
DREMS: A Toolchain and Platform for the Rapid
Application Development, Integration, and

Deployment of Managed Distributed Real-time
Embedded Systems

William Emfinger, Pranav Kumar, Abhishek Dubey, William Otte, Aniruddha Gokhale and Gabor Karsai
ISIS, Dept of EECS, Vanderbilt University, Nashville, TN 37235, USA

The DREMS1 toolsuite is a software infrastructure for
designing, implementing, configuring, deploying, operating,
and managing distributed real-time embedded systems. It con-
sists of two major subsystems: (1) a design-time environment
for modeling, analysis, synthesis, implementation, debugging,
testing, and maintenance of application software built from
reusable components, and (2) a run-time software platform for
deploying, managing, and operating application software on a
network of computing nodes. The platform is tailored towards
a managed network of computers and distributed software
applications running on that network: such as a cluster of
networked nodes such as fractionated satellites or a group of
smartphones deployed in a coordinated fashion to provide ad-
hoc distributed services that can be used in disaster relief.

It is a complete, end-to-end solution for software develop-
ment: from modeling tools to code to deployed applications.
Open and extensible, it relies on open industry (OMG) stan-
dards, well-tested functionality, and high-performance tools.
It supports a model-based paradigm of software development
for distributed, real-time, embedded systems where modeling
tools and generators automate the tedious parts of software
development and also provide a design-time framework for the
analysis of the system. The run-time software platform reduces
complexity and increases reliability of software applications by
providing reusable technological building blocks: an operating
system, middleware, and application management services.

DREMS applications platform are built from software
components that interact via only well-defined interaction
patterns using security-labeled messages that support Multi-
Level Security [1], and are allowed to use a specific set of
low-level services provided by the operating system. Low-
level services include messaging and thread synchronization
primitives, but components do not use these directly, only via
the middleware-provided framework abstractions. Specialized
services distributed across the platform are used to control the
lifecycle and update applications on demand.

The middleware libraries implement the high-level com-
munication abstractions (synchronous and asynchronous inter-
actions) using low-level services provided by the underlying
distributed hardware platform. The DREMS Operating System,
a set extension to the Linux kernel, implements all the critical
low-level services to support resource sharing (incl. spatial and
temporal partitioning), actor2 management, secure (labeled and
managed) information flows, and fault tolerance. The OS also

1Distributed REaltime Managed Systems
2Actors are processes with persistent identifiers

provides strict capability checks for the services an application
can use. Three different task levels can exist on the platform:
Critical (run as fast as possible), Application (run in a periodic
temporal schedule), and Best Effort (run whenever possible).

Configuring the middleware and writing code that takes
advantage of the component framework is a highly non-trivial
and tedious task. To mitigate this problem and to enable
programmer productivity a model-driven development environ-
ment is provided that simplifies the tasks of the application
developers and system integrators.

Demonstration: We cover a complete application develop-
ment cycle from design in the modeling tools to execution on
a set of fanless computing nodes used to emulate a cluster of
three satellites. These nodes contain a 1.6 GHz Atom N270
processor and 1 GB of RAM and communicate on a private
gigabit subnet. To this subnet are also connected a physics
simulation node running the Orbiter spacecraft simulation tool
(http://orbit.medphys.ucl.ac.uk/) and a development node run-
ning Dummynet[2] to control the subnet’s bandwidth, latency,
and packet loss on a per-link basis, similarly to Emulab.

Each satellite in the emulated cluster will run two appli-
cations of different criticality levels: a cluster management
application and a CPU-intensive image processing application.
The cluster management application controls the (simulated)
satellite hardware (satellite state, propulsion system, etc.) to
maintain orbit and ensures safe cluster operation, therefore it is
run as a critical application. The image processing application
is not as critical and therefore runs in temporal partitions.

This application will demonstrate utility of the platform.
We will also show the initial research results from our work on
design time verification of properties such as network quality
of service (QoS) and component performance characteristics
for the applications developed and deployed on the platform.

Acknowledgments: This work was supported by the
DARPA System F6 Program under contract NNA11AC08C.

REFERENCES

[1] J. Alves-Foss, C. Taylor, and P. Oman, “A Multi-layered Approach to
Security in High Assurance Systems,” in Proceedings of the 37th Annual
Hawaii International Conference on System Sciences (HICSS ’04), 2004,
pp. 10–.

[2] M. Carbone and L. Rizzo, “Dummynet revisited,” SIGCOMM Computer
Communication Review, vol. 40, no. 2, pp. 12–20, Apr. 2010.

Software toolchain
for modeling,

synthesis, analysis,
and verification

Software platform
with support for

components,
resource sharing,
security, and fault

tolerance

Actor

Actor

OS

RT Middleware

Comp Deployment
Manager

Comp Comp

CompComp

Device Device Comm.
Device

Cluster Lead

Fig. 1. DREMS Overview : shown is the application development and deployment process and the parts of the DREMS platform used in each step. The software
toolchain consists of the modeling language, the constraint checking (i.e. information flow checks at configuration time, network admittance checks, and partition
schedulability checks), the code generation, and the verification tools. The software platform consists of the operating system services and the middleware
infrastructure code which provides all allowable services securely to the components. The management of the applications is also handled by dedicated platform
applications which are secure and maintain the lifecycle of the applications.

Fig. 2. Development system and DREMS cluster : The bottom right of the image shows the 3 computing nodes used for this application deployment; the left
screen shows their three corresponding satellites simulated in orbiter (which is communicating with the three nodes); and the right screen shows the application
development using the modeling tools.

Fig. 3. Network setup : This image shows an overview of the network between the nodes and the simulation and development machines shown in Figure 2.
Only satellite 1, which is the cluster leader, communicates with the ground network. When satellite 1 receives a command, e.g. scatter, from the ground network,
it relays it to the other satellites so that all satellites can perform the maneuver. All satellites communicate with Orbiter which simulates each satellite’s orbital
mechanics.

Fig. 4. Application activity log : Actors 1051,1052,1053, and 1054 belong to the CPU-intensive image processing application, which tries to consume as
much CPU as possible, but runs in temporal partitions at a lower priority than the cluster management application. Actors 1025,1026, and 1027 belong to the
critical cluster management application which is not constrained by temporal partitioning and runs at a higher priority than the image processing application.
The partition schedule of the four image processing application actors is shown at the bottom for reference; Actors 1051 and 1052 belong to partition 3 and
actors 1053 and 1054 belong to partition 2. The cluster management application activity is annotated in the activity log.

