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Abstract—Distributed real-time and embedded (DRE) systems
executing mixed criticality task sets are increasingly being de-
ployed in mobile and embedded cloud computing platforms,
including space applications. These DRE systems must not only
operate over a range of temporal and spatial scales, but also
require stringent assurances for secure interactions between
the system’s tasks without violating their individual timing
constraints. To address these challenges, this paper describes
a novel distributed operating system focusing on the scheduler
design to support the mixed criticality task sets. Empirical results
from experiments involving a case study of a cluster of satellites
emulated in a laboratory testbed validate our claims.

I. INTRODUCTION

The emerging realm of mobile and embedded cloud com-

puting, which leverages the progress made in computing and

communication in mobile devices and sensors necessitates

a platform for running distributed, real-time, and embedded

(DRE) systems. Ensembles of mobile devices are being used

as a computing resource in space missions as well: satellite

clusters provide a dynamic environment for deploying and

managing distributed mission applications; see, e.g. NASA’s

Edison Demonstration of SmallSat Networks, TanDEM-X,

PROBA-3, and Prisma from ESA, and DARPA’s System F6.

As an example consider a cluster of satellites that execute

software applications distributed across the satellites. One

application is a safety-critical cluster flight application (CFA)

that controls the satellite’s flight and is required to respond to

emergency ’scatter’ commands. Running concurrently with the

CFA, image processing applications (IPA) utilize the satellites’

sensors and consume much of the CPU resources. IPAs

from different vendors may have different security privileges

and so may have controlled access to sensor data. Sensitive

camera data must be compartmentalized and must not be

shared between these IPAs, unless explicitly permitted. These

applications must also be isolated from each other to prevent

performance impact or fault propagation between applications

due to lifecycle changes. However, the isolation should not

waste CPU resources when applications are dormant because,

for example, a sensor is active only in certain segments

of the satellite’s orbit. Other applications should be able to

opportunistically use the CPU during these dormant phases.

One technique for implementing strict application isolation

is temporal and spatial partitioning of processes (see [1]).

Spatial separation provides a hardware-supported, physically

separated memory address space for each process. Temporal

partitioning provides a periodically repeating fixed interval

of CPU time that is exclusively assigned to a group of

cooperating tasks. Note that strictly partitioned systems are

typically configured with a static schedule; any change in the

schedule requires the system to be rebooted [1].

To address these needs, we have developed an architecture

called Distributed REaltime Managed System (DREMS) [2].

This paper focuses on the design and implementation of

key components of the operating system layer in DREMS.

It describes the design choices and algorithms used in the

design of the DREMS OS scheduler. The scheduler supports

three criticality levels: critical, application, and best effort.

It supports temporal and spatial partitioning for application-

level tasks. Tasks in a partition are scheduled in a work-

conserving manner. Through a CPU cap mechanism, it also

ensures that no task starves for the CPU. Furthermore, it

allows dynamic reconfiguration of the temporal partitions. We

empirically validated the design in the context of a case study:

a managed DRE system running on a laboratory testbed.

The outline of this paper is as follows: Section II presents

the related research; Section III describes the system model

and delves into the details of the scheduler design; Section IV

empirically evaluates DREMS OS in the context of a rep-

resentative space application; and finally Section V offers

concluding remarks referring to future work.

II. RELATED RESEARCH

Our approach has been inspired by two domains: mixed

criticality systems and partitioning operating systems. A mixed

criticality computing system has two or more criticality levels

on a single shared hardware platform, where the distinct levels

are motivated by safety and/or security concerns. For example,

an avionics system can have safety-critical, mission-critical,

and non-critical tasks.

In [3], Vestal argued that the criticality levels directly

impact the task parameters, especially the worst-case execution

time (WCET). In his framework, each task has a maximum

criticality level and a non-increasing WCET for successively

decreasing criticality levels. For criticality levels higher than

the task maximum, the task is excluded from the analyzed

set of tasks. Thus increasing criticality levels result in a more

conservative verification process. He extended the response-

time analysis of fixed priority scheduling to mixed criticality

task sets. His results were later improved by Baruah et al. [4]

where an implementation was proposed for fixed priority

single processor scheduling of mixed-criticality tasks with

optimal priority assignment and response-time analysis.

Partitioning operating systems have been applied to avionics

(e.g., LynxOS-178 [5]), automotive (e.g., Tresos, the operating
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Fig. 1: A Major Frame. The four partitions (period,duration) in this frame are
P1 (2s, 0.25s), P2 (2s, 0.25s), P3 (4s, 1s), and P4 (8s, 1.5s).

system defined in AUTOSAR [6]), and cross-industry domains

(DECOS OS [7]). A comparison of the mentioned partition-

ing operating systems can be found in [8]. They provide

applications shared access to critical system resources on an

integrated computing platform. Applications may belong to

different security domains and can have different safety-critical

impact on the system. To avoid unwanted interference between

the applications, reliable protection is guaranteed in both the

spatial and the temporal domain that is achieved by using

partitions on the system level. Spatial partitioning ensures that

an application cannot access another application’s code or data

in memory or on disk. Temporal partitioning guarantees an

application access to the critical system (CPU) resources via

dedicated time intervals regardless of other applications.

Our approach combines mixed-criticality and partitioning

techniques to meet the requirements of secure DRE systems.

DREMS supports multiple levels of criticality, with tasks

being assigned to a single criticality level. For security and

fault isolation reasons, applications are strictly separated by

means of spatial and temporal partitioning, and applications

are required to use a novel secure communication method for

all communications, described in DREMS [9].

Our work has many similarities with the resource-centric

real-time kernel [10] to support real-time requirements of

distributed systems hosting multiple applications. Though

achieved differently, both frameworks use deployment services

for the automatic deployment of distributed applications, and

enforcing resource isolation among applications. However, to

the best of our knowledge, [10] does not include support for

process management, temporal isolation guarantees, partition

management, and secure communication simultaneously.

III. DREMS ARCHITECTURE

DREMS [9], [2], [11] is a distributed system architecture

that consists of one or more computing nodes grouped into a

cluster. It is conceptually similar to the recent Fog Computing

Architecture [12]. Distributed applications, composed from

cooperating processes called actors, provide services for the

end-user. Actors specialize the notion of OS processes; they

have persistent identity that allows them to be transparently

migrated between nodes, and they have strict limits on re-

sources that they can use. Each actor is constructed from one

or more reusable components [13], [11] where each component

is single-threaded.

A. Partitioning Support

The system guarantees spatial isolation between actors by

(a) providing a separate address space for each actor; (b)

enforcing that an I/O device can be accessed by only one

actor at a time; and (c) facilitating temporal isolation between

processes by the scheduler. Spatial isolation is implemented

by the Memory Management Unit of the CPU, while tempo-

ral isolation is provided via ARINC-653 [1] style temporal
partitions, implemented in the OS scheduler.

A temporal partition is characterized by two parameters:

period and duration. The period reflects how often the tasks of

the partition will be guaranteed CPU allocation. The duration

governs the length of the CPU allocation window in each

cycle. Given the period and duration of all temporal partitions,

an execution schedule can be generated by solving a series

of constraints, see [14]. A feasible solution, e.g. Figure 1,

comprises a repeating frame of windows, where each window

is assigned to a partition. These windows are called minor
frames. The length of a window assigned to a partition is

always the same as the duration of that partition. The repeating

frame of minor frames, known as the major frame, has a length

called the hyperperiod. The hyperperiod is the lowest common

multiple of the partition periods.

B. Criticality Levels Supported by the DREMS OS Scheduler

The DREMS OS scheduler can manage CPU’s time for tasks

on three different criticality levels: Critical, Application and

Best Effort. The Critical tasks provide kernel level services and

system management services. These tasks will be scheduled

based on their priority whenever they are ready. Application
tasks are mission specific and are isolated from each other.

These tasks are constrained by temporal partitioning and can

be preempted by tasks of the Critical level. Finally, Best Effort
tasks are executed whenever no tasks of any higher criticality

level are available.

Note that actors in an application can have different critical-

ity levels, but all tasks associated with an actor must have the

same criticality level, i.e. an actor cannot have both Critical
tasks and Application tasks.

C. Multiple partitions

To support the different levels of criticality, we extend

the runqueue data structure of the Linux kernel [15]. A

runqueue maintains a list of tasks eligible for scheduling.

In a multicore system, this structure is replicated per CPU.

In a fully preemptive mode, the scheduling decision is made

by evaluating which task should be executed next on a CPU

when an interrupt handler exits, when a system call returns, or

when the scheduler function is explicitly invoked to preempt

the current process. We created one runqueue per temporal

partition per CPU. Currently, the system can support 64 Tem-
poral partitions, also referred to as Application partitions in

the sequel. One extra runqueue is created for the critical tasks.

These tasks are said to belong to the System partition. The Best

effort tasks are managed through the Linux Completely Fair

Scheduler (default) runqueue and are considered for execution

as part of the System partition when no other tasks are eligible

to run.
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D. CPU Cap and Work Conserving Behavior

The schedulability of the Application level tasks is con-

strained by the current load coming from the Critical tasks and

the temporal partitioning used on the Application level. Should

the load of the Critical tasks exceed a threshold the system

will not be able to schedule tasks on the Application level. A

formal analysis of the response-time of the Application level

tasks will not be provided in this paper, however, we present a

description of the method we will use to address the analysis

which will build on available results from [4], [16], [17].

The submitted load function Hi(t) determines the maximum

load submitted to a partition by the task τi itself after its

release together with all higher priority tasks belonging to

the same partition. The availability function AS(t) returns for

each time instant the cumulative computation time available

for the partition to execute tasks. In the original model [16]

AS(t) is the availability function of a periodic server. The

response-time of a task τi is the time when Hi(t) intersects

the availability function AS(t) for the first time. In our system

AS(t) is decreased by the load of the available Critical tasks

which, if unbounded, could block the application level tasks

forever. This motivates us to enforce a bound on the load of

the Critical tasks. This bound is referred to as CPU cap.

In DREMS OS, the CPU cap can be applied to tasks on the

Critical and Application level to provide scheduling fairness

within a partition or hyperperiod. Between criticality levels,

the CPU cap provides the ability to prevent higher criticality

tasks from starving lower criticality tasks of the CPU. On the

Application level, the CPU cap can be used to bound the CPU

consumption of higher priority tasks to allow the execution of

lower priority tasks inside the same partition. If the CPU cap

enforcement is enabled, then it is possible to set a maximum

CPU time that a task can use, measured over a configurable

number of major frame cycles.

The CPU cap is enforced in a work conserving manner,

i.e., if a task has reached its CPU cap but there are no other

available tasks, the scheduler will continue scheduling the task

past its ceiling. In case of Critical tasks, when the CPU cap

is reached, the task is not marked ready for execution unless

(a) there is no other ready task in the system; or (b) the CPU

cap accounting is reset. This behavior ensures that the kernel

tasks, such as those belonging to network communication, do

not overload the system, for example in a denial-of-service

attack. For the tasks on the Application level, the CPU cap is

specified as a percentage of the total duration of the partition,

the number of major frames, and the number of CPU cores

available all multiplied together. When an Application task

reaches the CPU cap, it is not eligible to be scheduled again

unless the following is true: either (a) there are no Critical
tasks to schedule and there are no other ready tasks in the

partition; or (b) the CPU cap accounting has been reset.

E. Dynamic Major Frame Configuration

During the configuration process that can be repeated at any

time without rebooting the node, the kernel receives the major

frame structure that contains a list of minor frames and it also

contains the length of the hyperperiod, partition periodicity,

and duration. Note that major frame reconfiguration can only

be performed by an actor with suitable capabilities. More

details on the DREMS capability model can be found in [9].

Before the frames are set up, the process configuring the

frame has to ensure that the following three constraints are

met: (C0) The hyperperiod must be the least common multiple

of partition periods; (C1) The offset between the major frame

start and the first minor frame of a partition must be less

than or equal to the partition period: (∀p ∈ P)(Op
1 ≤ φ(p));

(C2) Time between any two executions should be equal to

the partition period: (∀p ∈ P)(k ∈ [1, N(p) − 1])(Op
k+1 =

Op
k + φ(p)), where P is the set of all partitions, N(p) is the

number of partitions, φ(p) is the period of partition p and

Δ(p) is the duration of the partition p. Op
i is the offset of ith

minor frame for partition p from the start of the major frame,

H is the hyperperiod.

The kernel checks two additional constraints: (1) All

minor frames finish before the end of the hyperperiod:

(∀i)(Oi.start + Oi.duration ≤ H) and (2) minor frames

cannot overlap, i.e. given a sorted minor frame list (based on

their offsets): (∀i < N(O))(Oi.start+Oi.duration ≤ Oi+1),
where N(O) is the number of minor frames. Note that the

minor frames need not be contiguous, as the update procedure

fills in any gaps automatically.

If the constraints are satisfied, then the task is moved to the

first core, CPU0 if it is not already on CPU0. This is done

because the global tick (explained in next subsection) used for

implementing the major frame schedule is also executed on

CPU0. By moving the task to CPU0 and disabling interrupts,

the scheduler ensures that the current frame is not changed

while the major frame is being updated. At this point the

task also obtains a spin lock to ensure that no other task can

update the major frame at the same time. In this procedure the

scheduler state is also set to APP_INACTIVE (see Table I), to

stop the scheduling of all application tasks across other cores.

The main scheduling loop reads the scheduler state before

scheduling application tasks. A scenario showing dynamic

reconfiguration can be seen in Figure 2.

TABLE I: The states of the DREMS Scheduler

APP_INACTIVE Tasks in temporal partitions are not run
APP_ACTIVE Inverse of APP_INACTIVE

It is also possible to set the global tick (that counts the

hyperperiods) to be started with an offset. This delay can

be used to synchronize the start of the hyperperiods across

nodes of the cluster. This is necessary to ensure that all

nodes schedule related temporal partitions at the same time.

This ensures that for an application that is distributed across

multiple nodes, its Application level tasks run at approximately

the same time on all the nodes which enables low latency

communication between dependent tasks across the node level.

F. Main Scheduling Loop

A periodic tick running at 250 Hz1 is used to ensure that a

scheduling decision is triggered at least every 4 ms. This tick

1The kernel tick value is also called ’jiffy’ and can be set to a different
value when the kernel image is compiled
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Fig. 2: Two single-threaded processes run in separate partitions with a
duration of 60ms each. The schedule is dynamically reconfigured so that
each partition duration is doubled. A Critical task is responsible for calling
the update_major_frame system call. Duration of the active partition is cut
short at the point when update_major_frame function is called.

runs with the base clock of CPU0 and executes a procedure

called GlobalT ick in the interrupt context only on CPU0. This

procedure enforces the partition scheduling and updates the

current minor frame and hyperperiod start time (HP_start).

The partition schedule is determined by a circular linked list

of minor frames which comprise the major frame. Each entry

in this list contains that partition’s duration, so the scheduler

can easily calculate when to switch to the next minor frame.

After the global tick handles the partition switching, the

function to get the next runnable task is invoked. This function

combines the mixed criticality scheduling with the temporal
partition scheduling. For mixed criticality scheduling, the

Critical system tasks should preempt the Application tasks,

which themselves should preempt the Best Effort tasks. This

policy is implemented by Pick_Next_Task subroutine, which

is called first for the system partition. Only if there are no

runnable Critical system tasks and the scheduler state is not

inactive, i.e. the application partitions are allowed to run2, will

Pick_Next_Task be called for the Application tasks. Thus, the

scheduler does not schedule any Application tasks during a

major frame reconfiguration. Similarly Pick_Next_Task will

only be called for the Best Effort tasks if there are both no

runnable Critical tasks and no runnable Application tasks.

G. Pick_Next_Task and CPU Cap

The Pick_Next_Task function returns either the highest

priority task from the current temporal partition (or the system

partition, as application) or an empty list of there are no

runnable tasks. If CPU cap is disabled, the Pick_Next_Task
algorithm returns the first task from the specified runqueue. For

the best effort class, the default algorithm for the Completely

Fair Scheduler policy in the Linux Kernel [18] is used.

If the CPU cap is enabled, the Pick_Next_Task algorithm

iterates through the task list at the highest priority index of

the runqueue, because unlike the Linux scheduler, the tasks

may have had their disabled bit set by the scheduler if it

had enforced their CPU cap. If the algorithm finds a disabled

2The OS provides support for pausing all application partitions and ensuring
that only system partition is executed

Fig. 3: Single Threaded processes 1000 and 1001 share a partition with a
duration of 60ms. Process 1000 has 100% CPU cap and priority 70; process
1001 has 20% CPU cap, and higher priority 72. Since process 1001 has a CPU
cap less than 100%, a ceiling is calculated for this process: 20% of 60ms
= 12ms. The average jitter was calculated to be 2.136 ms with a maximum
jitter of 4.0001 ms.

task in the task list, it checks to see when it was disabled;

if the task was disabled in the previous CPU cap window, it

reenables the task and sets it as the next_task. If, however,

the task was disabled in the current CPU cap window, the

algorithm continues iterating through the task list until it finds

a task which is enabled. If the algorithm finds no enabled task,

it returns the first task from the list if the current runqueue

belongs to an application partition.

This iteration through the task list when CPU cap enforce-

ment is enabled increases the complexity of the scheduling

algorithm to O(n), where n is the number of tasks in that tem-

poral partition, compared to the Linux scheduler’s complexity

of O(1). Note that this complexity is incurred when CPU cap

enforcement is enabled and there is at least one actor that has

partial CPU cap (less than 100%). In the worst case, if all

actors are given a partial CPU cap, the scheduler performance

may degrade necessitating more efficient data structures.

To complete the enforcement of the CPU cap, the scheduler

updates the statistics tracked about the task and then updates

the disabled bit of the task accordingly. Figure 3, shows the

above mentioned scheduler decisions when CPU cap is placed

on processes that share a temporal partition. To facilitate

analysis, the scheduler uses a logging framework that updates

a log every time a context switch happens. Figure 3 clearly

shows the lower priority actor executing after the higher

priority actor has reached its CPU cap.

IV. EXPERIMENT: A 3-NODE SATELLITE CLUSTER

To demonstrate the DREMS platform, a multi-computing

node experiment was created on a cluster of fanless computing

nodes with a 1.6 GHz Intel Atom N270 processor and 1 GB

of RAM each. On these nodes, a cluster of three satellites

was emulated and each satellite ran the example applications

described in Section I. Because the performance of the cluster

flight control application is of interest, we explain the interac-

tions between its actors below.

The mission-critical cluster flight application (CFA) (Figure

5) consists of four actors: OrbitalMaintenance, Trajectory-
Planning, CommandProxy, and ModuleProxy. ModuleProxy
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(a) This is the time between reception of the scatter command by satellite 1 and the activation of the thrusters on each satellite,
corresponding to interactions CommandProxy to ModuleProxy. The three regions of the plot indicate the three scenarios: (1)
image processing application has limited use of its partitions and has a hyperperiod of 250 ms, (2) image processing application
has full use of its partitions and has a hyperperiod of 250 ms, and (3) image processing application has full use of its partitions
and has a hyperperiod of 100 ms. The averages and variances for the satellites’ latencies are shown for each of the three
scenarios.

(b) The engine activation following reception of a scatter command is annotated for the relevant actors for scenario 2 shown
above. The scatter command causes the TrajectoryPlanning to request ModuleProxy to activate the thrusters for 500 ms. Notice
that the image processing does not run while the mission-critical tasks are executing - without halting the partition scheduling.
Also note that the context switching during the execution of the critical tasks is the execution of the secure transport kernel
thread. Only the application tasks are shown in the log; the kernel threads and other background processes are left out for
clarity.

Fig. 4: DREMS Mixed Criticality Demo

connects to the Orbiter space flight simulator (http://orbit.

medphys.ucl.ac.uk/) that simulates the satellite hardware and

orbital mechanics for the three satellites in low Earth orbit.

CommandProxy receives commands from the ground network.

OrbitalMaintenance keeps track of every satellite’s position

and updates the cluster with its current position. This is

done by a group publish subcribe interaction between all

OrbitalMaintenance actors across all nodes.

Additionally, four image processing application (IPA) actors

(one actor per application instance) are deployed as application

tasks. The IPA design allows the percentage of CPU cycles

consumed by them to be configurable. The four IPAs are

assigned to two partitions, such that each partition contains

two IPA actors. A third, shorter, partition runs the Orbital-
Maintenance actor; since it is a periodic task, it updates the

satellite state every second and is not critical in an emergency.

Figures 4a and 4b show the results from three different

scenarios: 1) hyperperiod of 250 ms, with IPA consuming less

than 50 percent CPU. 2) hyperperiod of 250 ms, with IPA

consuming 100 percent CPU and 3) hyperperiod of 100 ms,
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Fig. 5: DREMS tasks : ModuleProxy tasks control thruster activation in
Orbiter and state vector retrieval from Orbiter. OrbitalMantenance tasks track
the cluster satellites’ state vectors and disseminate them. TrajectoryPlanning
tasks control the response to commands and satellite thruster activation.
CommandProxy tasks inform the satellite of a command from the ground
network. For these tasks, the subscript represents the node ID on which the
task is deployed. The total latency of the interaction C1

1 → M2
N represents

the total emergency response latency between receiving the scatter command
and activating the thrusters. This interaction pathway is shown in bold.

with IPA consuming 100 percent CPU. As shown in figure 4a,

the emergency response latency over the three nodes was quite

low with very little variance, and did not correlate with either

the image application’s CPU utilization or the application’s

partition schedule. Since we show that the emergency response

has very low latency with little variance between different

application loads on the system, we provide a stable platform

for deterministic and reliable emergency response. As such,

the satellite cluster running the DREMS infrastructure is able

to quickly respond to emergency situations despite high appli-

cation CPU load and without altering the partition scheduling.

Figure 4b demonstrates the proper preemption of the image

processing tasks by the critical CFA tasks for scenario 2.

V. CONCLUSIONS AND FUTURE WORK

This paper propounds the notion of managed distributed

real-time and embedded (DRE) systems that are deployed in

mobile computing environments. To that end, we described

the design and implementation of a distributed operating

system called DREMS OS focusing on a key mechanism:

the scheduler. We have verified the behavioral properties of

the OS scheduler, focusing on temporal and spatial process

isolation, safe operation with mixed criticality, precise control

of process CPU utilization and dynamic partition schedule re-

configuration. We have also analyzed the scheduler properties

of a distributed application built entirely using this platform

and hosted on an emulated cluster of satellites.

We are extending this operating system to build an

open-source FACEtm Operating System Segment [19], called

COSMOS (Common Operating System for Modular Open

Systems). To the best of our knowledge this is the first open

source implementation of its kind that provides both ARINC-

653 and POSIX partitions.
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