronous decoupled send and

receive. Timer ports are used to invoke periodic or sporadic

events. All ports have associated handler methods that can

be invoked within the Component code to perform specific

functions when a message arrives, or a timer expires.

ZeroMQ [19] is used as the underlying communication

middleware. Message serialization can be achieved through

Cap’n Proto [20] because of its fast in-memory marshaling

and unmarshalling capabilities. Fig 2 illustrates the RIAPS

Component model.

2) Deployment Control. The Deployment Control is an in-

teractive application for downloading the applications to

the RIAPS nodes. It provides a GUI for visualizing the

status of the RIAPS nodes and allowing selection, and

deployment of Actors to specific nodes, aiding in running

RIAPS applications.

3) Deployment Service. The Deployment Service is respon-

sible for installing and managing applications on a RIAPS

node and for monitoring their operational status. When

started, the Deployment Service connects to a dedicated

RIAPS Deployment Control node. This connection is fa-

cilitated by the secure RPyC [21] distributed computing

service.

4) Discovery Service. The main role of the Discovery Service

[4] (which runs on all nodes) is to enable the dynamic

configuration of information flows among RIAPS appli-

cation components. Each component that either publishes

data with a certain topic or provides a specific service is

registered with the service. Each component that subscribes

to data with a certain topic or requires a specific service

locates these with the help of the service. The service

maintains a snapshot of the Actors on the network that

are currently active, enabling peers to dynamically join

and leave the network, while the system still remains

operational. It uses a distributed, fault-tolerant hash table

for topic publisher and service provider registrations.

5) Time Synchronization Service. Accurate time synchro-

nization is critical for designing time-sensitive systems.

Thus, RIAPS provides a high precision time synchro-

nization service to maintain synchronization of the clocks

among the nodes. The Timesync Service [22] can operate

in two modes, a master-slave mode and a standalone

mode. In the master-slave mode, one node serves as the

synchronization master, while the slave nodes synchronize

to the master using PTP. The Timesync Service also has the

capabilities to generate precise timing signals for external

hardware devices which can be used to synchronize them. It

has the capability of providing sub-millisecond level clock

accuracy across different nodes.

6) Other Platform services. RIAPS also runs several auxil-

iary platform services that operate below the application

layer. They are Distributed Coordination Services, Re-

Fig. 3. The interactions of all RIAPS platform services.

source Management Services, Security and Authentication

Services, Logging Services, and Persistent Data Storage

Services.

7) Device Interfacing Services. Device Interface Compo-

nents (hosted in Device Interface Actors), provide an

interface for RIAPS Components to interact with physical

systems [23]. This is important to consider because RIAPS

is designed to sense and control the physical environment.

For example, in a power system, the controller would need

to connect to physical devices via GPIO pins, serial ports,

or network interfaces. By using device interface Compo-

nents, we abstract the implementation level details of these

physical connections like the communication protocols.

Unlike normal Components, device interface Components

support multi-threaded operations and concurrent code.

A. Service Interaction

To describe the fault management architecture (figure 3) it is

important to describe the relationship between all the services

and Actors. We describe these interactions in this section.

The control node acts as a control center from which

applications can be remotely managed. When starting the

controller service (ctrl in figure), it registers to an RPyC

registry server. RPyC provides a transparent Python library

for distributed computing services such as remote procedure

calls and service registration. When a RIAPS node logs in,

it initiates a callback to request deployment of Actors to

the Deployment Service running on the participating RIAPS

nodes.

Each RIAPS node has the Deployment Service (deplo
in figure) running. deplo calls the RPyC discover method

to find and connect to the RPyC registry server. Using this

mechanism, all the client nodes defined in the deployment

file of the application can login to ctrl. deplo also starts

the Discovery Service (disco in figure) on each node. As

explained in Section III, the Discovery Service is responsible

for maintaining the dynamic state of all active peers in a

cluster. These platform level services are configured as Linux

systemd services. Once the callback for an application
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launch is invoked, the deplo starts the Actor processes

for that node. The client Actors register with the Discovery

Service using a ’client/server’ (REQ/REP) socket pair. The

service will then create a dedicated socket for the specific

client. This socket is used as a private communication channel

between a specific client Actor and the service. Once the

services are registered with the service, then the Actor starts

the associated Components in each thread. This sequence of

steps is followed in the reverse order in case of termination

of the application.

B. Failure Modes

Faults that can arise at different layers of the system can be

categorized as follows:

1) Device interface fault: These faults occur when a phys-

ical device does not function properly.

2) Communication fault: These faults occur in the com-

munication channels and they can be caused by faults in

the physical links, a fault in the kernel or if a RIAPS

node goes down or becomes unreachable.

3) Hardware level fault: These faults occur when a Compo-

nent raises a hardware exception, such as a CPU hardware

exception or a segmentation fault which results in a signal

generated by the kernel and sent to the Actor to which

the Component belongs.

4) Kernel level fault: The faults are caused by a flaw in

the Component code or resource violation that causes an

invalid request to the kernel.

5) Actor level fault: These faults occur when the Actor pro-

cess crashes or an exception is raised by the Component

code which is detected at the Actor level. A subcate-

gory of Actor Faults are Resource Management Faults
caused by the component asking for more resources than

it has been assigned.

6) Framework level fault: These faults are caused by errors

in the RIAPS framework code.

7) Logical faults: These faults are caused by errors in the

business logic of the Component code.

As mentioned previously, all these faults can propagate

and lead to secondary faults. For example, a fault in the

network interface will inhibit the Actors from sending and

receiving service queries which will cause the Discovery

Service to operate with obsolete information. A hardware fault

like a node power failure can lead to infinite blocking in a

Component that waits for a response from a service on that

failed node. A fault in one Component may also trigger a

fault in another Component. Therefore, the goal of the RIAPS

fault management architecture is to identify faults close to

the location they happen and then to provide mechanisms for

mitigation actions at the same time ensuring that every party

in an interaction sequence is aware of the fault.

IV. FAULT MANAGEMENT ARCHITECTURE

Principles. The guiding principle in the RIAPS Fault

Management Architecture is that there is a clear separation

between the application (which implements the application

specific functionality) and the framework (which provides and

manages the resources needed by the applications). While

faults can occur anywhere in the system, there is no single,

comprehensive fault management solution. The reason is that

the ultimate goal of supporting power grid operations neces-

sitates an intricate collaboration between the framework and

the application(s) running on it.

In designing the fault management framework we followed

a simple principle: the framework detects anomalies and pos-

sibly activates some mitigation functions that are applicable,

but it is ultimately the application’s responsibility to react to

faults and to take a corrective action, as it is the application

that ‘understands’ what an anomaly means and how to react

to the underlying failure mode. Following this principle, we

built several detection mechanisms that detect faults in the

system (at least the ones that can be detected by the framework

itself). These detection mechanisms are occasionally coupled

to default mitigation actions and are always connected to the

application itself: the application is always informed about the

detected anomalies. Then the application ‘business logic’ can

decide the specific mitigation action that needs to be taken and

execute it.

The fault management capabilities in an edge computing

network for Smart Grid built with RIAPS nodes are required

across three layers: physical and device level, platform services

level, and the application level. On the physical level, we

expect that the power grid itself is designed with the N − 1
power system criterion: any one physical Component (e.g. a

breaker, a transformer, a transmission line, etc.) can fail, yet

the power system remains operational. We also assume that

this principle carries over to the sensors and actuators, i.e.

there is sufficient redundancy in the system. Therefore, in this

paper, we focus on the fault management capabilities required

at the level of software platform services and the application.

It is expected that any failure of the physical device, including

networks and computation nodes, is Fail − Stop and can

be successfully detected using the Watchdog fault tolerance

pattern [24].

The fault management sub-system at the platform services

level is responsible for providing detection and recovery capa-

bilities for the Discovery, Deployment and Time Synchroniza-

tion Services. Table II summarizes the various detection and

mitigation schemes that RIAPS has incorporated for platform-

service faults. The basic design philosophy of detecting faults

in multiple layers and then reacting to them can be clearly

seen here. The Discovery and Deployment Services along with

OS kernel, work in tandem to prevent faults from propagating

from one layer to another.

The fault management capability at the level of applications

is present in two places: outside the Actor and inside the Actor.

The fault detection capability outside the Actor is responsible

for monitoring and recovery of the Actor itself, while that

inside the Actor refers to software exceptions. We describe the

specific elements of the fault management architecture below.

Resource Constraints: Table I provides an overview of the

various resource monitoring and resource violation detection
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and response schemes implemented in RIAPS. It detects

violation of Memory usage, CPU usage, Network usage and

Disk usage at the Actor level and timing violations at the

Component level.

RIAPS extends the functions provided by Linux. cgroups
is a kernel feature which allows setting of restrictions on the

memory, CPU, and network usage on a collection of processes.

These processes make up a control group or cgroup. The

Linux ’traffic controller’ (tc) is another useful utility which

allows packet level control of TCP and UDP applications.

Disk quotas allow system administrators to specify an upper

threshold on the maximum size that an application may occupy

on the disk. The API provides specific handler methods for

each of these conditions which can be overridden in the

Component code to perform customized operations.

The resource limits are specified in the model file within an

Actor block as shown in figure 4. The Actor “LimitActor” has

restrictions imposed with respect to CPU, Memory and Disk

space using the “uses” block. The limits are hard limits by

default but can be soft limits by indicating a tolerance range.

In this example, three separate Components are defined in the

Actor which implements the associated handler for a particular

actor LimitActor {
uses {
cpu max 10 % over 1;//Hard limit, no ’max’ is softlimit
mem 200 mb; // Mem limit
space 10 mb; // File space limit
net rate 10 kbps ceil 12 kbps burst 1.2 k; // Netlimits
}
...

}

Fig. 4. An example of an Actor specification showing the resource monitoring
options

fault.

RIAPS is also capable of enforcing timing constraints on

specific Component port operations and detect these deadline

violations. The deadline limit is specified within a Component

definition in the model file using the within keyword, as

shown in Figure 5. Thus, the timer operation has a completion

deadline of 1 millisecond for the Component “Sensor”. The

specific handler method needs to be used in the “Sensor”

Component code to define what action to take in case of a

violation.

Resilient Time Base. The RIAPS Time Synchronization Ser-

vice is responsible for maintaining precise timing across the

different nodes. It uses a combination of GPS, NTP and PTP

TABLE I
SYSTEM-LEVEL FAULT MANAGEMENT IMPLEMENTATION FOR APPLICATIONS

Error Detection Recovery Mitigation
Actor termination deplo detects (warm) restart of actor Call handler/ notify peers
Unhandled exception framework catches all exceptions if repeated (warm) restart notify peers about restart
Resource violation framework detects Call app resource handler

CPU
soft: cgroups CPU tune scheduler
hard: process monitor if repeated, restart & notify actor/ call handler

Memory
soft: cgroups memory (low) notify actor/ call handler
hard: cgroups memory (critical) terminate, restart & call termination handler

Disk hard: Quota system for files terminate, restart call termination handler
Network hard: Network manager (‘tc’) if repeated, (warm) restart notify actor/ call handler
Deadline violation soft: Component scheduler if repeated, restart notify component/ call handler
app freeze check for thread stopped terminate, restart actor notify component/ call cleanup

handler/ notify peers restart
app runaway check for method non-terminating terminate, restart actor notify component/ call cleanup

handler/ notify peers

TABLE II
SYSTEM-LEVEL FAULT MANAGEMENT IMPLEMENTATION FOR PLATFORM SERVICES AND HARDWARE

Fault location Error Detection Recovery Mitigation

RIAPS Services

internal actor exception framework catches all exceptions terminate with error/ warm
restart

call term handler

disco stop / exception deplo detects deplo (warm) restarts disco if services OK, upon restart re-
store local service registrations

deplo stop systemd detects restart deplo (cold) restart disco / restart local
apps

deplo loses ctrl contact deplo detects NIC down ->wait for NIC up;
keep trying

System (OS)
service stop systemd detects systemd restarts clean (cold) state
kernel panic kernel watchdog reboot/restart deplo restarts last active actors

External I/O
I/O freeze device actor detects reset/start HW; device - specific inform client component
I/O fault device actor detects reset/start HW; device - specific log, inform client component

HW
CPU HW fault OS crash reset/reboot systemd ->deplo
Mem fault OS crash reboot systemd ->deplo
SSD fault filesystem error reboot/fsck systemd ->deplo

Network
NIC disconnect NIC down notify actors/call handler
RIAPS disconnect framework detects RIAPS p2p loss keep trying to reconnect notify actors/call handler ; recv

ops should err with timeout, to
be handled by app

DDoS deplo monitors p2p network performance notify actors/call handler
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component Sensor {
timer clock 1 sec within 1 msec; // Periodic timer to

trigger sensor every 1 sec
pub ready : SensorReady ;
// Publish port for SensorReady messages
rep request : ( SensorQuery , SensorValue ) ;
// Reply port to query the sensor and retrieve its

value
...

}

Fig. 5. An example of a Component model showing the deadline constraint on
a timer port. The SensorReady, SensorQuery and SensorValue are messages.
‘clock‘ is a timer that will fire every second, ’pub’ and ’rep’ are publisher
and reply ports.

[25] to achieve synchronization. In the clock master node if

both GPS and PTP are available, it will dynamically pick the

reference with the least variance. If GPS is not available, then

the master will use NTP to synchronize its clock. If there is no

time reference available, due to GPS failure on the master or

network failure on the slaves, the node will continue to use its

own clock using the most recent frequency/drift compensation.

If the master node is unable to synchronize with its reference

due to any failure, the entire LAN will drift from the global

time. However, the nodes will remain synchronized.

Application Level User identifier. RIAPS also provides an

added layer of security by providing access control functions

through the use of an application level user id (unique to

the node). The Deployment Service creates a unique, node-

specific user id before deploying Actors on the designated

nodes. All Actors of an application have the same user id.

This identification protocol restricts access by external agents

to read and write on the file system of the node.

Watchdogs. The hardware watchdog monitors on each com-

puting node guarantee that a computing node will be restarted

if it suffers from a kernel panic, a kernel crash or a scheduling

fault (i.e. the processes are deadlocked).

Process Watchdog. Within a node we use systemd, a

standard service already available on the Linux operating

system to manage the health of the most critical RIAPS service

on a node, the Deployment Service. It also monitors the states

of all other RIAPS platform services. If any service crashes it

will be restarted.

Resilient Information Base. The Discovery Service is respon-

sible for maintaining information regarding all the peers in

a cluster, it implements a heartbeat mechanism to maintain

current membership. Periodically, the Discovery Service pub-

lishes its address and listens for incoming messages. Whenever

a message from a new node arrives, it adds the address to its

list of known nodes. If it does not receive a message from a

known peer for two consecutive time periods, then that node is

considered dead and its corresponding entry is removed. It also

maintains the message topic details and services that Actors

register with it in a Distributed Hash Table (using OpenDHT

[26]). These values need to be re-registered periodically. If an

Actor with a registered service crashes, the Discovery Service

lets the registered values expire.

Time-Sensitive Messaging. RIAPS leverages the accurate

time-synchronization service on all nodes to provide precise

time stamping to record the times when messages are sent.

The time stamp data is added to the payload of the message

and when it is received, the receiving node can use the time

difference to calculate the time of flight. Time stamping can

be enabled for specified ports from within the model file.

This feature can help monitor network latency and potentially

identify faults such as bottlenecks, overload or security attacks

such as denial-of-service (DoS).

Transaction based Recovery. The Deployment Service is

responsible for maintaining the operational status of individual

Actors. Thus, in a way, the Deployment Service acts as a

systemd for RIAPS Actors. When an application Actor is de-

ployed, the Deployment Service keeps the log of the executed

deployment operations in a local database. This information

is also replicated on the control node. If an Actor fails, then

the Deployment Service can reapply the operations from the

database. The database is persistent and transactional, which

means that it can retain its values even after restarting and it

supports operations like rollback. The application developer

can control this default behavior using an application level

configuration policy. If the Deployment Service crashes, then

it can still retrieve the list of currently running applications

from the local database. If the RIAPS node crashes, then the

control node can decide to re-install the Actors on the same

or on a different node.

Application Level Distributed Coordination Services. RI-

APS provides APIs at the application level that support dis-

tributed coordination services like group membership, leader

election and consensus among the Components. Groups pro-

vide encapsulation, restricting communication so that members

only communicate and interact with each other. Choosing
a leader is a process where a single Component becomes

designated as an organizer of tasks (or decision maker) among

several distributed Components. To select a leader in a group,

the RIAPS platform provides the API to an implementation of

the Raft [27] election algorithm. Consensus is the mechanism

by which group members form agreement on a set of data

values. Time-synchronized coordinated action is another ser-

vice provided which coordinates agreement among distributed

nodes regarding when a time-synchronized action should be

performed.

Application level Fault Handlers. Table I lists the various

fault management schemes employed at the application level.

The Deployment Service and the Discovery Service work in

tandem to monitor the state of the Actors during the lifecycle

of the application and take corrective steps. For catastrophic

failure of an Actor, the deplo is able to detect it and perform

a restart by reapplying the operations stored in its database.

Application developers can customize the recovery options

using configuration files. This message is sent through a

dedicated fault messaging channel. Application developers can

define message handlers in their application for such messages.

For internal fault management, the Actor is responsible for

catching exceptions (indicating anomalies) generated by the

Component’s code. Thus, in this case the responsibility is

shared between the application code developer and the frame-

work. The developer will express how the various exceptions
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are to be handled in the model of the Component and the

Actor.

A. Fault Management Interactions

Choice of Communication Patterns. RIAPS supports a

wide variety of communication patterns: from anonymous

publish-subscribe to peer-to-peer request-reply. All the con-

nection establishment and management are done in a back-

ground thread which automatically re-establishes connection

upon communication failures. Thus we leverage most of the

communication fault-tolerance properties from the underlying

framework, ZeroMQ.

Application developers can use any combination of these

patterns in designing dependable distributed applications,

by using appropriate ports. For example, for applications

which require a highly scalable, unidirectional, many-to-many

messaging architecture such as sensor readings, a publish-

subscribe pattern is more suitable. On the other hand, when

strict synchronization is required among agents such as in a

client-server architecture, then a request-reply pattern is more

suitable.

The RIAPS framework also utilizes message passing be-

tween its different architectural layers to monitor the health of

the system, detect and identify possible fault conditions. For

instance, when a RIAPS node starts, its Deployment Service

joins a peer-to-peer network of other RIAPS nodes. When

an application is deployed and an application Actor starts,

its peers within the RIAPS network are informed using the

publish/subscribe mechanism. If an application Actor crashes

and/or restarted, its peer application Actors are also informed

about the loss and reappearance of the Actor.

Beyond these, it is the responsibility of the developer to

employ appropriate fault handling schemes in the Component

code itself by catching exceptions, reacting to timeouts, and

other anomalous events, etc.

Interaction Example. As an example of the usage of

communication patterns in recovery mechanisms, we illustrate

the messages and events that transpire when a RIAPS node’s

Deployment Manager fails in Fig. 6. The failure is detected by

systemd, and the Deployment Manager is restarted. Upon

restarting, the Deployment Manager restarts the Fault Man-

ager service. The Fault Manager detects processes lingering

from the previous instance of the Deployment Manager and

cleans them up, by stopping any Actors and terminating the

Discovery Service. Without a Discovery Service, the node

is no longer connected to the other RIAPS nodes, and this

is detected when an instance of the Discovery Service on a

peer does not receive liveness ping during a timeout period.

This message is propagated from the peer’s Discovery Service

to the Deployment Manager, then the Fault Manager, and

finally to the Actors. After cleaning up the Fault Manager

on the failed node, it restarts the Deployment Services, which

registers with the other Deployment Service by broadcasting

a JOIN message. This is again propagated through the peer

node (not shown). After re-initializing necessary services the

Fault Manager performs necessary setup to be able to run the

RIAPS application, it then adds the relevant Actors and once

they are running, it registers the Actor with the Discovery

Service. It also notifies the local Actor of the presence of the

other Actors in the network. Finally, the Discovery Service

broadcasts that a new Actor has joined the system to the other

Discovery Service instances which propagate that information

down.

V. AN EXAMPLE: TRANSACTIVE ENERGY APPLICATION

In a prior work [12] we used RIAPS to implement a

platform for decentralized energy trading in transactive mi-

crogrids. The Actors and high-level dataflow of this platform

can be seen in figure 7. The typical workflow is for producers

and consumers of power to 1) post offers to a distributed

ledger for a time interval in the future, in [12] we used

Ethereum. Solvers are monitoring the ledger and when offers

are posted they 2) receive a notification, and match buyers to

sellers. This match is 3) posted to the ledger. The solution

for an interval may be updated until it is 4) finalized by the

distribution system operator (DSO). At this point the producer

and consumer are notified and will 6) exchange the amount of

power they were matched for when the interval arrives. RIAPS

was used to provide inter-Actor communication, management

services, and time-synchronization for the Actors to begin the

transfer of power at the right time. In this paper, we again use

this example to test some of the fault management properties

of RIAPS to determine if it meets the requirements for this

application.

A. Experiments

We chose to experiment using a Beaglebone ARM cluster

since many IoT devices are ARM machines. All nodes run

Ubuntu 18.04. We ran a single instance of the Ethereum Geth

client on the cluster master (an Intel machine running Linux).

We simulated three failure scenarios. The goal was to see how

quickly a failure was detected and propagated as well as the

time required for recovery of the Actors.

Experiment 1: Network Failure. Figure 8 shows the results

of experiment one, where we disconnected the Ethernet cable

from one of the nodes. We see that the time for a peer to

be notified of the disconnect is about 3 seconds on average,

reconnect is about 1 second, and the time for the Actors on

that node to be notified that they have been reconnected is 5

seconds on average.

Experiment 2: Platform failure. Figure 9 shows the results

of experiment two, where we kill the Deployment Service on

one of the nodes. The events timed here correspond to some

of the events shown in figure 6 as that shows what occurs

when a Deployment Service fails. Times (a)-(d) are all phases

of recovery on the failed node, and times (e) and (f) are the

time to notify a peer of the node exiting and joining. This

is important because that determines how much time is used

before mitigation actions can be taken. In this experiment, it

takes 5 seconds on average for the exit message to arrive.

The key observation here is that the peers are notified of

failure within about 5 seconds. In the context of the transactive
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Fig. 6. Sequence diagram showing the actions that occur when a Deployment Service fails (not all failures are shown). The dashed lines are events that are
detected, the first is systemd detecting a process failure, the second is a timeout in the Discovery Service.

Solver1 Solver2
Solvers...Solvers...

Solvers...

Distributed Ledger [External to RIAPS]
(check offer and solution correctness, select best solution)

Producer DSO Consumer

1) Post Offers 1) Post Offers

2) Offer Notify 2) Offer Notify 2) Offer Notify
3) Post Solution 3) Post Solution

4) Finalize

5) notify
5) notify

6) exchange

Fig. 7. Data flow between actors of in Transactive Energy application.
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Fig. 8. Results from Experiment 1. The horizontal axis is the elapsed time
in seconds. The values shown from bottom to top are: (a) time to notify peer
of disconnect, (b) time to notify peer of reconnect, (c) time for actors on a
disconnected node to be notified.

energy platform, the potential for a problem is in the 5 seconds

prior to beginning an exchange of power. This delay may be

reduced if the Actors are run with real-time priority, as they

were not for this experiment. Additionally, we could include

additional messaging during critical time periods.

Experiment 3: Resource Violations. Figure 10 shows the

speed of response of the RIAPS platform for three different

scenarios, namely disk space limit, memory limit and CPU us-

age limit violations. The time recorded is the interval between

the instant the fault manager detects a violation to when the

associated handler method is called. The observed data shows

that for all scenarios, the system was able to respond within

85 milliseconds.
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(e)
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time[s]

Fig. 9. Results from Experiment 2. The horizontal axis is the elapsed time
in seconds. From bottom to top they are: (a) time to notify local actors, (b)
time to terminate actors owned by previous deplo, (c) time to clean up other
actors owned by previous deplo, (d) time until actors are fully recovered. (e)
is the time until the peers know the node has left, and (f) is when the nodes
know the peer has rejoined.
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Fig. 10. Results from Experiment 3. The horizontal axis is the elapsed time
in milliseconds. The values indicate the time interval between detection and
invocation of the associated handler for (a) Disk Usage limit, (b) Memory
Usage limit and (c) CPU limit

In all of the of experiments, the results show a highly

reactive system that is able to sense an anomaly and react

to it on the order of a few seconds. This is very important

for a critical application like a power system, where the state

of the system might change abruptly due to arbitrary device

faults or environmental factors.

System Overhead. Overhead is principally due to the

Deployment, Discovery and Time Synchronization Services.

The average CPU and Memory utilization metrics for these

processes were observed to be around 1.5% and 1.9%. Thus,
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RIAPS did not add any significant memory or processing load

to the nodes. However, since each RIAPS Actor runs in a

single thread, running large-scale applications with numerous

Actors may lead to some performance bottlenecks. In those

cases, the resource throttling features discussed previously can

be employed.

VI. CONCLUSIONS

In this paper, we introduced the fault management subsys-

tem of the RIAPS framework and demonstrated its use in

a transactive energy application. In the design of the fault

management subsystem, a systematic approach was followed

where the possible failure modes of the framework were

identified by considering the interaction patterns across the

RIAPS architectural layers. The choice of specific services and

their communication protocols were examined in terms of their

role in improving the resilience properties of the system and

implemented accordingly. The experiments performed using

the transactive energy application show that the response and

recovery times of the system for various fault conditions and

resource limit violation events were within reasonable bounds.

Adopting techniques such as real-time scheduling can possibly

lead to further improvements in the overall performance. In

future work, we plan to conduct more experiments to cover a

wider gamut of dependability and resilience metrics.
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