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Abstract—The emerging Fog Computing paradigm provides an
additional computational layer that enables new capabilities in
real-time data-driven applications. This is especially interesting in
the domain of Smart Grid as the boundaries between traditional
generation, distribution, and consumer roles are blurring. This
is a reflection of the ongoing trend of intelligence distribu-
tion in Smart Systems. In this paper, we briefly describe a
component-based decentralized software platform called Resilient
Information Architecture Platform for Smart Systems (RIAPS)
which provides an infrastructure for such systems. We briefly
describe some initial applications built using this platform. Then,
we focus on the design and integration choices for a resilient
Discovery Manager service that is a critical component of this
infrastructure. The service allows applications to discover each
other, work collaboratively, and ensure the stability of the Smart
System.

I. INTRODUCTION

Emerging Trends: The emerging Fog Computing paradigm

provides an additional computational layer consisting of dis-

tributed computation and communication resources that can be

used to monitor and control physical phenomena close to the

source. It can also be used for fine-grained data collection, and

filtering before sending the data to a cloud service. Examples

of these Fog Computation platforms include SCALE [1] and

Paradrop[2]. However, while, the concept of Fog Computing

is promising, a number of challenges exist that must be

addressed. One of the foremost challenges is providing a stable

environment application development and deployment despite

the dynamism, heterogeneity, and increased failure potential

of computing resources at the edge which do not operate in

data centers or some other controlled environment.

A solution to this problem is a universal computing plat-

form, which provides the core services necessary for a stable

deployment environment. Services like time synchronization,

distributed data management and coordination, service dis-

covery, and mechanisms to deploy and remotely manage the

distributed applications.

RIAPS: Our team is developing the core architecture,

algorithms and programming paradigms for such a computing

platform called RIAPS (Resilient Information Architecture

Platform for Smart Systems) [3]. The pivotal concept of

the Smart Applications is the distribution of intelligence

throughout the infrastructure. For example, in the smart grid

domain, increasingly companies, communities, and even some

customers (or prosumers) are becoming managers of power.

This requires monitoring, control, and management software

applications at all levels to do their work. The centralized,

control-room oriented paradigm is not sustainable, as it does

not scale. Rather, a decentralized paradigm is required where

interacting software programs deployed on devices across the

network solve problems collaboratively. This is also true for

distributed traffic control where each intersection controller

must coordinate with other controllers based on contextual

and local information [4].

Innovation: This paradigm is very different from what

is being used today. In today’s systems, data is collected

locally and transferred to a central server or control room

where control decisions are made and control commands

are generated. These commands are then sent back to lo-

cal controllers, and actuators. This architecture incurs long

round-trip times, delayed decisions, and does not lend itself

to the needs of future edge applications [5] like energy

management [6]. The distinguishing characteristic of RIAPS

is the completely decentralized computing model: software

applications are distributed across a multitude of compute

nodes on a communication network, and each node has access

to local measurements and actuators. An application consists

of components that run in parallel on a collection of nodes. The

functionality of an application is realized by the network of

interacting components managed by actors. This computation

architecture is an extension of the F6COM computation model

[7] and [8]. The specific extensions are related to the discovery

services and the platform services that we discuss in the next

section.

Contributions: The contribution of this paper is the ar-

chitectural description of RIAPS (section II), a demonstration

with a development version of the platform implementing a

traffic control example (section II-B) showing some results

comparing the effectiveness of traffic control with distributed

coordination compared to no coordination. We also briefly dis-

cuss a microgrid application example on the platform. Using

these examples we motivate the need for a robust decentralized

discovery service (section II-D) as a critical service for the

resilience of the platform. Thereafter, we discuss the design

and implementation of the discovery service using a distributed

hash table (section III). We finally present experimental results

(section IV) on some discovery service metrics, and compare

our work with the state of the art (section V).

II. THE RIAPS COMPUTATION ARCHITECTURE

The goal of the RIAPS run-time system (see Fig 1) is to

provide a software foundation for building distributed applica-

tions. It relies on an underlying operating system and includes
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Fig. 1. RIAPS Run-Time System Architecture

two major ingredients: (1) a Component Framework, and (2)

a suite of Platform Managers. The Component Framework is

instantiated as a set of software libraries that are (dynamically)

linked with the application components, while the Platform

Managers are specialized operating system processes, imple-

mented as daemons in the Linux systems. These two ingredi-

ents provide the services that will be used by a developer in

supporting the implementation of the application logic. The

Component Framework layer is where the implementation

of the various middleware libraries reside. The goal of the

Component Framework is to provide higher-level abstractions

for building complex, resilient, distributed applications on the

platform. The middleware libraries include the component

scheduler (which implements the component execution seman-

tics), the component interaction library (that enables publish/-

subscribe and remote method invocation on the same node

or across the network. Having a formal interaction semantics

provide additional reasoning capabilities as shown in [9]).

Furthermore, the framework provides support for lifecycle

management support (that assists in remotely managing the

software components), the language run-time libraries, the

resource management support (to monitor computing platform

resource utilization/availability), the fault management support

(that detects and mitigates anomalies in software components),

the security library (for secure communication), the logging

library (to record component events), and the persistence

library (to allow the persistent storage of data). These libraries

are linked with the components used to create an application.

The Platform Managers layer includes the elements of

the application framework: the various platform services that

run as independent processes and implement system-level

management capabilities. The services include the Application

Manager (that enables remote installation and management

of the applications), the Distributed Coordination Manager

(that implements fault-tolerant distributed service like leader

election, consensus, coordinated actions, etc.), the Discov-

ery Manager (which determines available connections among

components on the same node or other operating nodes), the

Time Manager (that provides high-precision timing and time

synchronization services), the Resource Manager (monitors

computing resources to ensure components and Platform Man-

agers are able to run concurrently), the Fault Manager (that

provides node-level fault management services), the Device

Manager (that supports access to and management of attached

input/output devices), the Security Manager (that handles

authentication and manages keys and digital signatures), the

Log Manager (that serves as a single entry point to all log

activity on a node) and the Persistence Manager (that provides

non-volatile data storage facility).

The applications reside in the top layer (see figure 1) and

they rely on the the services provided by the Component

Framework and Platform Managers. One application consists

of one or more application managers, called actors, which

are deployed on computing nodes. Each actor hosts one or

more application components that interact solely through the

middleware interactions and rely on the available platform

services. The advantage of packaging multiple components

into one actor is that the cost of communication between

components in one actor is much smaller than across actors

running on the same node. The communication between actors

running on different nodes is even more costly, as the messages

have to go through a complex protocol stack and a (potentially

unreliable) network.

A. Component Architecture

A RIAPS component is a reusable unit of software that

implements a set of operations for manipulating its state,

and ports through which it communicates and interacts with

other components. A special port, called the timer port is also

available. It enables time-based triggering of the component.

The timing of the RIAPS component is controlled by the

Time Manager service that provides high-precision timing and

time synchronization services. This service is is not fully

implemented yet and will be discussed in a future work.

The operation of a component is analogous to a typical

computer process in the sense that each component is limited

to a single thread of computation. This thread is managed

by a trigger method which is provided by the developer of

the component. The trigger method monitors the state of

the component and launches operations when 1) the state of

the ports change, 2) a timer expires, or 3) an operation is

completed. These operations implement the application logic

of the component. The ports on the component are deter-

mined by the desired communication patterns which include

asynchronous request/response, synchronous client/server, and

publish/subscribe. Ports are assigned a message type and when

an application is deployed, the message types represent the

services provided or requested by the corresponding port. A

special component, called the device component has the same

attributes as application components however it may have

multiple threads of execution to handle interfaces to physical

devices.

To run an application the components are deployed on

computation nodes. The components on a particular compute

node are managed by actors. An actor provides its components

with the run-time code as well as the interfaces necessary to
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Fig. 2. Testbed

access platform services. Additionally the actor provides the

capabilities to control and configure its components remotely.

This is required to ensure that all the components of an

application can be installed and configured correctly. The

actor is responsible for loading a component, setting up its

configuration, and initializing its state.

B. Traffic Controller Example

In order to experiment with the RIAPS framework we

developed a traffic controller example. The example involves

a city simulation where the traffic lights in each intersection

are controlled by a traffic controller application implemented

with the RIAPS platform running on embedded single board

computers. The simulation sends simulated "sensor data" to

the intersection controllers consisting of the traffic density

for the incoming road segments, as well as the current state

of the traffic lights. Each intersection controller shares this

information with its neighboring controllers, and each uses the

information to estimate the traffic incoming on each segment.

This information is used to change the state of the traffic light

with the objective of improving the flow of traffic.

The testbed for this example can be seen in Figure 2. It con-

sists of a 32 BeagleBone Black [10] cluster connected through

an Ethernet switch to a computer running Cities:Skylines [11].

This game was chosen because it has the capability to simulate

the movements of hundreds of thousands of citizens, and it has

a rich game modification API with an active community. This

allowed us to modify the game to be able to control the traffic

lights with our embedded controllers.

The RIAPS application created for this test scenario in-

cludes an intersection controller, a light interface device, and

a density sensor device whose implementation can be seen in

listings 1, 2, and 3 respectively.

Listing 1. Intersection Controller Component
/ / I n t e r s e c t i o n C o n t r o l l e r component .
component IC ( p a r e n t =" none " ) {

t im e r c l o ck 1000 ;
sub d e n s i t y P o r t : gameDensityMsg ;
sub l i g h t P o r t : gameLigh tS ta teMsg ;
pub pubICPor t : ICDensi tyMsg ;

sub sub ICPo r t : ICDensi tyMsg ;
r eq s e t L i g h t s P o r t : ( s e tL i gh tReq , s e tL i g h tRep ) ;

}

Listing 2. Interface to Light device
d ev i c e L i gh t I F ( r a t e =10 , gameServe r IP =" h o s t " , p a r e n t

=" none " ) {
i n s i d e t r i g g e r /∗ d e f a u l t ∗ / ;
t ime r c l o c k 1000 ;
pub l i g h t P o r t : gameLigh tS ta teMsg ;
r ep s e t L i g h t s P o r t : ( s e tL i gh tReq , s e tL i g h tRep ) ;

}

Listing 3. Interface to Density sensor device
d ev i c e Den s i t yS en s o r ( r a t e =10 , gameServe r IP =" h o s t " ,

p a r e n t =" none " ) {
i n s i d e t r i g g e r /∗ d e f a u l t ∗ / ;
t ime r c l o c k 1000 ;
pub d e n s i t y P o r t : gameDensityMsg ;

}

The controller has 3 subscriber ports, a publisher port, a

request port and a timer. Two of the subscribers, lightPort
and densityPort are for reading sensor data from the game.

The lightPort has the message type of gameLightStateMsg

and is connected to the publisher port with the corresponding

message type in the light interface device when the application

is deployed. The densityPort is essentially equivalent. Each

intersection controller publishes the sensed density data at

intervals determined by the firing of the timer, and subscribes

to the density data published by the adjacent intersections.

The controller implemented in this example is fairly simple

in that the state switching occurs based on thresholds. The

thresholds ensure that a light remains in a particular state for

some minimum time but no longer than some maximum time,

similarly there are minimum and maximum density thresholds.
These components and devices of the application are con-

tained in an actor. The actor is responsible for managing

the components and devices and providing the interfaces to

platform services. As can be seen in listing 4 the actor contains

both devices and a controller and is used to specify several

parameters such as the IP address of the simulation machine.

The actor registers the ports of the components with the

Discovery Manager and if a matching message type is already

known to the Discovery Service the client will retrieve that

information and return it to the actor, which then sets up the

connections between corresponding components.

Listing 4. Actor
a c t o r Ac to r0 {

l o c a l gameDensityMsg , gameLightSta teMsg ,
s e tL igh tReq , s e tL i g h tRep ; / / Loca l message
t y p e s

{
i c : IC ( p a r e n t =" Acto r0 " ) ; / / I n t e r s e c t i o n

C o n t r o l l e r
LIF : L i g h t I F ( r a t e =2 , gameServe r IP

= " 1 9 2 . 1 6 8 . 0 . 1 0 7 " , p a r e n t =" Acto r0 " ) ; / / L i gh t
i n t e r f a c e d ev i c e

d s n s r : Den s i t yS en s o r ( r a t e =2 , gameServe r IP
= " 1 9 2 . 1 6 8 . 0 . 1 0 7 " , p a r e n t =" Acto r0 " ) ; / /
Den s i t y s e n s o r d ev i c e

}
}

127



Fig. 3. Mean traffic densities for each segment of each intersection controller.

1) Experimental Results: The traffic controller implemen-

tation was run comparing the densities of the segments when

running the controller with 1)only timer switching logic,

2)each controller checking its own density data and 3)each

each controller sharing data with its neighbors. The average

segment densities for these tests can be seen in Figure 3.

We see from these initial experiments that having the con-

trollers aware of their own densities decreases segment density,

and sharing that information improves the situation slightly.

In this study the densities were collected from the game by

querying the road segments surrounding the traffic lights. In an

actual implementation this will not work unless some sensor

is installed at each road segment. Another option to obtain

the data is for the cars themselves to publish their positions

and routes to the cars around them and that information is then

shared to the the intersection controller. This way the controller

does not have to guess how much traffic is coming on each of

its segments. In addition if vehicles are publishing their data,

emergency vehicles may also publish this information and

controllers switch to prioritize the emergency vehicle. In order

for such a system to be realistic it is critical that the vehicles

and lights are aware of each other. This motivates the need

for a discovery service which is able to quickly capture and

share ingress and egress information to intersection controllers

as vehicles come and go.

C. Microgrid Example

Another application for the RIAPS platform that is currently

under development is a decentralized controller for microgrids

As power requirements change or faults occur segments of

a connected grid may break off and become islands. It is

necessary that this information propagates quickly to the

controllers to ensure smooth operation and continuous service.

Similarly, when the islands re-connect to the main grid it is

Fig. 4. RIAPS Discovery Service Infrastructure

necessary for the components to discover each other and share

resource information. The objective is to handle the transients

between these states in clusters of controllers rather than at a

centralized location as this will improve scalability as well as

fault tolerance.

D. Requirements for the Discovery Service

In both use cases the set of member nodes can change over

time. For example, in a microgrid application, homeowners

can choose to disconnect themselves from their local photo-

voltaic grid and transfer themselves to the main utility grid.

Similarly, in the traffic controller example the lights can get

disconnected due to failures. Furthermore, the same system

can be extended to create a traffic priority system, where the

emergency vehicles entering an area can communicate with

the controller and can disengage when they exit the area.

Given these two use cases it is easy to see that the network

of communicating entities must be able to (a) know when

new nodes join the group and (b) know when nodes leave the

group. Furthermore, they must know when applications (and

their components) come and go - the Discovery Service is

expected to keep track of the state of the applications’ services

and message types. This service has to be distributed and

fault tolerant. A centralized implementation is insufficient, as

it does not scale and it can be a single point of failure. Fault

tolerance is needed as any node or communication link can fail

unexpectedly. These local failures must not result in system-

wide collapse. Hence, the Discovery Service must be available

on each node, and these instances need to share their state -

as needed - across the network.

III. DISCOVERY SERVICE

RIAPS aims to provide modular, decentralized solutions

for each service comprising the platform, so they can be

used in other applications. Therefore, the Discovery Service
runs on each node as an independent process and listens for

messages from the local RIAPS applications, and from other

nodes with a Discovery Service. Figure 4 shows the main

features of the service discovery: RIAPS applications register

app services by providing the related details to the discovery
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service(message types, communication protocols, IP addresses

and ports). The Discovery Service stores the app service details

and forwards the new information to the neighboring nodes.

When a RIAPS application requests an app service, it queries

the local Discovery Service and the results are asynchronously

sent to the RIAPS application.

The Discovery Service relies on OpenDHT [12] to store,

query, and disseminate the service details through the network.

OpenDHT is a fast, lightweight Distributed Hash Table (DHT)

implementation. The dissemination does not mean full data

replication on all nodes, OpenDHT stores the registered value

locally and forwards it to a maximum of eight neighbours.

Note that usage of distributed hash table for service discovery

does not distinguish the nodes, (i.e. there are no “server”

or “client” nodes) – nodes are peers and each operates with

the same rules. If a node disconnects from the network, the

Discovery Service on other nodes is still able to register new

services or run queries. If a new node joins the cluster, the

values stored in the network are available to the new node.

For this approach to flexibly handle node ingress and egress

it is necessary for the Discovery Services to find each other.

Note that there are two major cases for network configuration:

(i) the nodes are on the same local subnet or (ii) the nodes are

on different subnets of the network.

To find the available Discovery Service managers on the

same local subnet the RIAPS framework uses UDP-beacons.

Periodically, each Discovery Service instance announces (via

IPv4 UDP broadcast) its network address and listens for

incoming beacons. These UDP packets are sent and received

asynchronously and the Discovery Service managers maintain

the list of known addresses. Before a UDP packet is processed

by the Discovery Service the received beacons are filtered to

remove the non RIAPS-specific UDP messages. These mes-

sages function as a heartbeat. If no messages are received from

a known node during two time periods, then the Discovery

Service removes the silent node from the list of peers. When

a UDP beacon arrives from a new node the Discovery Service

stores the address of the new node in OpenDHT, which then

adds it to the list of known nodes.

Unfortunately the nodes in another subnet cannot be dis-

covered by UDP broadcasting; the remote addresses must be

passed explicitly to the Discovery Service. In this case, we

rely on designated gateways running the Discovery Service

with IP addresses of the other subnet (assuming that routing

is available between the subnets).

A. Handling the ingress and egress scenarios

In the previous section we mentioned that the DHT-based

service discovery forms 8 node clusters to share application

service registration data, but we did not discuss how the stored

data is used in RIAPS. When a RIAPS application starts, it

registers its services in the Discovery Service. The Discovery

Service stores this information in the DHT, and the DHT

propagates the new information through the cluster.

In the startup phase a RIAPS application not only announces

the provided services, but subscribes to needed services. If a

compatible service is already in the DHT, the Discovery Ser-

vice sends a notification to the requesting RIAPS application.

The application processes the newly arrived notification and

connects to the service. If the desired service is not available

the Discovery service will issue a callback to the requesting

application when it becomes available.

OpenDHT does not provide an API to remove a service

from the DHT. Instead a service may be removed by setting

an expiration value (the default being 10 minutes). After this

time the service is removed from the DHT. It also means that

value must be renewed periodically by the Discovery Service

if the application is running. Therefore, when a service stops

responding the manager does not remove it from the DHT

until the current registration expires.

B. Fault Tolerance

The Discovery Service is responsible for renewing the

registration of application services in the DHT. Renewal is

necessary, as the stored values are otherwise removed. Before

renewal the Discovery Service must check that the RIAPS

component service to be renewed is still running and available.

This means that the Discovery Service must handle the case

when an application service leaves the cluster abruptly, e.g. it

stops without sending a message.

We are currently implementing the next version of the

discovery service in which the service information is paired

with the Process ID (PID) of the actor. Namely, when an

application component registers a service then the PID of

the parent actor is also registered with a time-stamp in the

Discovery Service. The list of service/PID pairs are verified

periodically by checking if the PID is still running. If the

process has stopped, the Discovery Service removes the pair

and does not renew the registration at the next DHT refresh

point.

The components must be resilient as well, since the Discov-

ery Service could stop unexpectedly. If the Discovery Service

fails, the components and actors continue, but cannot receive

notifications about new services, and new actors cannot be

started (until the Discovery Service restarts).

Since the components are managed by actors, the compo-

nents do not implement any discovery checking algorithm. The

connection with the Discovery Service is maintained by the

actors. The approach for the actor checking Discovery Service

liveness is the same as Discovery Service checking compo-

nents. The actor knows the PID of the Discovery Service and

maintains a time stamp. If the PID of the Discovery Service

is not in the list of the running processes, the actor starts a

re-initialization process. Reinitialization means, that the actor

re-registers the running RIAPS services in a new Discovery

Service instance and subscribes to the services needed. If the

discovery service dies, the actors are informed and they re-

register to recreate the state within the discovery service.

IV. TESTS FOR THE DISCOVERY SERVICE

To test the discovery service we ran a few tests. The first

was to initialize all but one node as subscribers. Once ready,
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Fig. 5. This figures shows the time between when the publisher registers with
the Discovery service and the time when the subscribers receive notification of
that service for the tests involving 5, 9, 17, and 32 beaglebones. Several data
points were very close to each other, and so overlap in the plot. The ranges of
the overlapping nodes are Test 1: 4 nodes(1-7ms), Test 2: 7 nodes(18-32ms)
1 node(2.032s), Test 3: 16 nodes(2-23ms), Test 4 : 12 nodes(27-35ms), 18
nodes(2.041-2.056s), 1 node(2.276s)

the final node was added as a publisher service. This provides

events for measuring service propagation time through the

cluster. The node clocks are synchronized with NTP, making

measurements across the cluster meaningful as their times-

tamps are within 300ms of each other. This test is relevant

to the traffic light example because as vehicles move through

the city they enter and exit new clusters which collectively

transmit their density to the traffic controller allowing the

controller efficiently route traffic.

There are several measurements taken for this test. The first

is the “Register service" step (s1) where each node informs

the Discovery Service of which services it provides and which

it requires. As mentioned this occurs first for all of the

subscribers, then the publisher. The Discovery Service stores

which service the subscriber is interested in, and when that

service is available the Discovery service sends a message to

the component’s actor, this is the second measurement (s2).

We assume the difference between this time and the publisher

service registration time to be the time needed to propagate

a new service through the DHT. The third time-stamp (s3) is

when the actor notifies the corresponding component of the

new service. The final time-stamp (s4) is when the subscriber

is connected to the publisher. These events can be visualized

using Figure 4 as a reference. The duration of steps 1 and 2 are

the time stamp of the publisher registration and the subscriber

s1 and s2 timestamps respectively. The duration of step 3 is

s3-s2 and the duration of step 4 is s4-s3.

The test was run utilizing Zopkio [13]; a testing framework.

We can see the result for step 2 in Figure 5. The time between

the first subscriber registration and the publisher registration

(step 1) is linear as nodes increase due to the implementation

of deployment in Zopkio as a sequential process. Steps 3 and

4 take between 5 and 12ms.

As the accuracy of the clock between nodes is about 300ms

the 5, 9, and 17 node tests are indistinguishable, however the

jump in time for the 32 node experiment suggests further tests

Fig. 6. The plot here has two Beaglebones on the y axis. The points denote
the events (s1-s4) for each Beaglebone when BBB2 rejoins the cluster. The
two zoom in boxes show the events in detail as they happen on timescales
on the order of milliseconds. At the beginning of this test two nodes were
started. After some time BBB2 was rebooted. In the zoomed box between
times 340 and 341, the first event shown is s1 for BBB2 when it registers
its publisher service. The s2 event for BBB1 is when BBB1 receives the
notification of BBB2’s service 14ms after BBB2 registers it. 4 and 10ms
later BBB1 notifies it’s requesting component and that component connects
to the publisher respectively. Towards the end of the first zoom in box we
see s2, 3, and 4 events when BBB2 receives notification of its own service.
The second zoom in box between 342 and 343 seconds shows BBB2 again
receiving notification of its own publisher. Covered by the second zoom in
box at 344.5 seconds BBB2 finally receives notification of the publisher on
BBB1. There is some behavior where a new node receives notification of the
first service it discovers twice.

are needed to verify scalability. The times for steps 3 and 4

after notification are not relevant for this service propagation

test and are of short duration as we see in the next test.

The second test consists of two nodes each requesting and

providing a publisher service. This means that each node

subscribes to itself and all others. The test is to have one node

exit and later rejoin the cluster. This is to verify that nodes

recover and provide services reliably after egress events. The

result of this test is shown and described in Figure 6

From this test we do see that when BBB2 rejoined all

services were re-established.

V. RELATED LITERATURE

Resource discovery is a critical aspect of distributed appli-

cations. Zookeeper, which was originally developed to provide

a distributed, eventually consistent hierarchical configuration

store [14] has been adapted to serve as a resource discovery

service. The infrastructure of Zookeeper includes sending noti-

fications to clients, so service discovery has been implemented

with it. However it is difficult to deploy and maintain, it also

prioritizes consistency over availability [15]. This means that

in a network with nodes joining and leaving new applications

will be blocked waiting for resources while the service dis-

covery waits for consistency before allocating resources. For

highly dynamic systems, like the traffic example, a paradigm

that prioritizes consistency is fundamentally flawed when

attempting service discovery. Responding to this need Apache
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released Apache Helix which resolves some problems [16] but

the fundamental issues are still present.

Another tool developed specifically for resource discovery

is Consul from Hashicorp [17] which is the industrial state-of-

the-art. Consul provides several higher level features such as

health checking and distributed configuration management. It

relies on servers to store and replicate the resource discovery

data. It is recommended to have several consul servers for

fault-tolerance. With several servers one is elected as a leader,

using Raft-based consensus, in order to guarantee consistency

between servers. This means that Consul too has the prob-

lems associated with prioritizing consistency over availability

because in a dynamic system a device chosen as a server

may leave resulting in a lack of quorum. To combat this, it

is possible to make every node a server but in high device

density, or resource limited situations there are issues with data

replication since every node will replicate the key/value store.

An alternative is Serf, another tool from Hashicorp which

is not as fully featured as Consul, but rather than using an

always consistent model it has an eventually consistent model,

prioritizing availability. Serf does not have a central server,

making it more resilient. The problem with Serf is that it was

developed for node discovery rather than service discovery and

so would need extensions to provide the service discovery. In

[15] the authors create a docker container for Serf calling it

Serfnode and using it for service discovery.

Hoefling et al. in [18] present some extensions to the C-

DAX [19] middleware. C-DAX is a middleware developed

to be a cyber-secure and scalable middleware for the power

grid. The authors do not discuss the security aspects of C-

DAX but rather reference papers demonstrating these features.

Scalability in C-DAX is achieved using a cloud and broker

based publish/subscribe mechanism, making it more scalable

than client/server patterns. The extensions presented by Hoe-

fling are to address weaknesses in the C-DAX middlware with

respect to interoperability with legacy applications such as

SCADA, and low latency applications such as synchrophasor-

based Real-Time State Estimation of Active Distribution Net-

works (RTSE-ADN). SCADA relies on bidirectional commu-

nication, so the authors implement a new client which consists

of both a publisher and a subscriber to communicate with

IP-based applications like SCADA using a tunnel-adapters

and virtual network interfaces. The clients communicate using

the C-DAX middleware. For low latency applications such as

synchrophasor-based RTSE-ADN the authors present a method

of connecting publishers directly to subscribers, without a

broker reducing network traffic and the number of network

hops required. The problems with this approach are those that

impact all cloud-based systems. As devices increase so does

cloud traffic, and latency. Therefore in the end edge computing

will be necessary.

In our work on RIAPS, we are interested in similar issues

regarding latency, however rather than relying on cloud based

centralized databases and resolvers we use a Distributed Hash

Table (DHT) to track the participants in the network and

have the nodes discover one another. The removal of the

cloud allows us to achieve single hop connections between

publishers and subscribers as done in [18] but rather than

needing to 1) send a join message to a Designated Node

in the cloud which 2) queries the Resolver (the look up)

for the address of the topic specific database, then 3) have

the Designated node connect to the database and request the

subscribers or publishers for the topic so that 5)the publisher

or subscriber can update its connection rules we can simply

1)look up in our DHT Discovery Service for the message type

we are interested in, 2)receive the address and 3)connect.

Data Distribution Service (DDS) is a “middleware protocol”

and API open standard for data-centric connectivity" published

by Object Management Group (OMG) [20]. There are many

implementations of the DDS standard which vary according by

developer. In order to promote interoperability between DDS

implementations OMG introduced the Real-Time Publish-

Subscribe (RTPS) protocol which was designed for DDS. The

main features of RTPS[21] include fault tolerance, plug-and-

play connectivity (allowing for dynamic ingress and egress

with automatic discovery), capability to implement trade-offs

between reliability and latency, scalability, modularity allow-

ing constrained devices to run a subset of the standard[22]

and still communicate with the network, and type-safety to

prevent mismatched endpoints from connecting. However, the

tremendous complexity of the DDS discovery service due

to the several QoS options make it very difficult to use.

Furthermore, the discovery service is tightly integrated with

DDS and is not suitable for other platforms.

In [23], Cirani et al. present work on global and local

service and resource discovery for the Internet of Things. To

handle resource discovery the authors present an IoT Gateway.
For local networking there are two ways a device can join a

network. If it is aware of a IoT gateway it can join and send

its resource information to it, or it can wait for a message

broadcast from the gateway alerting the device to its presence.

The addresses and resources of devices are added to the

gateway which acts as a service look-up to the other devices

in the local network and a service provider to external IoT

gateways. For IoT gateways to discover and communicate with

each other the authors present two P2P overlays. The first is

the distributed geographic table (DGT). This table is similar

to a distributed hash table but rather than the replicated data

being based on hash value assignments the storage is based

on the geographic location. This makes it deterministic. For a

device to make itself known on a network it contacts a known

gateway and shares its location to the DGT. The DGT shares

this among the peers and informs the device of other gateways.

Once the gateways are known, requests can be made for lists of

services that can be accessed and this information is added to

the distributed location service which is the other P2P overlay.

In [24] the authors present several important issues in

IoT systems including standardization, mobility, networking

and Quality of Service support. To address these issues they

present an architecture which combines DDS with software

defined networking (SDN). DDS is responsible for providing

discovery and communication between heterogeneous devices
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within a domain. However DDS is for local networks. SDN

is used to allow communication outside of the local network.

By decoupling the control plane from the forwarding plane

a SDN controller can provide network interfaces to the local

network and when requests can not be filled locally it allows

for forwarding rules to be defined, to pass messages to other

networks. It is not clear from the paper how the SDN nodes

find each other.

Compared to these solutions, one of the key benefits of

our discovery service is that it is completely isolated and

compartmentalized from the rest of the framework. In fact, we

have seamlessly moved from an earlier Redis based discovery

service (not described in this paper) to the DHT based discov-

ery service mentioned in this paper as a drop-in replacement.

This is due to the abstraction of register, query, and response

interfaces as described in figure 4.

VI. DISCUSSION AND CONCLUSIONS

Fog computing provides new opportunities for distributed

applications and analytics. However as the domain becomes

more complex, tools are necessary to assist developers in

creating applications by handling the implementation details.

One of these details is service discovery.

Service discovery is an essential aspect of fog and edge

computing particularly in dynamic environments. The current

mechanisms for handling dynamic discovery are generally

ill-equipped as they rely on a central server resulting in

increased latency and a single point of failure, or they prioritize

consistency over availability which can prevent application

deployment if there is a fractured quorum. For highly dynamic

discovery, which prioritizes utility over consensus, the only

options do not include discovery of services. This means

that service discovery would be an addition. From our initial

experiments using distributed hash tables to provide a dynamic

discovery service we see that it is tolerant to egress/ingress

scenarios and is able to scale to at least 32 nodes.

We have shown some example applications on the RIAPS

platform and demonstrated our prototype discovery service

which allows for fault tolerant dynamic discovery. There

is additional work to be done to verify and improve the

capabilities of the platform but the outlook is promising.
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