
Feature Article: DOI. No. 10.1109/MAES.2019.2905921

Enabling Strong Isolation for Distributed Real-Time
Applications in Edge Computing Scenarios
Abhishek Dubey, William Emfinger, Aniruddha Gokhale, Pranav Kumar,
DanMcDermet, Ted Bapty, Gabor Karsai, Institute for Software-Integrated
Systems, Vanderbilt University, Nashville, USA

INTRODUCTION

With the advent of the cloud-computing paradigm,

systems requiring intensive computations over large

volumes of data have relied on the usage of shared data

centers to which they transfer their data for processing.

This paradigm provides a powerful scheme for appli-

cations benefiting from deep processing and data avail-

ability. It also gives rise to nontrivial problems,

however, to meet the requirements of time-sensitive

applications that require processing close to the source

of data. While not always hard real-time in the strict

sense, such applications are strongly coupled to the crit-

ical processes in the physical system and must be

responsive, i.e., they must be low latency. Examples of

such applications include a) wind turbine farm, where

variations in wind patterns creates both control chal-

lenges (such as determining the speed and power to

generate from each area) and system management chal-

lenges (such as predictive health management and prog-

nosticating the remaining time to maintenance), b)

transportation networks, where a set of cameras are

used to capture video frames, which are then analyzed

in real time to estimate the traffic densities, which can

then be used to control the timing of the traffic lights,

and c) CubeSats, where real-time data are collected and

analyzed to predict the remaining useful life of battery

and identify if anomalies are occurring [1]. In all these

cases the delay incurred by data propagation across the

backhaul communication network is not suited to serve

the needs of applications we focus on, which require

(near) real-time response or high Quality of Service

(QoS) guarantees. The backhaul data handling latency

can become severe in the unpredictable occasions where

the network throughput is limited.

Consequently, to address these needs, the research

community has embraced a number of paradigms such

as edge computing, cloudlets, fog computing, dispersed

computing, mist computing, etc., [2]. At the core of all

these paradigms is the idea that is similar to cloud

computing: the sharing of computing and communica-

tion resources among colocated, multitenant applica-

tions. However, most commercial and research

solutions for these technologies either choose con-

tainer-based virtualization (e.g., docker) [3] or virtual

machine-based virtualization [4], both of which do not

necessarily provide the levels of strong isolation

between critical applications that we desire in the mili-

tary and space computing domains. Strong isolation in

our context includes all of the following: 1) non-

bypassable, mandatory access control on all shared (or

shareable) resources; 2) temporal isolation among

time-sensitive applications; 3) control over potential

side-channels to prevent information leakage; and

4) fault containment applied to applications. Such iso-

lation is very critical if the system contains one or

more mixed-criticality applications, potentially sourced

from different vendors, to handle multiple complex

activities [5]. These applications, containing multiple

processes of different criticality, require strict isolation

with respect to resource guarantees, faults, and security

[6]. Such requirements imply that an application’s per-

formance, the faults it encounters, or life cycle changes

it goes through should not in any way impact an appli-

cation residing in another isolation group [7]. Such

critical applications are found particularly in military

and space applications, including satellite clusters

as demonstrated by NASA’s Edison Demonstration

of SmallSat Networks, TanDEM-X, PROBA-3, and

Prisma from ESA, and DARPA’s System F6.

Authors’ current addresses: A. Dubey, W. Emfinger,
A. Gokhale, P. Kumar, D. McDermet, T. Bapty, and
G. Karsai, are with the Institute for Software-Integrated
Systems Vanderbilt University, Nashville, TN 37235,
USA. E-mail: (abhishek.dubey@vanderbilt.edu).
Manuscript received September 1, 2018, revised
December 31, 2018; accepted March 14, 2019, and ready
for publication March 26, 2019.
Review handled by M. D. R-Moreno.
0885-8985/19/$26.00 � 2019 IEEE

32 IEEE A&E SYSTEMS MAGAZINE JULY 2019

To understand the application isolation challenges

concretely, let us consider an example of a satellite clus-

ter. This cluster needs a distributed application that coor-

dinates the orbits across all the CubeSats ensuring they do

not collide. This safety-critical cluster flight application

(CFA) can also make the satellites scatter away from each

other if it detects a threat. Running concurrently with the

CFA, image processing applications (IPA) utilize the sat-

ellites’ sensors and consume much of the CPU resources.

IPAs from different vendors may have different security

privileges and so may have controlled access to sensor

data. Sensitive camera data must be compartmentalized

and must not be shared between these IPAs unless explic-

itly permitted. These applications must also be isolated

from each other to prevent performance interference

impact or fault propagation between applications due to

lifecycle changes. However, the isolation should not waste

CPU resources when critical applications are dormant

because, for example, a sensor is active only in certain

segments of the satellite’s orbit. Other applications should

be able to opportunistically use the computing resources

during these dormant phases. That is, the highly con-

strained resources of the cluster should not be idly wasted

if there are applications waiting for such resources.

Additionally, the applications should be allowed to com-

municate only on authorized channels so that they cannot

be used for receiving and send unauthorized information.

This is one of a key requirement if the platform must be

used in any critical mission.

One technique for implementing strict application

isolation is temporal and spatial partitioning of processes

(see [8]). Spatial separation provides a hardware-sup-

ported, physically separated memory address space for

each process. Temporal partitioning provides a periodically

repeating fixed interval of CPU time that is exclusively

assigned to a group of cooperating tasks. Note that strictly

partitioned systems are typically configured with a static

schedule; any change in the schedule requires the system to

be rebooted [8]. However, such strict isolation is only avail-

able in commercial ARINC-653 implementations and is typ-

ically too expensive for shared edge computing deployments

like CubeSats. Thus, we have developed an operating sys-

tem called COSMOS based on Linux. COSMOS is an exten-

sion of the DREMS-OS described in [9] called DREMS [7].

Extending the description in [9], in this paper, we describe

the full architecture of the operating system including the

secure communication layer, which ensures that the applica-

tions remain isolated, and the health management architec-

ture, which ensures that the operating system can handle

errors and recover upon detecting those errors.

The outline of this paper is as follows. We start by pro-

viding a description of Distributed Real-time Managed

Systems in Section DISTRIBUTED REAL-TIME MAN-

AGED SYSTEMS. Then, we discuss the operating system

layer in Section COSMOS: THE OPERATING SYSTEM

LAYER. This operating system is an extension of the

system, which was described briefly in our prior work [9].

Specifically, we discuss the scheduling and CPU resource

cap, a feature to provide work conserving behavior in

Section SYSTEM SCHEDULER CONCEPTS. Thereafter,

we describe the security concepts implemented in the oper-

ating system in Section SECURITY ARCHITECTURE.

Health management and Fault Management architecture

is discussed in Section HEALTH MANAGEMENT

AND FAULT MANAGEMENT (HMFM) SUBSYSTEM.

We finally conclude with three examples.

DISTRIBUTED REAL-TIME MANAGED SYSTEMS

Distributed real-time managed systems (DREMS) consist

of multiple coordinated computing resources with several

embedded system applications running on the resources.

Our implementation of this architecture described in [10]

consists of two major subsystems: 1) a design-time tool-

suite for modeling, analysis, synthesis, implementation,

debugging, testing, and maintenance of application soft-

ware built from reusable components, and 2) a run-time

software platform for deploying, managing, and operating

application software on a network of computing nodes.

The platform is tailored toward a managed network of

computers and distributed software applications running

on that network: a cluster of networked nodes.

JULY 2019 IEEE A&E SYSTEMS MAGAZINE 33

Software applications running on the DREMS plat-

form (see figure 1) are distributed: an application consists

of one or more actors that run in parallel, typically on dif-

ferent nodes of a network. Actors specialize the concept

of processes: they have identity with state, they can be

migrated from node to node, and they are managed

remotely. Actors are created, deployed, configured, and

managed by a special service of the run-time platform: the

deployment manager—a privileged, distributed, and fault

tolerant actor, present on each node of the system, that

performs all management functions on application actors.

An actor can also be assigned a limited set of resources of

the node it runs on: memory and file space, a share of

CPU time, and a share of the network bandwidth. The

operating system, which is the focus of this paper, imple-

ments all the critical low-level services to support resource

sharing (including spatial and temporal partitioning), actor

management, secure (labeled and managed) information

flows, and fault tolerance.

COSMOS: THE OPERATING SYSTEM LAYER

COSMOS is a real-time operating system that allows

system integrators to configure and execute processes

of applications on a single computing node within the

DREMS architecture. The core capabilities provided by

the operating system are strong resource isolation and

secure communication capabilities. The basis of that

approach is the partitioning services baked into the

operating system. These partitions enable cooperating

processes called actors to work collaboratively, while

being limited by the isolation policies by design. Pro-

cesses within a partition execute concurrently with each

other and are scheduled according to their associated

priority. The priority of a process can be modified by

any process in the partition (including itself). Processes

can also suspend and resume other processes and enable

or disable scheduling preemption. Within a partition,

processes communicate with each other using four

mechanisms: Blackboards (shared memory), Buffers

(queues), Events, and Semaphores.

Temporal isolation in COSMOS is provided by the par-

tition scheduler, which determines the time slots in which

each partition can run. A continually repeating slice of time

called a hyperperiod is divided into one or more nonover-

lappingminor frames. A sequence of minor frames is called

a major frame. Each minor frame consists of an offset from

the start of the hyperperiod and a duration, along with one

assigned partition that runs during this period. These minor

frames can be of different durations and there can (and

should) be gaps of time between the partitions to allow

time for background operations of the kernel to run. This

schedule is also defined in the configuration file and is fixed

at run time. See Figure 2 for reference.

Each partition is managed by a separate Linux kernel

thread and is assigned a unique name and an integer iden-

tifier (ID). An ID of 0 is reserved for the system partition,

which is the initial thread that configures and launches the

user-level partitions. The code written for each partition

executes in user mode only—no privileged capabilities

are permitted. In addition to spatial and temporal partition-

ing, each partition also has its own view of the file system,

which means it has a unique file system directory from

which it runs in a chroot jail, as well as its own storage

allocation quota, file descriptors, access rights, storage

device identification, and volume name aliasing.

Runqueues and System Partition: The system partition

(ID 0) is created and scheduled along with other partitions to

provide the system capability to schedule management

tasks, for example, system-level health management.

To support the different levels of criticality (both regular

partitions and the System partition), we extend the runqueue

data structure of the Linux kernel [11]. A runqueue main-

tains a list of tasks eligible for scheduling. In amulticore sys-

tem, this structure is replicated per CPU. In a fully

preemptive mode, the scheduling decision is made by evalu-

ating which task should be executed next on a CPUwhen an

interrupt handler exits, when a system call returns, or when

the scheduler function is explicitly invoked to preempt the

current process. We created one runqueue per temporal par-

tition per CPU. Currently, the system can support 64 Appli-

cation partitions. One extra runqueue is created for the tasks

in the System partition. The OS also supports best effort

tasks per partition. These tasks are managed through the

Figure 2.
Major frame. The four partitions (period, duration) in this frame

are P1 (2 s, 0.25 s), P2 (2 s, 0.25 s), P3 (4 s, 1 s), and P4 (8 s, 1.5 s).

Figure 1.
The distributed real-time managed systems architecture.

Enabling Strong Isolation for Distributed Real-Time Applications in Edge Computing Scenarios

34 IEEE A&E SYSTEMS MAGAZINE JULY 2019

Linux Completely Fair Scheduler (default) runqueue (one

per partition) and are considered for execution during a

partition’s time slice if no real-time task is eligible to be run.

SYSTEM COMPONENTS AND INITIALIZATION

Figure 3 shows the concise view of the system compo-

nents and how it builds on top of the standard Linux

kernel. cosmos_init is a system script responsible for

setting up the partitions. It runs within the system parti-

tion. Figure 4 shows cosmos_init running as a system

partition and creating the other user partitions based on

the specifications in the configuration file, which it sets up

as per partition data structures in the kernel. Thereafter,

each partition is created using the kernel clone command

to create a new process. It uses the CLONE_NEWIPC and

CLONE_NEWPID options to indicate that this process is

to use a separate interprocess communication namespace

and PID namespace from the parent. CLONE_NEWIPC

provides isolation for each partition when using System V

IPC objects and POSIX message queues by only allowing

other members of the namespace to access those objects.

CLONE_NEWPID isolates the PID assignments in each

partition such that the numbering will start with 1. The

master process can use further fork calls to start up new

process within the partition.

Once all partitions are set, cosmos_init completes its

setup and launches the module by setting the module’s state

toNORMAL. It now performs a loop ofwaitpid() opera-

tions using the pid of the master process for each partition

that was started. This call is invoked with WNOHANG to

return immediately with the process status to determine if

any of themaster processes have terminated.When amaster

process terminates, it terminates all the other processes in

the partition to shut the partition down and reclaim all of

its resources. The death of a master process indicates that its

partition has terminated. The exit code and signal are

returned by the process to this waitpid() call, which can

then identify the reason for the termination.

Table 1 summarizes the key concepts in the operating

system and describe their Linux analog.

SYSTEM SCHEDULER CONCEPTS

In this section, we describe the key concepts of the COS-

MOS operating system. We specifically focus on the CPU

resource cap, the partition scheduling loop, and the ability to

configure the module’s partition schedule without resetting

the module.

CPU RESOURCE CAP

Once the module is configured by the cosmos_init

process, it is set to the NORMAL state which enables it

to start scheduling the tasks of each partition. However, to

ensure that there is still some time for the system partition

(hosting system level critical tasks) to run, we configure

an upper limit called CPU Cap for all regular partitions.

Specifically, the cap enables us to provide scheduling fair-

ness within a partition (measured across a hyperperiod).

Between criticality levels (application and system

Figure 3.
Different components of a COSMOS module. The linux kernel is

isolated from the user space by special ARINC-653 and POSIX

system calls defined in the Future Airborne Capability Environ-

ment Standard 12. Each module consists of a configuration file

that defines the module schedule and the partitions. Upon reset,

the partition logs can be copied over for introspection. The user-

space application programs interact with the operating system

using the C and ARINC 653 8 libraries.

Figure 4.
Partition and process hierarchy in COSMOS operating system. The

partitions and process show are just an example. The cosmos_init

is the master process which spawns all the partition and starts a

master process. The master process within each partition launches

individual partition. Once all partitions are created the module

state is set toNORMAL.

Dubey et al.

JULY 2019 IEEE A&E SYSTEMS MAGAZINE 35

partitions), the CPU cap provides the ability to prevent

higher criticality tasks from starving lower criticality tasks

of the CPU. At the Application level, the CPU cap is used

to bound the CPU consumption of higher priority tasks to

allow the execution of lower priority tasks inside the

same partition. If the CPU cap enforcement is enabled,

then it is possible to set a maximum CPU time that a task

can use, measured over a configurable number of major

frame cycles.

The CPU cap resource for a task is converted into a

ceiling of execution time, which is measured overN major

frames. The number of major frames over which the CPU

cap ceiling is calculated is configurable at compilation

time. When CPU cap is enabled, the scheduler maintains a

counter for all tasks. The scheduler also maintains the cur-

rent execution time of each task since the start of the CPU

cap window. Note that at the beginning of each CPU cap

window, the execution time of the task is reset to zero

whereas the counter is reset after the number of major

frame cycles over which the cap was specified elapses.

The counter is used when making a scheduling deci-

sion, which requires consideration of whether a task is

ready and whether the task has surpassed its CPU cap

quota. At every invocation of the scheduler, the execution

time for the task is updated and compared against the

execution time ceiling of the currently running task.

If the task has surpassed its CPU cap quota within the

CPU cap window, its disabled flag is set to true.

The CPU cap is enforced in a work conserving man-

ner, i.e., if a task has reached its CPU cap but there are no

other available tasks, the scheduler will continue schedul-

ing the task past its ceiling. In case of Critical tasks, when

the CPU cap is reached, the task is not marked ready for

execution unless 1) there is no other ready task in the sys-

tem; or 2) the CPU cap accounting is reset. This behavior

ensures that the kernel tasks, such as those belonging to

network communication, do not overload the system, for

example, in a denial-of-service attack. For the tasks on the

Application level, the CPU cap is specified as a percentage

of the total duration of the partition, the number of major

frames, and the number of CPU cores available all

multiplied together. When an Application task reaches the

CPU cap, it is not eligible to be scheduled again unless the

following is true: either there are no Critical tasks to

schedule and there are no other ready tasks in the partition

or the CPU cap accounting has been reset.

MAIN SCHEDULING LOOP

A periodic “tick” running at 250 Hz (The kernel tick value

is also called “jiffy” and can be set to a different value

when the kernel image is compiled.) is used to ensure that

a scheduling decision is triggered at least every 4 ms. This

tick runs with the base clock of CPU0 and executes a pro-

cedure called GlobalTick in the interrupt context only on

CPU0. This procedure enforces the partition scheduling

and updates the current minor frame and hyperperiod start

time (HP_start). The partition schedule is determined by

a circular linked list of minor frames which comprise the

major frame. Each entry in this list contains that parti-

tion’s duration, so the scheduler can easily calculate when

to switch to the next minor frame.

After the global tick handles the partition switching,

the function to get the next runnable task is invoked. This

function combines the mixed criticality scheduling with

the temporal partition scheduling. For mixed criticality

scheduling, the Critical system tasks should preempt the

Application tasks, which themselves should preempt the

Best Effort tasks. This policy is implemented by the Pick_-

Next_Task subroutine, which is called first for the system

partition. Only if there are no runnable Critical system

tasks and the scheduler state is not inactive, i.e., the appli-

cation partitions are allowed to run (The OS provides sup-

port for pausing all application partitions and ensuring

that only the system partition is executed.) will Pick_-

Next_Task be called for the Application tasks. Thus, the

scheduler does not schedule any Application tasks during

a major frame reconfiguration. Similarly, Pick_Next_Task

will only be called for the Best Effort tasks if there are

both no runnable Critical tasks and no runnable Applica-

tion tasks.

Table 1.

Summary of Key Terms Used in the COSMOS Operating System

Process A process in the COSMOS operating system is similar to a thread in Linux.

Actor An actor is a collection of processes implemented by a vendor for some application.

Partition A partition is a temporal slice where different actors of applications at similar criticality

level can be collocated

Application An application is a group of partition definitions and actor definitions provided by a

vendor for a specific goal.

Module A module is a computing node. It is configured using a configuration file.

Enabling Strong Isolation for Distributed Real-Time Applications in Edge Computing Scenarios

36 IEEE A&E SYSTEMS MAGAZINE JULY 2019

The Pick_Next_Task function returns either the high-

est priority task from the current temporal partition (or the

system partition, as application) or an empty list if there

are no runnable tasks. If CPU cap is disabled, the Pick_-

Next_Task algorithm returns the first task from the speci-

fied runqueue. For the best effort class, the default

algorithm for the Completely Fair Scheduler policy in the

Linux kernel [13] is used.

If the CPU cap is enabled, the Pick_Next_Task algo-

rithm iterates through the task list at the highest priority

index of the runqueue because unlike the Linux scheduler,

the tasks may have had their disabled bit set by the sched-

uler if it had enforced their CPU cap. If the algorithm finds

a disabled task in the task list, it checks to see when it was

disabled; if the task was disabled in the previous CPU cap

window, it re-enables the task and sets it as the next task.

If, however, the task was disabled in the current CPU cap

window, the algorithm continues iterating through the task

list until it finds a task which is enabled. If the algorithm

finds no enabled task, it returns the first task from the list

if the current runqueue belongs to an application partition.

This iteration through the task list when CPU cap

enforcement is enabled increases the complexity of the

scheduling algorithm to OðnÞ, where n is the number of

tasks in that temporal partition, compared to the Linux

scheduler’s complexity of Oð1Þ. Note that this complexity

is incurred when CPU cap enforcement is enabled and

there is at least one actor that has partial CPU cap (less

than 100%). In the worst case, if all actors are given a

partial CPU cap, the scheduler performance may degrade

necessitating more efficient data structures.

To complete the enforcement of the CPU cap, the

scheduler updates the statistics tracked about the task and

then updates the disabled bit of the task accordingly.

Figure 5 shows the above-mentioned scheduler decisions

when CPU cap is placed on processes that share a

temporal partition. To facilitate the analysis, the scheduler

uses a logging framework that updates a log every time a

context switch happens. Figure 5 clearly shows the lower

priority actor executing after the higher priority actor has

reached its CPU cap.

DYNAMIC MAJOR FRAME CONFIGURATION

One of the innovations in this architecture is that the initial

configuration process (described earlier) can be repeated

at any time without rebooting the node: the kernel receives

the major frame structure that contains a list of minor

frames and it also contains the length of the hyperperiod,

partition periodicity, and duration. Note that major frame

reconfiguration can only be performed by an actor with

suitable capabilities (controlled using the POSIX Capabil-

ity model).

Before the frames are set up, the process configuring

the frame has to ensure that the following three con-

straints are met: C0) The hyperperiod must be the least

common multiple of partition periods; C1) The offset

between the major frame start and the first minor frame

of a partition must be less than or equal to the partition

period: ð8p 2 PÞðOp
1 � fðpÞÞ; C2) Time between any

two executions should be equal to the partition period:

ð8p 2 PÞðk 2 ½1; NðpÞ � 1�ÞðOp
kþ1 ¼ Op

k þ fðpÞÞ, where

P is the set of all partitions, NðpÞ is the number of parti-

tions, fðpÞ is the period of partition p, and DðpÞ is the

duration of the partition p. Op
i is the offset of ith minor

frame for partition p from the start of the major frame

and H is the hyperperiod.

The kernel checks two additional constraints: 1) All

minor frames finish before the end of the hyperperiod:

ð8iÞðOi:startþOi:duration � HÞ and 2) minor frames

cannot overlap, i.e., given a sorted minor frame list (based

on their offsets): ð8i < NðOÞÞðOi:startþOi:duration �
Oiþ1Þ, where NðOÞ is the number of minor frames. Note

that the minor frames need not be contiguous, as the update

procedure fills in any gaps automatically.

If the constraints are satisfied, then the task is moved

to the first core, CPU0 if it is not already on CPU0. This is

done because the global tick (explained in the next sec-

tion) used for implementing the major frame schedule is

also executed on CPU0. By moving the task to CPU0 and

disabling interrupts, the scheduler ensures that the current

frame is not changed while the major frame is being

updated. At this point, the task also obtains a spin lock to

ensure that no other task can update the major frame at the

same time. In this procedure, the scheduler state is also set

to APP_INACTIVE (see Table 2) to stop the scheduling

of all application tasks across other cores. The main

scheduling loop reads the scheduler state before schedul-

ing application tasks. A scenario showing dynamic recon-

figuration can be seen in Figure 6.

Figure 5.
Example: Single threaded processes 1000 and 1001 share a parti-

tion with a duration of 60 ms. Process 1000 has 100% CPU cap

and priority 70; process 1001 has 20% CPU cap, and higher pri-

ority 72. Since process 1001 has a CPU cap less than 100%, a

ceiling is calculated for this process as follows: 20% of 60 ms =

12 ms. The figure shows the example execution of this schedule.

The average jitter was 2:136 ms with a maximum jitter of

4.0001 ms.

Dubey et al.

JULY 2019 IEEE A&E SYSTEMS MAGAZINE 37

It is also possible to set the global tick (that counts the

hyperperiods) to be started with an offset. This delay can

be used to synchronize the start of the hyperperiods across

nodes of the cluster. This is necessary to ensure that all

nodes schedule related temporal partitions at the same

time. This ensures that for an application that is distributed

across multiple nodes, its Application level tasks run at

approximately the same time on all the nodes which

enables low latency communication between dependent

tasks across the node level.

SECURITY ARCHITECTURE

The basis of the security design in the system is the combi-

nation of discretionary access control over file resources,

(The discretionary access control is the same as in Linux

and implemented using user-ids associated with applica-

tions. We do not discuss it further as it is a direct usage of

existing facilities.) strong isolation between computational

resources used by different applications, mandatory access

control and strict separation between communication

mechanisms, essentially controlling the flow of informa-

tion via multilevel security and a strong capability model

that describes which operating services can be used by

which application. We discuss the various security con-

cepts below.

MANDATORY ACCESS CONTROL AND THE CAPABILITY

MODEL

Our security architecture uses (multidomain) labels, an

extension of the multilevel security (MLS) policy ([6], [14],

[15]). MLS defines a policy based on partially ordered secu-

rity labels that assign classification and need-to-know cate-

gories to all information that may pass across process

boundaries. This policy requires that information only be

allowed to flow from a producer to a consumer if and only if

the label of the consumer is greater than or equal to that of

the producer. Labels are organized in a lattice, where levels

indicate classification. These labels are often assigned by a

trusted party and the labels are associated with each actor

using the process control data structure maintained in the

kernel. Only processes with appropriate privileged are

allowed to modify the data structure and the data structure

can be modified only at the time of the creation of the actor.

Any subsequent modification requires restarting the actor.

In addition, the operating system divides

the system calls into different categories and

partitions the categories into privileged and

regular calls. The cartesian product of this set

results in 48 different levels in the operating

system. These levels are encoded in a 64-bit

integer and assigned to each actor at the start.

Only the cosmos_init process described ear-

lier has the create actor privilege and only that process can

assign the capabilities to other actors. An actor cannot

change its privilege level. When a system call is made the

OS checks the identity of the actor against the capability

mask and decides whether the call should go forward or not.

This static rigid model of assigning capability ensures that

even when compromised, an actor cannot execute the calls it

is not allowed to. By default, no application actor is given

access to any privileged call. Privileged system calls may

result in the modification of nonprocess related kernel data

structures, for example, it can update the major frame (see

Section “DynamicMajor Frame Configuration”).

SPATIAL, STORAGE AND TEMPORAL SEPARATION

The spatial separation of volatile memory is important

from a security perspective because it prevents an actor

from accessing other actors’ or the operating system’s vol-

atile data. Since actors are often implemented in C/C++,

which is not type-safe, this spatial separation would be dif-

ficult to guarantee by analysis of the actors’ code. The spa-

tial separation is maintained by strict physical memory

boundaries if no swap memory is present. If swap memory

is present, then traditional virtual memory separation is

used in addition with a strict virtual memory quota that

can never be exceeded.

To ensure separation in persistent storage, each actor

is assigned a separate file system for persistent data

Figure 6.
Dynamic major frame reconfiguration example: Two single-

threaded processes run in separate partitions with a duration of

60 ms each. The schedule is dynamically reconfigured so that

each partition duration is doubled. A Critical task is responsible

for calling the update_major_frame system call. Duration of the

active partition is cut short at the point when update_major_frame

function is called.

Table 2.

States of the DREMS Scheduler

APP_INACTIVE Tasks in temporal partitions are not run

NORMAL Inverse of APP_INACTIVE

Enabling Strong Isolation for Distributed Real-Time Applications in Edge Computing Scenarios

38 IEEE A&E SYSTEMS MAGAZINE JULY 2019

storage. Since each actor’s private file system is invisible

to other actors (except the platform processes with privi-

leged storage capability), files need not be labeled for

mandatory access control or decorated by access control

lists for discretionary access control. Communication

among actors only takes place via messages that go

through the operating system using the secure transport

(described later), not via shared files or shared memory.

The temporal separation is provided by the partitions.

The temporal separation is important from a security per-

spective because it prevents covert timing channels across

different temporal partitions. More than one actor can be

assigned to the same temporal partition, and our design does

not prescribe a specific approach to assign actors to temporal

partitions. Typically, actors of the same application may be

added to one temporal partition. Actors running in the privi-

leged system partition (implementing critical services) can

run on demand (e.g., when a system call is performed) dur-

ing other actors’ temporal partitions (the preempt all other

actors); they are not assigned to any temporal partition but

have their time “charged” to the requesting actors.

COMMUNICATION VIA SECURE TRANSPORT

To support communication and coordination between

applications of different criticality, priority, and security

levels, we developed the secure transport (ST) facility. ST

is a managed communications infrastructure that provides

for datagram oriented exchange of messages between

application tasks. ST restricts the transmission of data-

grams according to both a communication topology and a

mandatory access control policy described above.

Actors communicate through endpoints connected by

flows. A flow connects one source endpoint to one or more

destination endpoints. Destination endpoints can be local

(i.e., on the same node as the source endpoint) or remote

(i.e., on different nodes). Like traditional sockets, user-space

programs pass an endpoint identifier to the send and

receive system calls. Unlike traditional sockets, however,

unprivileged tasks may not arbitrarily construct endpoints

that allow for interprocess communication with other tasks;

such endpoints must be explicitly configured by a privileged

task acting as a trusted system configuration authority. When

an endpoint is created, the operating system ensures that end-

points are preconfigured with labels and that the label of an

endpoint is a strict subset of the labels of the actor. Actors

choose a label to be associated with a message when sending

it. The flow and the label restrict the possible destinations. In

the operating system, three kinds of endpoints are supported.

� Local Message Endpoints (LME): Local message

endpoints are the basic method of IPC, and may be

used to send messages to other tasks hosted by the

same operating system instance. These endpoints

must be configured by trusted system configuration

infrastructure and are subject to restrictions placed

by flows and security rules.

� Kernel Message Endpoints (KME): Kernel message

endpoints are like netlink (Netlink sockets are a

way to transfer information between the kernel and

user-space processes in Linux.) sockets and are

used to communicate with the kernel. The only dif-

ference is that the KMEs have a strict memory limit

and the memory limit is charged against the mem-

ory quota of the actor using the endpoint.

� Remote Message Endpoints (RME): Similar to LMEs,

RMEs are a mechanism for IPC between tasks, but

may be used to communicate with tasks hosted by

different operating system instances throughout a

network.

Flows: In ST, communication is allowed between two

LME or RME endpoints if and only if there exist mutually

compatible flows on each endpoint. A flow, assigned to an

endpoint, is a connectionless association with an endpoint

owned by a designated process (in DREMS, process

identifiers are statically assigned and globally unique).

This association determines if the local endpoint can send

or receive messages with the remote endpoint. In all cases,

flow assignment between two endpoints must be mutual in

order for communication to succeed, i.e., a sender must

have an outbound flow to the recipient, and the recipient

must have an inbound flow from the sender. Further, the

flow should conform to the security policies.

Sending Messages: System calls to send messages

require the calling actor to specify, among other things, a

label and an endpoint. The OS checks the label of the mes-

sage against the labels of that endpoint, which, as

described above, are securely stored inside the kernel data

structures and are known to be a subset of the labels of the

actor as described earlier. If the message label is not

among the labels of the endpoint, the message is not sent

(in the case of a write endpoint) or delivered (in the case

of a read endpoint), but instead it is discarded. These

checks are performed by the OS and cannot be bypassed.

When an actor attempts to send a message to a write

endpoint, the OS checks the label of the message not only

against the endpoint’s labels, but also against the labels of

the destination endpoints connected by the flow to the

source write endpoint. Even though the label is checked at

the actual destinations, this preemptive check avoids send-

ing a message (on the network) whose label would fail the

check at the destination. If actors are properly configured

across the cluster, each endpoint will be assigned the same

labels locally (where the endpoint resides) and remotely

(in other nodes that include flows with that endpoint as

destination). If for any reason there is an inconsistency in

these assignments, a legitimate message may get blocked,

but an illegitimate message will never be delivered.

Dubey et al.

JULY 2019 IEEE A&E SYSTEMS MAGAZINE 39

HEALTH MANAGEMENT AND FAULT MANAGEMENT

(HMFM) SUBSYSTEM

The health management framework in the COSMOS oper-

ating system is similar to the ARINC-653 specification [8].

It can handle errors at three levels: Module, Partition, or a

Process with a set of defined mitigation actions. The errors

at the module level occur outside the scope of any partition.

For example, during startup of the system, the system sup-

ports following mitigation actions for the module-level

errors: a) Ignore the error, b) shutdown the module, c)

restart the module. The partition-level errors are of those

that cannot be resolved within the scope of a single process

and require the following types of corrective actions: a)

Ignore the error, b) stop the partition, c) restart the partition.

The process level errors are handled in the user space by

invoking preregistered error handling functions. The error

to mitigation action configuration is stored in three tables

described in Table 3.

The health monitoring tables are setup during the sys-

tem initialization by the cosmos_init process. Once the

master process of the partition has finished initialization

(see Section “System Components and Initialization”) it

goes into a blocking state waiting on a local message end-

point (see Section ”Communication via Secure Trans-

port”) to receive any error message raised by a process

within the partition. The master process of the partition

then checks if the error is partition specific (i.e., it can be

handled in user space) or if it needs to be handled at the

partition or the module level. Errors at that level are then

handled by the error handling process (one per partition)

in the kernel. The partition master process activates the

error handler process by sending it a message on another

local message endpoint.

ERROR HANDLING PROCESS

The error handling process runs at the highest priority in the

partition and first determines if the local partition level

error is fatal, requiring that the current partition be reset. If

so, it does this immediately. An action to reset the partition

is handled by the error handler process, while remaining

within the temporal bounds set by the partition schedule.

The error handling process follows the following pro-

tocol to search the error to action mapping configured in

the tables (see Table 3). If the error has occurred outside

the partition space, then the table is searched using the

error id and a table name, which specifies the module-

level table entries. If the error is not found in the table,

then the default action is performed. If the error occurred

during the execution of a partition process, then it first

finds the entry of the error in the associated multipartition

table. If a multipartition table entry is defined, the table

search key will consist of this table name and the error id,

which will return either a module level action (the default

action if the error was not found), or indicate it is a parti-

tion level error and provides a different error id.

If no multipartition table is defined for the partition or

the table states that the error is a partition level error then

the search continues using a search key consisting of the

partition table name and the error id. If the error is not

found or no partition table entry is defined for the parti-

tion, the default action (specified in the module configura-

tion file) will again be taken.

Table 3.

Health Management Tables Specify the Mapping of Errors at Different Levels to the Actions that Must be Performed

Module Level Table Errors listed at this level will cause one of the MODULE level actions to occur. If

this table is traversed and the error is not found, the default action is to shut down

the module. Only one Module table can be defined for the module. If it is omitted,

all errors that occur outside of partition space will cause a module shutdown.

Multipartition Table If a partition error requires module level mitigation then the table at this level is

used. More than one Multi_Partition_HM_Table is allowed so that each partition

can have unique error handling for it. Each table is given a name and each

partition specifies the Multi_Partition_HM_table that is to be used for it in the

configuration file (Figure 3). If it is not specified, all partition errors default to the

Partition_HM_table specified for it.

Partition level Table The errors in this table can be either at the partition level or the process level. All

listed errors in this table specify a partition level action. Process level errors define

a corresponding ARINC-653 error code value, which is sent to an error handler

process, if available within the partition. If an error handler process is unavailable

then a specified default action is executed.

Some partition level errors (if specified) are handled by a high priority error handling process within the partition. This ensures that no other
partitions are affected if a process error occurs.

Enabling Strong Isolation for Distributed Real-Time Applications in Edge Computing Scenarios

40 IEEE A&E SYSTEMS MAGAZINE JULY 2019

EXAMPLES AND EVALUATION

To evaluate the different aspects of the operating system,

we now describe three examples. The first example is an

application focusing on the scheduling and secure trans-

port overhead. The second and third examples focus on

the performance of the health management and fault

management subsystem.

CLUSTER FLIGHT APPLICATION

We created a multicomputing node experiment on a clus-

ter of fan less computing nodes with a 1.6-GHz Atom

N270 processor and 1 GB of RAM each. We chose these

nodes to emulate the embedded processors typically used

in hash/rugged military and space applications. On these

nodes, a cluster of three satellites was emulated. These sat-

ellites ran two distributed applications: a CFA, and an

image processing application.

The CFA (see Figure 7) consists of four actors: Orbi-

talMaintenance, TrajectoryPlanning, CommandProxy,

and ModuleProxy. ModuleProxy connects to the Orbiter

space flight simulator (http://orbit.medphys.ucl.ac.uk/)

that simulates the satellite hardware and orbital mechanics

for the three satellites flying in low Earth orbit. Command-

Proxy receives commands from the ground network.

OrbitalMaintenance keeps track of every satellite’s

position and updates the cluster with its current position.

This is done by a publish subscribe interaction between all

Orbital Maintenance actors. Note that we have not dis-

cussed the specific middleware level interaction patterns

implemented in our design. However, interested readers

can refer to [16] and [17].

The image processing application workload was simu-

lated using four image processing actors (IPA) per node

that can be configured dynamically to load the machines.

We assigned two image processing actors to the first

partition and two image processing actors to the second

partition. The third shorter partition was reserved for the

OrbitalMaintenance actor. It is a periodic process that

publishes and subscribes to the satellite state every second

and is not critical in an emergency. The other CFA actors

are assigned to the system partition as they are deemed

critical and need to run as soon as possible. Further, since

only the cluster leader (node 1) receives the scatter com-

mand, the CommandProxy actors are not active one the

second and third nodes.

Figures 8(a) and (b) show the results from three dif-

ferent scenarios: 1) hyperperiod of 250 ms, with IPA

consuming less than 50 percent CPU, 2) hyperperiod of

250 ms, with IPA consuming 100 percent CPU, and 3)

hyperperiod of 100 ms, with IPA consuming 100 per-

cent CPU. (These latencies were calculated from time-

stamped messages collected in the application logs. All

the nodes’ clocks were synchronized to within 10 ms.)

The first thing to note is that Figure 8(b) demonstrates

the proper preemption of the image processing actor

process by the critical CFA actor process for scenario 2

(hyperperiod of 250 ms, with IPA consuming 100 per-

cent CPU).

Figure 8(a) shows that the emergency response latency

over the three nodes was quite low with very little vari-

ance, and did not correlate with either the image

application’s CPU utilization or the application’s partition

schedule. As such, the satellite cluster running the DREMS

infrastructure is able to quickly respond to emergency sit-

uations despite high application CPU loads and without

altering the partition scheduling.

HEALTH MONITORING AND FAULT MANAGEMENT

EVALUATION

We used a one partition setup with a simple send–receive

application to evaluate the delay times associated with

responding to an health management event and the time it

Figure 7.
ModuleProxy actor controls thruster activation in Orbiter and

state vector retrieval from Orbiter. OrbitalMantenance actor

tracks the cluster satellites’ state vectors and disseminate them.

TrajectoryPlanning actor controls the response to commands and

satellite thruster activation. CommandProxy actor informs the sat-

ellite of a command from the ground network. Each actor has

multiple processes. The subscript represents the node ID on which

the process is deployed. The superscript denotes the different jobs

done by an actor. Thus,M2
2 is the process that activates the engine

of node 2 andM2
1 is the process that informs about the current sat-

ellite state to the orbital maintenance actor. Of particular interest

to safety of the constellation is the control flow between Com-

mandProxy actor and the ModuleProxy actor process on each

node responsible for thruster activation. This interaction pathway

is in bold.

Dubey et al.

JULY 2019 IEEE A&E SYSTEMS MAGAZINE 41

http://orbit.medphys.ucl.ac.uk/

takes to process the correction for it. The average time (for

50 errors) it took to detect the error condition was 39:19ms

and the time for the error handler process to complete the

action of shutting down and restarting the failed process

was 101:84ms. These can be seen graphically in Figure 9.

This figure shows the time along the vertical axis in

milliseconds, with the horizontal axis indicating the error

occurrence. The blue graph at the bottom shows the time it

takes from the occurrence of an error to when the master

process wakes from receiving the error message. The red

graph above it indicates the amount of time elapsed

between the master process receiving the notification to

Figure 8.
DREMS mixed criticality demo.

Enabling Strong Isolation for Distributed Real-Time Applications in Edge Computing Scenarios

42 IEEE A&E SYSTEMS MAGAZINE JULY 2019

when the Error Handler process has completed the speci-

fied actions and has exited. Deadline-related anomalies

were caught by the scheduler within 7:72ms. It took on

average 40:83ms for restarting the process due to the dead-

line violation.

TWO PARTITION HMFM EXAMPLE

Sometimes there are additional delays in processing an error

condition due to the temporal partitioning, as is demon-

strated at error 5 and error 25 in Figure 9. A two partition

example (see Figure 10) illustrates this point. In this exam-

ple, there are two partitions: P1 and P2. Each partition runs

for a duration of 400 ms within a 1000 ms hyperperiod. Par-

tition P2 gets scheduled to run by the kernel at point A in the

diagram. The first process that runs is ACCUM which per-

forms some numeric analysis on data it receives from

another higher priority process. It performs initialization

and then starts the second process, RCVR which begins

immediately due to its higher priority.

The RCVR process then experiences a memory

fault due to an out-of-bounds access that is shown at point B.

The kernel catches the error. The signal in this case is

SIGSEGV , which corresponds to the error id HMFM_

MEM_VIOLATION. Because this is a fatal error code, it is

handled immediately by the error handling process.

It checks if a partition is currently running and looks up the

name of the partition and the multipartition table that it is

using. The error is defined as a process level error that is to

be handled by the error handler defined for this partition. It

then sends a message to the local endpoint of the master pro-

cess. This causes the master process to run since it has the

highest priority assigned to it and is shown as pointC.

A few milliseconds later, at point D, the minor frame 2

reaches the end of its 400ms duration. Even though the

master process is running at the highest priority, the kernel

scheduler halts the process to begin the next scheduled

event. There is a 100ms gap where system processes can

now run followed by partition P1 and another 100 ms

gap. After partition P2 600ms was suspended, it is again

scheduled to run for another 400ms at point E. The master

process immediately runs and sends a START signal to

the error handler process. The error handler process begins

running at F and continues until it completes at point G.

During this time, it restarts the RCVR process, which then

continues to run and receives input on port 2 from parti-

tion P1. It then sends this data internally to the ACCUM

process and then blocks waiting for more input from the

port, allowing ACCUM to read and process the data sent

by RCVR. This illustrates that even though the response

time of the Health Monitor is in the millisecond range, it

may take another iteration of the hyperframe to complete

the task if the partition has limited duration.

RELATED RESEARCH

Our approach has been inspired by two domains: mixed

criticality systems and partitioning operating systems.

A mixed criticality computing system has two or more

criticality levels on a single shared hardware platform,

where the distinct levels are motivated by safety and/or

security concerns. For example, an avionics system can

have safety-critical, mission-critical, and noncritical tasks.

In [18], Vestal argued that the criticality levels directly

impact the task parameters, especially the worst-case exe-

cution time (WCET). In their framework, each task has a

maximum criticality level and a nonincreasing WCET for

successively decreasing criticality levels. For criticality

levels higher than the task maximum, the task is excluded

from the analyzed set of tasks. Thus, increasing criticality

levels result in a more conservative verification process.

The authors extended the response-time analysis of fixed

priority scheduling to mixed criticality task sets. These

results were later improved by Baruah et al. [19] where an

implementation was proposed for fixed priority single pro-

cessor scheduling of mixed-criticality tasks with optimal

priority assignment and response-time analysis.

Figure 9.
Detection and reaction time over ten iterations for the one parti-

tion health monitoring example.

Figure 10.
Two partition health monitoring example.

Dubey et al.

JULY 2019 IEEE A&E SYSTEMS MAGAZINE 43

Partitioning operating systems have been applied to

avionics (e.g., LynxOS-178 [20]), automotive (e.g., Tre-

sos, the operating system defined in AUTOSAR [21]), and

cross-industry domains (DECOS OS [22]). A comparison

of the mentioned partitioning operating systems can be

found in [23]. They provide applications with shared

access to critical system resources on an integrated com-

puting platform. Applications may belong to different

security domains and can have different safety-critical

impact on the system. To avoid unwanted interference

between the applications, reliable protection is guaranteed

in both the spatial and the temporal domains, which is

achieved by using partitions on the system level. Spatial

partitioning ensures that an application cannot access

another application’s code or data in memory or on disk.

Temporal partitioning guarantees an application access to

the critical system (e.g., CPU) resources via dedicated

time intervals regardless of other applications.

Our approach combines mixed-criticality and partition-

ing techniques tomeet the requirements of secure distributed

real-time and embedded (DRE) systems. DREMS supports

multiple levels of criticality, with tasks being assigned to a

single criticality level. For security and fault isolation rea-

sons, applications are strictly separated by means of spatial

and temporal partitioning, and applications are required to

use a novel secure communication method for all communi-

cations, which is described inDREMS [6].

This work has many similarities with the resource-

centric, real-time kernel [24] to support real-time require-

ments of distributed systems hosting multiple applications.

Though achieved differently, both frameworks use deploy-

ment services for the automatic deployment of distributed

applications, and for enforcing resource isolation among

applications. However, to the best of our knowledge, Laksh-

manan and Rajkumar [24] do not include support for process

management, temporal isolation guarantees, partition man-

agement, and secure communications simultaneously.

CONCLUSION

The DREMS platform consists of a development environ-

ment and runtime platform that provides an infrastructure

to address several challenges faced in deploying and man-

aging a cluster of mobile embedded platforms. It provides

the capability for domain specific modeling and a novel

real-time operating system with support for a distributed

component model and several management services for

controlled and managed deployment of applications on

distributed computing nodes.

This paper propounds the notion of managed DRE sys-

tems that are deployed in mobile computing environments.

These systems must be managed due to the presence of

mixed criticality task sets that operate at different temporal

and spatial scales, and share the resources of the DRE

system. To that end, we have described the design and

implementation of the next version for the DREMSoperat-

ing system, including the scheduler, the secure communi-

cation mechanism, and a health management mechanism.

We also analyzed the scheduler properties of a distrib-

uted application built entirely using this platform and

hosted on an emulated cluster of satellites.

To extend this work further, we are working on the

response–time analysis on the task level, and on design–

time analysis and verification tools for the component-level

scheduler, which operates within each component for

scheduling the component’s operations. Additionally, such

complex networked systemswith mission-critical tasks dis-

tributed among many nodes require guarantees about the

network QoS for each task needing access to the network.

However, the temporal partitioning of the application tasks

significantly affects task access both to the CPU and to net-

work resources. Finally, a more comprehensive fault diag-

nostics and response infrastructure is needed for robust

cluster performance in adverse situations.

ACKNOWLEDGMENTS

This work was supported by DARPA under Contract

NNA11AC08C. Portions of COSMOS operating system

were also developed under funding from NavAir. Any

opinions, findings, and conclusions or recommendations

expressed in this material are those of the author(s) and do

not reflect the views of DARPA and NavAir. The authors

would like to thank A. Coglio from Kestrel who imple-

mented the multilabel security concept and also the contri-

butions of W. Otte who implemented the secure transport.

Details of that implementation are described in [10].

REFERENCES

[1] F. Sun, A. Dubey, C. Kulkarni, N. Mahadevan, and

A. G. Luna, “A data driven health monitoring approach to

extending small sats mission,” in Proc. Annu. Conf. Prog-

nostics Health Manage. Soc., 2018, https://www.

phmpapers.org/index.php/phmconf/article/download/573/

phmc_18_573.

[2] M. Garc�ıa-Valls, A. Dubey, and V. Botti, “Introducing the

new paradigm of social dispersed computing: Applica-

tions, technologies and challenges,” J. Syst. Archit.,

vol. 91, pp. 83–102, 2018.

[3] P. Liu, D. Willis, and S. Banerjee, “Paradrop: Enabling

lightweight multi-tenancy at the network’s extreme edge,”

in Proc. IEEE/ACM Symp. Edge Comput., 2016, pp. 1–13.

[4] M. Satyanarayanan, “The emergence of edge computing,”

Computer, vol. 50, no. 1, pp. 30–39, 2017.

[5] M. Garc�ıa-Valls, T. Cucinotta, and C. Lu, “Challenges in

real-time virtualization and predictable cloud computing,”

J. Syst. Archit., vol. 60, no. 9, pp. 726–740, 2014.

Enabling Strong Isolation for Distributed Real-Time Applications in Edge Computing Scenarios

44 IEEE A&E SYSTEMS MAGAZINE JULY 2019

https://www.phmpapers.org/index.php/phmconf/article/download/573/phmc_18_573
https://www.phmpapers.org/index.php/phmconf/article/download/573/phmc_18_573
https://www.phmpapers.org/index.php/phmconf/article/download/573/phmc_18_573

[6] A. Dubey et al., “A software platform for fractionated

spacecraft,” in Proc. IEEE Aerosp. Conf., Mar. 2012,

pp. 1–20.

[7] G. Karsai, D. Balasubramanian, A. Dubey, and

W. R. Otte, “Distributed and managed: Research chal-

lenges and opportunities of the next generation cyber-

physical systems,” in Proc. IEEE 17th Int. Symp. Object/

Component/Service-Oriented Real-Time Distrib. Comput.,

Jun. 2014, pp. 1–8.

[8] Document No. 653: Avionics Application Software Stan-

dard Interface (Draft 15), ARINC Incorporated, Annapo-

lis, MD, USA, Jan. 1997.

[9] A. Dubey, G. Karsai, A. Gokhale, W. Emfinger, and

P. Kumar, “DREMS-OS: An operating system for man-

aged distributed real-time embedded systems,” in Proc.

6th Int. Conf. Space Mission Challenges Inf. Technol.,

vol. 00, Sep. 2018, pp. 114–119. [Online]. Available:

doi.ieeecomputersociety.org/10.1109/SMC-IT.2017.26

[10] T. Levendovszky et al., “Distributed real-time managed

systems: A model-driven distributed secure information

architecture platform for managed embedded systems,”

IEEE Softw., vol. 31, no. 2, pp. 62–69, Mar./Apr. 2014.

[11] A. Garg, “Real-time linux kernel scheduler,” Linux J.,

vol. 2009, no. 184, p. 2, 2009.

[12] OpenGroup. [Online]. Available: http://www.opengroup.

org/face. Accessed. 2019.

[13] W. Mauerer, Professional Linux Kernel Architecture, ser.

Wrox professional guides. Wiley, 2008. [Online]. Avail-

able: http://books.google.com/books?id=4eCr9dr0uaYC

[14] D. E. Bell and L. J. LaPadula, “Secure computer systems:

Mathematical foundations,” MITRE, McLean, VA, USA,

Tech. Rep. 2547, Volume I, 1973.

[15] O. Sibert, “Multiple-domain labels,” presented at the F6

Security Kickoff, 2011.

[16] A. Dubey, G. Karsai, and N. Mahadevan, “A component

model for hard real-time systems: CCMwith ARINC-653,”

Softw., Pract. Experience, vol. 41, no. 12, pp. 1517–1550,

2011.

[17] W. R. Otte et al., “F6COM: A component model for

resource-constrained and dynamic space-based computing

environment,” in Proc. 16th IEEE Int. Symp. Object-

Oriented Real-Time Distrib. Comput., Paderborn,

Germany, Jun. 2013, pp. 1–8.

[18] S. Vestal, “Preemptive scheduling of multi-criticality sys-

tems with varying degrees of execution time assurance,”

in Proc. 28th IEEE Real-Time Syst. Symp., Tucson, AZ,

USA, Dec. 2007, pp. 239–243.

[19] S. Baruah, A. Burns, and R. Davis, “Response-time analysis

for mixed-criticality systems,” in Proc. 32nd IEEE Real-

Time Syst. Symp., Vienna, Austria, Nov. 2011, pp. 34–43.

[20] LynuxWorks, “RTOS for Software Certification: LynxOS-

178.” [Online]. Available: http://www.lynuxworks.com/

rtos/rtos-178.php. Accessed 2019.

[21] Autosar GbR, “AUTomotive Open System ARchitecture,”

[Online]. Available: http://www.autosar.org/. Accessed

2019.

[22] R. Obermaisser, P. Peti, B. Huber, and C. E. Salloum,

“DECOS: An integrated time-triggered architecture,”

J. Austrian Professional Inst. Elect. Inf. Eng., vol. 123,

no. 3, pp. 83–95, Mar. 2006.

[23] B. Leiner, M. Schlager, R. Obermaisser, and B. Huber,

“A comparison of partitioning operating systems for

integrated systems,” in Computer Safety, Reliability and

Security. New York, NY, USA: Springer, 2007, vol. 4680/

2007, pp. 342–355.

[24] K. Lakshmanan and R. Rajkumar, “Distributed resource

kernels: OS support for end-to-end resource isolation,” in

Proc. IEEE Real-Time Embedded Technol. Appl. Symp.,

St. Louis, MO, USA, Apr. 2008, pp. 195–204.

Dubey et al.

JULY 2019 IEEE A&E SYSTEMS MAGAZINE 45

doi.ieeecomputersociety.org/10.1109/SMC-IT.2017.26
http://www.opengroup.org/face
http://www.opengroup.org/face
http://books.google.com/books?id=4eCr9dr0uaYC
http://www.lynuxworks.com/rtos/rtos-178.php
http://www.lynuxworks.com/rtos/rtos-178.php
http://www.autosar.org/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

