
Resilience at the Edge in Cyber-Physical Systems
Abhishek Dubey∗, Gabor Karsai∗, Subhav Pradhan∗
∗Dept of Electrical Engineering and Computer Science

Vanderbilt University, Nashville,TN 37235, USA

Abstract—As the number of low cost computing devices at
the edge of communication network increase, there are greater
opportunities to enable innovative capabilities, especially in
cyber-physical systems. For example, micro-grid power systems
can make use of computing capabilities at the edge of a Smart
Grid to provide more robust and decentralized control. However,
the downside to distributing intelligence to the edge away from
the controlled environment of the data centers is the increased
risk of failures. The paper introduces a framework for handling
these challenges. The contribution of this framework is to support
strategies to (a) tolerate the transient faults as they appear due
to network fluctuations or node failures, and to (b) systematically
reconfigure the application if the faults persist.

I. INTRODUCTION

Cyber-physical systems (CPS), specially related to large
societal infrastructures have been mostly self-contained as seen
from the perspective of computing resources. For example,
the traditional architecture for the Smart Grid is to trans-
fer all SCADA (Supervisory Control and Data Acquisition)
data to centralized utility servers [1]. The next evolution in
the design of these systems came with cloud computing,
when many of the analytics functions were deployed in the
cloud [2]. However, even with the availability of on-demand
resources in the cloud, the critical CPS often are unable
to transfer the time-critical control tasks to the cloud due
to communication latencies [3][4]. This centralized SCADA
architecture is changing with recent developments like Fog
Computing [5][6], which have advertised the use of dual
purpose sensing and computation nodes at the edge in the
city, closer to the physical phenomenon being observed or
analyzed. For example, the SCALE-2 [7] platform provides the
capability to run air-quality monitoring sensors, the Paradrop
architecture [8] provides the capability to run containerized
applications in network routers.

As a direct consequence of the evolution of the computing
paradigm from ‘central data-centers’ to ‘shared cloud com-
puting resources’ to ‘distributed edge computing resources
plus shared cloud resources’, critical CPS like Smart Grids
can distribute the intelligence further down into network,
away from the centralized utility servers. For example, this
capability provides us the means to build energy management
applications of the future that are both distributed and coordi-
nated, with heavy reliance on communication and coordination
among local sensing and control algorithms, while also obey-
ing strategic energy management decisions made on a higher
level of the control hierarchy. Figure 1 illustrates the concept
of a computing platform that our team is currently building.

Fig. 1: RIAPS Concept. The figure in the inset on the right shows an IEEE-
14 bus concept schematic. Each red and blue node in the figure is a RIAPS
node running on am embedded computer. The rest of the figure shows that
the RIAPS nodes depend on a number of decentralized, but shared platform
services such as deployment execution and control, discovery, and component
to component communication. A control room can be optionally used as a
central location for application management.

Fig. 2: RIAPS Application Architecture. The example shows two actors.
The first actor collects sensor data from a ‘sensor’ component and then
estimates the local system state via the ‘local estimator’ component. The
aggregator actor collects local estimates from a number of local actors via
the publish/subscribe communication bus and estimates global state using the
global estimator component. The figure also shows that the aggregator actor
can be arranged in a primary/backup replica pattern.

This platform called Resilient Information Architecture for
Smart Grid (RIAPS) [9][10][11] enables software platform
hosted on computing nodes, called ‘RIAPS Nodes’, on the
network that have access to local sensor signals (e.g., they
measure voltage and current) and can issue commands to
local actuators (e.g., circuit breakers). The nodes can also
communicate with each other and a control authority in a
central control room via a communication network. Each node
is running the RIAPS software that facilitates the execution of
various applications.

As seen in Figure 2, an application in RIAPS is a compo-
sition of software components, with each component imple-



menting one functionality. This architectural principle is used
in many applications today, including the Android platform
[12] for smartphones and the AUTOSAR standard [13] for
Embedded Control Units (ECUs) for cars. In RIAPS, the
component framework provides

• the component scheduler, which implements the compo-
nent execution semantics,

• the component interaction library, which enables pub-
lish/subscribe and remote method invocation on the same
node or across the network.

• the lifecycle management support that assists in remotely
managing the software components,

• the language run-time libraries (e.g., for the C/C++ lan-
guage),

• and the resource management support to monitor com-
puting platform resource utilization/availability.

These applications are distributed across the system and
placed on different computation nodes depending upon the
availability of the resources on the node, which includes access
to specific sensors and the objective of the application. The
computation nodes in this system are of two types: edge nodes
and the central control room computation node. The edge
nodes are limited in resources, but are directly integrated into
the physical devices that are either being measured or con-
trolled by the distributed application. The central computation
nodes are not limited in resources but are often far away from
the physical phenomena, which affects the network latencies.
This architecture is supported by a suite of platform managers
that run as independent processes and implement system-level
management functions.

Contributions: While this architecture exposes a number
of interesting challenges and opportunities, we explore the
challenge of managing the applications across this system
in this paper. Unlike the data center nodes, the edge nodes
are exposed to elements and therefore suffer from a higher
likelihood of failure. Therefore, it is very important that we
first ensure that the applications can be deployed following
a fault-tolerant pattern, reducing the need of any drastic re-
deployment in case of a transient failure. Then, if there is a
drastic failure, the system should be able to reconfigure the
affected applications without any central input. In this paper,
we first describe the conceptual architecture of RIAPS (section
II and II-A) and then describe the operations management
layer in the CHARIOT architecture [14] (section III) that
our team has developed. We are currently working on the
integration of the RIAPS and the CHARIOT architecture.

Outline: The outline of the paper is as follows: Section
II describes our system architecture of RIAPS. Section II-A
describes the design language used to describe RIAPS ap-
plications. Runtime management of the system is described
in Section III. In that section, we first describe the fault
avoidance mechanisms and then we describe the fault recovery
mechanisms. Scalability analysis of our approach is presented
in Section IV and Section V. Section VI describes the related
research. Finally, Section VII concludes the paper.

II. SYSTEM ARCHITECTURE

A RIAPS component is a reusable computational unit that
has a set of operations that manipulate the individual compo-
nent’s state and that can interact with other components of the
application via communication ports, which are owned by the
component. As shown in Figure 3, a RIAPS component can
have four different kinds of ports: sender, receiver, client,
server. Sender is a single-purpose port because it is used to
only send messages outside of a component. The receiver port
is used only to bring messages into the component. Both client
and server are special ports in that they can be used to send
messages and receive messages. This is required to implement
the common pattern of request/response, where the “client”
can send a request message via a client port, which is then
received by the server port of some other component, which
then sends a “response” back to the component that originated
the request.

Fig. 3: RIAPS Component Model

Client, server, and receiver ports are individually buffered,
i.e. the messages are guaranteed to be held in the port unless
the port’s buffer is full or a component operation has consumed
the message. An additional construct is timer: it can be
armed and can be used to produce messages that record the
time of timer expiry and that triggers a component operation.
The computational feature of a component is single threaded
execution that is managed by a trigger method provided by
the component developer. The trigger method can evaluate
arbitrary conditions (e.g., the state of the component) and
events related to the ports and use the result to select an
operation that implements the core business logic of the
component. The trigger can be executed (1) when the state
of ports of the components change, (2) when a timer expires,
or (3) when a component operation is completed.

These components are launched dynamically on the com-
putation nodes based on the deployment rules. The connection
between different component ports is managed via a decen-
tralized discovery service which keeps track of the different
messages that are currently available in the system [11]. When
a new component starts, the discovery service informs it of
possible matches (for connecting receivers to sender, etc.) and
then the component can connect to them. With the help of the

2



discovery service, the RIAPS architecture can support both
publish-subscribe and client-server communication patterns.

A. System Description

Fig. 4: The goal of a management system is to ensure that all applications
are online. Applications require various capabilities, which are provided by
different components. A capability can be reused between two applications,
and more than one component can provide the same capability.

RIAPS is an example of a platform to support managed
distributed systems [15]. A managed distributed system can
be expressed using a combination of the (1) applications
required to be deployed in the system - which describes
the set of system objectives, (2) the composition of and
the requirements imposed by the applications, and (3) the
constraints governing the deployment and (re)configuration of
applications. In this approach, an application can be composed
of different components providing the same capability - each
component only provides one unique capability. Figure 4
illustrates this concept. Dependencies between capabilities and
the components are expected. For example, a “state estimator”
component can necessitate the presence of a specific “phasor
measurement unit”. In addition to the functional dependencies
the deployment mechanism requires precise specification of
computation resources required by a component.

Computation nodes provide the resources in the distributed
system. Nodes can be defined using the concept of node
templates and node (instances). Node templates describe the
resources available in a category of computation nodes, while
the nodes are specific instantiation of a node template. We
expect that while some nodes will be known a priori, other
nodes can be added as the system evolves over time. For
example, Figure 5 describes an image processing applica-
tion composed of two components, one of them identifies a
bounding box and the other computes the grid approximation,
which can then be used to detect specific objects. Additionally,
the specification can provide specific deployment constraints
such as distribute and collocate. The distribute specification
requires the components mentioned to be always deployed on
separate nodes, while the collocate specification requires the
components to be always deployed on the same node. Note that
we assume that all nodes are part of the same overlay network,

package sample {
struct point
{

long x
long y

}
struct quadrilateral{

sequence<point,4> _vertices
double area

}
struct square{

sequence<point,4> _vertices
}
struct grids{

sequence<square> _grids
}
message<quadrilateral> boundingbox
message<grids> polyhedra
component ImageCapture {

client <boundingbox,polyhedra> port2
requires regular.camera device
requires 256 MB memory
provides capability imaging

}
component Approximator {

server <boundingbox,polyhedra> port2
requires 256 MB memory
provides capability processing

}
nodeTemplate edge {

provides 256 MB memory
device camera {

artifact cameralibrary located at ’/opt/camera
.so’

}
}
app riaps_hello {

components ImageCapture , Approximator
distribute ImageCapture , Approximator
ImageCapture => Approximator

}
system {

nodes edge
node bbb1:edge
objective riaps_hello

}}

Fig. 5: This listing shows the specification of an image processing application
composed of two components, one of them identifies a bounding box and the
other computes the grid approximation, which can then be used to detect
specific objects. Notice that the application’s required capabilities are not
modeled explicitly, rather they are derived from the specified components.

i.e. the components running in one node can communicate with
components running on the other node.

III. SYSTEM MANAGEMENT

Given the system description, the management of various
applications require handling of: (a) operations management,
which includes the system installation and updates, includ-
ing application updates and computation node updates, (b)
transient failures of resources, and (c) long term resource
failures. This is implemented by the CHARIOT management
architecture, available at [14]. Before we describe the opera-
tion management and the mechanism that enables handling of
long term resource failures, we will first describe how we can
handle transient failures.

A. Handling Transient Failures With Redundancy

While we consider three kinds of failures in our architecture:
component failures, node failures and communication failures.
Transient failures are typically expected to be communication

3



1
2 package sample {
3 ...
4 system {
5 nodes edge
6 node bbb1:edge
7 objective riaps_hello
8 deploy ImageCapture per edge node
9 deploy Approximator in [5,3] voter

configuration
10 deploy Approximator in [3,5] replica

configuration
11 }}

Fig. 6: System definition of fig 5 with the redundancy patterns

and node failures that are not long lasting. Redundancy is
a typical mechanism to handle such temporary failures. The
system can support three kind of redundancy patterns: the (a)
voter pattern, (b) active replication pattern, and (c) per-node
pattern.

The per-node pattern requires that the associated capability
be replicated on a per-node basis (specific to a node of a
specific type). Replication of capabilities associated with the
other two redundancy patterns is based on their redundancy
factor, which can be expressed by either (a) explicitly stating
the number of redundant capabilities required or (b) providing
a range for the cardinality of the expected resources. The latter
requires the associated capability to have a minimum number
for redundancy and a maximum number for redundancy, i.e., if
the number of component instances providing that capability
present at any given time is within the range, the system is
still valid and no reconfiguration is required.

Figure 6 illustrates the specification for these patterns. For
example, line number 8 states that an imaging capability is
local to a computation node and no action is required if that
node becomes unavailable. A component interacting with a
per-node component can choose to communicate with any
of the available instances. Line number 9 implies that the
approximator is to deployed in a pattern of 5X3. That is,
5 instances of approximator will be initialized along with
three instances of voters. All voters receive all outputs from
the approximator instances, do a majority voting, including a
secondary voting among all the voters. Any component that
needs information from the approximator must instead receive
information from one of the voters. This interaction restriction
has to be managed by the discovery service. Given the property
of the voter configuration, no action is required until at least 3
component replicas and 1 voter is available in the system. The
active replica pattern leaves the redundancy interaction man-
agement in the hand of application developer. However, the
system specification ensures that a reconfiguration becomes
essential if the number of available instances become smaller
than the minimum number specified in the configuration.

B. Operations Management

Operations management requires three platform services on
each node: the discovery service that we discussed in section
II, a deployment service, and a planner service. Additionally, a
fault-tolerant database configuration is expected. This database

is required to store the current configuration of the system. In
addition to maintaining the list of various publishers and sub-
scribers, the discovery service is also responsible for managing
a list of available nodes in the system and their node types.
This information is persisted in the fault-tolerant database.
The deployment service running on each node is responsible
for starting up components on the node as instructed by the
planner service. The planner service is required to compute a
valid system deployment configuration given all the previously
active applications in the system, the available resources and
all the known, existing failures. It is important to emphasize
that the planner service is stateless. It always loads in the cur-
rent configuration from the database and then communicates
the deployment changes to each deployment manager, which
upon success, (a) confirms the changes to the planner service,
and (b) updates the configuration database. In case of a partial
deployment failure, the planner service can be invoked again
providing a different solution.

C. Planner Service
The planner service, at a high level, can be considered as a

constraint solver whose computed solutions are the feasible
configurations. It loads the expected configuration of the
system from the database, and then it can compute all the
possible instances of all the available components that can be
deployed in the system. It should be noted that in the live
system that number will be much lower. For example, for the
Figure 6, the maximal set of component instances, assuming
two instances of edge node, bbb1 and bbb2 (discovered at run-
time and not initially specified in Figure 6) are:
• ImageCapture bbb1 and ImageCapture bbb2, which are

calculated by computing 1 instance per known node, see
line 8 in Figure 6.

• Approximator Voter1, Approximator Voter2, Approxima-
tor Voter3, Approximator Voter4, Approximator Voter5,
are deployed because the specification asks for [5, 3] voter
configuration, see line 9 of Figure 6.

• Voter Approximator1, Voter Approximator2, and
Voter Approximator3 are instantiated to satisfy the 3
voter requirement as specified by line 9 of Figure 6.

• Approximator replica1, Approximator replica2, Approxi-
mator replica3, Approximator replica4, and Approxima-
tor replica5 are 5 active replicas that were instantiated
because of line 10 in Figure 6. The rule is to instantiate
maximum number of replicas at initialization. The number 3
in line 10’s range specifies that no reconfiguration is needed
if atleast 3 replicas remain active.
The next phase for the planner involves encoding deploy-

ment constraints. For this purpose, the planner uses a Z3 based
constraint system described in [16]. The constraints capture the
following:

1) Constraints to ensure that component instances that must
be deployed are always deployed.

2) Constraints to ensure that component instances that com-
municate with each other are either deployed on the same
node or on nodes that have network links between them.

4



3) Constraints to ensure that the resource’s provided-
required relationships are valid.

4) Constraints to ensure that we do not seek reconfiguration
if the minimum number of component instances as ex-
pressed by the semantics of the voter replication or the
lower bound of the active replica are still active.

5) Constraints to represent failures, such as node failure or
device failures. This is important to ensure we do not use
the nodes or devices that have failed.

6) Constraints to handle deployment restrictions referring to
distribution and collocation.

The planner encodes these constraints and the knowledge
of component instances and the available nodes as a matrix of
decision variables. A C2N (component to node) matrix com-
prises rows that represent component instances and columns
that represent nodes; the size of this matrix is α × β, where
α is the number of component instances and β is the number
of available nodes. Each element of the matrix is encoded as
an integer variable whose value can either be 0 or 1. A value
of 0 for an element means that the corresponding component
instance (row) is not deployed on the corresponding node
(column). Conversely, a value of 1 for an element indicates
deployment of the corresponding component instance on the
corresponding node. Similarly other matrices are used to
encode the resource availability of nodes (updated dynamically
using the monitors). Communication resource requirements are
encoded using a square matrix β×β. Thereafter, the placement
constraints are written in terms of resources required and
net resources available. Additional constraints for redundancy
and collocation are also added. Each feasible solution of this
constraint satisfaction problem is a valid system placement
for all applications. The system is marked unstable if no
configuration is found. If no answer is found, then depending
upon criticality, the variables for applications can be pruned
from the problem set until a valid solution is found.

D. Implementation Architecture

Figure 7 describes the implementation architecture, which
consists of a three-layered architecture stack consisting of a
design layer (top), a data layer (middle), and a management
layer (bottom). The design layer comprises the modeling
language used to describe the system as shown in figures 5 and
6. The data layer is implemented using a persistent data storage
tool (MongoDB [17]) and the corresponding schema to store
system information, which includes the JSON representation
of the system design models and a run-time representation
of the system. This layer provides a canonical format to
represent information about the system under management
and therefore it decouples the design layer at the top from
the management layer at the bottom. The management layer
comprises monitoring and deployment infrastructures, as well
as the planner described in Section III-C.

IV. RESULTS

To demonstrate and evaluate the planner we performed
experiments of different scales in different setup.

Fig. 7: The operations management architecture. The controller is
responsible for adding new applications or updating the existing
application configuration.

Fig. 8: The test bed comprising six Intel Edison compute modules, each
mounted on an Arduino breakout board. Each board also has a Grove LCD
screen attached to it.

A. Small-scale Experiment on IoT Devices

First, we performed a small scale test on six Intel Edison
compute modules, with each module attached to an Arduino
breakout board (see Figure 8). Each Edison module runs
Yocto Linux operating system on a 500 MHz dual-core, dual-
threaded Intel Atom CPU with 1GB RAM and 4GB Flash
storage. Each board communicates with each other over a
wireless network established using a single router. We ran
a planner on one of the Edison nodes. However, since the
planner is stateless it can be dynamically started on any of the
nodes.

For this small scale experiment, we used two examples.
The first example is a parking management system that is
capable of tracking the availability of parking spaces and
handling client requests. To achieve the goal, the system
must support two applications: (1) an OccupancyChecking,
and (2) a ClientInfo. The OccupancyChecking application is
comprised of two capabilities: imaging and detection. The
imaging capability is implemented by an occupancy sensor
component, which is installed using the per-node replication.
The detection capability is provided by the parking manager,

5



Fig. 9: Time taken by the planner to compute solution for four sequential
node failure events in the context of the two examples.

which is not replicated. Deploying this example in the testbed
of six Intel Edison nodes results in a total of seven component
instances; six instances of the OccupancySensorComp com-
ponent as it is replicated per node, and a single instance of
the ParkingManagerServer component. This means that the
size of the C2N matrix for this example is 7× 6 as we have
seven component instances and six nodes. Since the instances
for OccupancySensorComp component are strictly associated
with the nodes they are deployed on, they do not need to be
migrated when failures occur.

The second example is an imaging satellite cluster system,
first described in [16]. Unlike the parking system, which only
has seven component instances, this system has a total of
eighteen component instances. In general, this system com-
prises of three applications: (1) imaging , which is responsible
for using cameras with different resolutions to capture and
GPU-s to process captured images, (2) cluster flight planning
application, which is responsible for receiving encoded ground
commands, processing each command and calculating flight
plan (new target location) for each satellite in the cluster, and
(3) satellite flight application which is responsible for receiv-
ing aforementioned target locations and controlling satellite
thrusters to move towards that position.

Figure 9 shows the time taken to compute solution in
response to four different but sequential node failure events in
the two examples. Even though this experiment is small-scale
(six nodes) and the increase in system size is not significant
between the two use cases (the second use case, has eleven
more component instances than the first use case), as shown in
Figure 9, the increase in solution computation time for same
node failure events ranges from 132% for event 1 to 245%
for event 2. It is important to note that the increase in solution
computation time cannot solely be attributed to the system size
as it also depends on the number of constraints being encoded.

B. Performance Analysis

To determine any possible performance bottleneck, the plan-
ner was further analyzed using initial deployment scenarios

TABLE I: Different initial deployment scenarios used for planner performance
analysis

Scenario Description
1 11 nodes, 10 components
2 22 nodes, 18 components
3 33 nodes, 26 components
4 44 nodes, 34 components
5 55 nodes, 42 components
6 66 nodes, 50 components

TABLE II: Total solution computation time for initial deployment of scenarios
in Table I broken down into different phases. Numbers presented are average
over three executions.

Scenario Phase-1
time (s)

Phase-2
time (s)

Phase-3
time (s)

No. of SMT
assertions

1 0.0053 1.2797 0.158 3065
2 0.0087 13.5017 1.0243 33401
3 0.0117 58.1427 4.1473 144741
4 0.015 168.04 16.389 419849
5 0.0177 390.2207 42.16 970529
6 0.021 777.7423 60.973 1937625

with varying scale. Table I describes these initial deployment
scenarios. As shown in the table, the complexity of initial
deployment scenarios used were increased linearly.

For our analysis presented in this section, we divided the
planner algorithm into three phases. The problem setup time
is divided into two distinct phases: (1) Phase 1, which is
the instance computation phase where the planner determines
the component instances that need to be deployed based on
dependency and redundancy requirements, and (2) Phase 2,
which is the constraint encoding phase that is executed by the
planner every time it is invoked since the planner is stateless.
The Z3 solver time is the third and final phase.

For each initial deployment scenarios presented in Table I,
Table II presents a breakdown of the total solution computation
time with respect to the three phases described above. For
each scenario, the total number of SMT assertions used by
the planner is also presented.

From Table II it is clear that the majority of the total solution
computation time is taken by Phase 2, which is the constraint
encoding phase. To further investigate this, we analyzed the
time taken to encode different constraints. Since our initial
tests pointed to the dependency constraint1 as being a major
bottleneck, we divided Phase 2 into two distinct phases: (1) de-
pendency constraint encoding phase, and (2) other constraints
encoding phase. Results of this is presented in Table III. These
results clearly show that the dependency constraint encoding
mechanism is a major bottleneck as it accounts for more than
90% of the constraint encoding time. This is because for every
dependency, the current encoding mechanism incurs O(n2)
time complexity. Any improvement to the way in which this
constraint is encoded will result in significant reduction of the
total solution computation time. One possible solution could
be storing the encoded results in the database rather than
always encoding the constraints as discussed earlier. We are

1Dependency constraint is the constraint used to ensure that component
instances that communicate with each other are either deployed on the same
node or on nodes that have network links between them

6



TABLE III: Breaking down constraint encoding phase (Phase 2 in Table II)
into dependency constraint encoding phase and other constraints encoding
phase.

Scenario Dependency constraint
encoding phase (s)

Other constraints encod-
ing phase (s)

1 1.159 0.1207
2 13.1673 0.3343
3 57.486 0.6567
4 166.9337 1.1063
5 388.525 1.6957
6 775.6133 2.129

Fig. 10: Overview of the Multi-zone Resilience Mechanism comprising a
two-layer architecture. Each resilience zone comprises (1) multiple compute
nodes on which applications are deployed, and (2) a solver node, which hosts
the planner service described in Section III-C. Nodes of a resilience group
can have varying degree of interconnection, which are taken into account by
the solver when computing (re)configuration solutions. Furthermore, multiple
resilience zones themselves can have interconnection via designated router
nodes.

currently improving the implementation to take care of this
issue.

V. EXTENDING TO VERY LARGE DEPLOYMENTS

In this section we describe our ongoing work on implement-
ing a hierarchical approach for handling very large deployment
scenarios (≥ 100 nodes). This is required due to the increase
in computation time taken to formulate a solution in larger
deployments. Our approach depends on creating a two-layered
architecture comprising a resilience supervisor in the first layer
and multiple resilience zones in the second layer. A planner
(Section III-C) manages application on the computation nodes
within that zone.

The resilience supervisor, as shown in Figure 10, is con-
nected to solver nodes associated with each available resilience
zone. When this connection is first established, the resilience
supervisor acknowledges the existence of corresponding re-
silience zones. Furthermore, the resilience supervisor main-
tains a mapping of different zones and their interconnection as
logical nodes with edges. This allows the resilience supervisor
to use the same (re)configuration logic as that in the single-
zone mechanism. The only and critical difference is the level
of abstraction associated with the concept of nodes with
respect to the C2N matrix described in Section III-C. In a
single-zone scenario, a node refers to a physical node present

in that zone, whereas, a node in the resilience supervisor refers
to a resilience zone.

The above-described multi-zone architecture will work in
the following way. Initially, when applications are deployed,
they are deployed to their target resilience zones; the resilience
supervisor has no role to play here. However, when failures
or anomalies occur and the corresponding management engine
cannot find a solution (using the mechanisms described in
Section III-C), it notifies the resilience supervisor. Upon this
notification, the resilience supervisor runs the same mechanism
to determine if the failed applications can be moved to
a different resilience zone. The solution computed by the
resilience supervisor is then sent to management engines
in the corresponding zones. For this approach to work, the
resilience supervisor needs to keep track of resources available
in different resilience zones. Another important point to note
here is that the solution provided by the resilience supervisor
is not always valid or satisfiable as it is a high-level solution
computed in terms of resilience zones (recall that nodes in
context of the resilience supervisor are resilience zone). If a
solution given by the resilience supervisor is not valid, the
corresponding management engine that received the solution
invokes the supervisor again after adding a constraint to ensure
that same solution will not be computed again.

VI. RELATED WORK

In [18], [19], the authors present solutions for synthesizing
an optimal assembly for component-based systems, given a
set of constraints. Both solutions perform automatic static
assembly at design-time. The key difference between these
two solutions is that [18] does not consider timing con-
straints as it does not target real-time systems, however, the
solution presented in [19] targets cyber-physical architectures
and therefore considers timing/scheduling constraints. Pseudo-
Boolean Satisfiability and optimization (PBSAT) solver is used
in the former, while the latter uses Integer linear programming
Modulo Theories (IMT) solver. These solutions do not meet
our needs, as they do not consider dynamic reconfiguration
and only focus on automatically synthesizing optimal system
assemblies at design-time.

Significant amount of prior work has been done in order
to achieve dynamically reconfiguring/self-adapting systems.
Work appearing in [20], [21] present different policy-based
approaches to achieving dynamic reconfiguration. In [20],
the authors present a policy-based framework that requires
mission specification, which describes how specific roles are
assigned to different nodes based on their credentials and
capabilities, and how these roles should be re-assigned in
response to changes or failures. As such, this mission spec-
ification explicitly encodes reconfiguration actions, i.e. role
re-assignments, during design-time. In [21], the authors also
follow similar approach where declarative policies are used
to specify adaptation. These approaches are different from
ours, as we do not explicitly encode reconfiguration actions at
design-time; it is impossible to cover all possible combinations
of failure scenarios at design-time.

7



In [22], the authors present a middleware that supports
timely reconfiguration in distributed real-time systems based
on services. Application Graph, which contains information
about what services are required and how they depend on
each other, and Expanded Graph, which contains information
about different service implementations, are studied a priori
at design-time in order to analyze the schedulability and
complexity of these graphs and to perform fine tuning to
bound the sources of unpredictability, if required. The resulting
Scheduled Expanded Graph is used at run-time to deter-
mine the Execution Graph, which represents the application
in execution. Although this solution supports predictability,
schedulability analysis is done at design-time, which means
system resources cannot be modified at run-time. This is
important for dynamic systems where resources can added or
removed at run-time.

VII. CONCLUSIONS

Distributed embedded systems that are implementing the fog
computing paradigm are expected be managed, yet also exhibit
autonomous capabilities for fault tolerance and resilience. In
this paper, we have introduced an application platform for
component-based applications and a management framework
for (a) deployment and (b) fault management. Arguably, both
of these are critical for the success of these novel systems due
to the sheer size and complexity, which cannot be addressed
by brute force approaches. These concepts have been and
are being prototyped in the CHARIOT and RIAPS platforms,
respectively. Our application domains clearly necessitate these
techniques. There are two main concerns that need to be
addressed in future research. One is scaling; i.e. how does the
approach scale to hundreds or thousands of nodes. Another one
is real-time guarantees: in critical systems, fault management
often has to be performed under strict timing constraints. The
challenge is to model and analyze the behavior of systems,
and build technology that addresses these concerns.

Acknowledgment: The work presented herein was funded
in part by the Advanced Research Projects Agency-Energy
(ARPA-E), U.S. Department of Energy, under Award Number
DE-AR0000666 and in part by a grant from Siemens, CT.
The views and opinions of authors expressed herein do not
necessarily state or reflect those of the US Government or any
agency thereof or of Siemens, CT.

REFERENCES

[1] H. L. Storey, “Implementing an integrated centralized model-based
distribution management system,” in 2011 IEEE Power and Energy
Society General Meeting, July 2011, pp. 1–2.

[2] Y. Simmhan, S. Aman, A. Kumbhare, R. Liu, S. Stevens, Q. Zhou,
and V. Prasanna, “Cloud-based software platform for big data analytics
in smart grids,” Computing in Science Engineering, vol. 15, no. 4, pp.
38–47, July 2013.

[3] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and
its role in the internet of things,” in Proceedings of the First Edition
of the MCC Workshop on Mobile Cloud Computing, ser. MCC ’12.
New York, NY, USA: ACM, 2012, pp. 13–16. [Online]. Available:
http://doi.acm.org/10.1145/2342509.2342513

[4] A. Botta, W. De Donato, V. Persico, and A. Pescapé, “On the integration
of cloud computing and internet of things,” in Future Internet of Things
and Cloud (FiCloud), 2014 International Conference on. IEEE, 2014,
pp. 23–30.

[5] S. Yi, C. Li, and Q. Li, “A survey of fog computing: Concepts,
applications and issues,” in Proceedings of the 2015 Workshop on Mobile
Big Data, ser. Mobidata ’15. New York, NY, USA: ACM, 2015, pp. 37–
42. [Online]. Available: http://doi.acm.org/10.1145/2757384.2757397

[6] O. C. A. W. Group et al., “Openfog architecture overview,” White Paper,
February, 2016.

[7] K. Benson, C. Fracchia, G. Wang, Q. Zhu, S. Almomen, J. Cohn,
L. D’arcy, D. Hoffman, M. Makai, J. Stamatakis, and N. Venkatasubra-
manian, “Scale: Safe community awareness and alerting leveraging the
internet of things,” IEEE Communications Magazine, vol. 53, no. 12,
pp. 27–34, Dec 2015.

[8] D. Willis, A. Dasgupta, and S. Banerjee, “ParaDrop: A Multi-tenant
Platform to Dynamically Install Third Party Services on Wireless
Gateways,” in Proceedings of the 9th ACM workshop on Mobility in
the evolving internet architecture. ACM, 2014, pp. 43–48.

[9] G. Karsai, A. Dubey, I. Madri, M. Metelko, P. Volgyesi, J. Sallai,
S. Lukic, D. Lubkeman, A. Srivastava, C.-C. Liu, J. Xie, and P. Baner-
jee, “Analysis Results and Initial Design of the Resilient Information
Architecture Platform for the Smart Grid (RIAPS),” Jul. 2016.

[10] “Resilient Information Architecture for Smartgrid,”
https://riaps.isis.vanderbilt.edu/redmine/projects/riaps.

[11] S. Eisele, I. Madari, A. Dubey, and G. Karsai, “RIAPS:Resilient Infor-
mation Architecture Platform for Decentralized Smart Systems,” in 20th
IEEE INTERNATIONAL SYMPOSIUM ON REAL-TIME COMPUTING,
IEEE. Toronto, Canada: IEEE, 05/2017 2017.

[12] A. Developers, “What is android,” 2011.
[13] Autosar GbR, “AUTomotive Open System ARchitecture,” http:

//www.autosar.org/. [Online]. Available: http://www.autosar.org/
[14] CHARIOT. [Online]. Available: https://github.com/visor-vu/chariot
[15] G. Karsai, D. Balasubramanian, A. Dubey, and W. Otte, “Distributed and

managed: Research challenges and opportunities of the next generation
cyber-physical systems,” in 17th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing,
ISORC 2014, Reno, NV, USA, June 10-12, 2014, 2014, pp. 1–8.

[16] S. Pradhan, A. Dubey, T. Levendovszky, P. S. Kumar, W. A. Emfinger,
D. Balasubramanian, W. Otte, and G. Karsai, “Achieving resilience
in distributed software systems via self-reconfiguration,” Journal of
Systems and Software, vol. 122, pp. 344 – 363, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121216300590

[17] MongoDB Incorporated, “MongoDB,” http://www.mongodb.org, 2009.
[18] P. Manolios, D. Vroon, and G. Subramanian, “Automating component-

based system assembly,” in Proceedings of the 2007 international
symposium on Software testing and analysis. ACM, 2007, pp. 61–72.

[19] C. Hang, P. Manolios, and V. Papavasileiou, “Synthesizing cyber-
physical architectural models with real-time constraints,” in Computer
Aided Verification. Springer, 2011, pp. 441–456.

[20] E. Asmare, A. Gopalan, M. Sloman, N. Dulay, and E. Lupu, “Self-
management framework for mobile autonomous systems,” Journal of
Network and Systems Management, vol. 20, no. 2, pp. 244–275, 2012.

[21] A. Schaeffer-Filho, E. Lupu, and M. Sloman, “Federating policy-
driven autonomous systems: Interaction specification and management
patterns,” Journal of Network and Systems Management, pp. 1–41, 2014.

[22] M. G. Valls, I. R. López, and L. F. Villar, “iland: An enhanced
middleware for real-time reconfiguration of service oriented distributed
real-time systems,” Industrial Informatics, IEEE Transactions on, vol. 9,
no. 1, pp. 228–236, 2013.

8


