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Abstract. This report captures in detail a Two-level Software Health Management strategy on a
real-life example of an Inertial Measurement Unit subsystem. We describe in detail the design of the
component and system level health management strategy. Results are expressed as relevant portions
of the detailed logs that shows the successful adaptation of the monitor/ detect/ diagnose/ mitigate
approach to Software Health Management.

1 Introduction and Motivation

Software has become the key enabler for a number of core capabilities and services in modern systems [17].
For example, a modern car contains around 20 million lines of code, while just the flight control software of
modern aircraft like F-22 and F-35 contains 1.7−5.7 million lines of code [6]. Given the scale of the software
systems, it is not hard to appreciate the challenge of ensuring correct behavior, especially in avionics where
software malfunctions have caused a number of incidents in the past, including but not limited to those
referred to in these reports: [3,4,9,18]. [21] provides an excellent discussion on the complexity in avionics
software.

The state of the art for critical software development includes process standards such as DO-178B [7]
and the emerging standards such as DO-178C [10]. However, it is known that software can contain latent
defects or bugs that can escape the existing rigorous testing and verification techniques and manifest only
under exceptional circumstances. These circumstances may include faults in the hardware system, including
both the computing and non-computing hardware. Often, systems are not prepared for such faults.

State of the art for safety critical systems is to employ software fault tolerance techniques that rely on
redundancy and voting [5,15,24]. However, it is clear that existing techniques do not provide adequate cov-
erage for problems such as common-mode faults and latent design bugs triggered by other faults. Additional
techniques are required to make the systems self-managing, i.e. they have to provide resilience to faults by
adaptively mitigating the functional effects of those faults.

Self-adaptive systems must be able to adapt to faults in software as well as the hardware (physical equip-
ment) elements of a system, even if they appear simultaneously. Conventional Systems Health Management
is associated with the physical elements of the system, and includes anomaly detection, fault source identifi-
cation (diagnosis), fault effect mitigation (at runtime/ online during operation), maintenance (offline), and
fault prognostics (online or offline) [12,19]. Software Health Management (SHM), borrows concepts and tech-
niques from Systems Health Management and is a systematic extension of classical software fault tolerance
techniques. Srivastava and Schumann provide a good motivation for Software Health Management in [23].
SHM is performed at run-time, and just like Systems Health Management it includes detection, isolation,
and mitigation to remove fault effects. SHM can be considered as a dynamic fault removal technique [2].
While Systems Health Management also includes prognostics, Software Health Management could possibly
be extended in that direction as well, but we have not investigated it yet.

We have developed an approach and model-based support tools for implementing software health man-
agement functions for component-based systems. The foundation of the architecture is a real-time component
framework that defines a component model for ARINC-653 systems1 [8]. This framework brings the concept

1 ARINC-653 (Avionics Application Standard Software Interface) is a specification for space and time partitioning
in Safety-critical avionics Real-time operating systems. It allows to host multiple applications of different software
levels on the same hardware in the context of an Integrated Modular Avionics architecture.[1,20]



of temporal isolation, spatial isolation, strict deadlines from ARINC-653 and merges it with the well-defined
interaction patterns described in CORBA Component Model [26]. The health management in the framework
is performed at two levels. The Component-level Health Manager (CLHM) provides localized and limited
service for managing the health of individual software components. A higher-level System Health Manager
(SLHM) manages the health of the overall system.

SLHM includes a diagnosis engine that uses a Timed Failure Propagation (TFPG) model automatically
synthesized from the component assembly; the engine reasons about fault effect cascades in the system, and
isolates the fault source components. This is possible because the data / behavioral dependencies and hence
the fault propagation across the assembly of software components can be deduced from the well-defined
and restricted set of interaction patterns supported by the framework. Once the fault source is isolated,
the necessary system level mitigation action is taken. Similar approaches can be found in [14,25]. The key
difference between those and our work is that we apply an online diagnosis engine coupled with a two-level
mitigation scheme. Furthermore, this approach is applied to hard real-time systems where all processes run
within finite time bounds and are continuously monitored for deadline violations. This includes, the health
management processes.

Our approach is supported by a model-based design environment where developers can create models of
the system and its components, as well as specify how fault mitigation will take place. A suite of software
generators produce glue code that allows developer-supplied functional code or ’business logic’ to form a
collection of applications that run on an ARINC-653 platform.

In this report, we use the example of an Inertial Measurement Unit (IMU) system to demonstrate the
novel contributions of this approach which include

– Model-based development of component-based systems for ARINC-653 platform.
– Automatic synthesis of monitoring code that is executed with the component operations.
– Automatic synthesis of diagnosis information from the system design models.
– Automatic synthesis of the mitigation code based on system specification.
– Generation and configuration of the distributed architecture required to operate the components in

parallel with the component and system level health managers.

2 IMU Case Study

Figure 1 shows the logical system assembly for the IMU. This system consists of several subsystems described
below. This case study can be repeated by the readers by downloading the tools from https://wiki.isis.

vanderbilt.edu/mbshm/index.php/Main_Page. The design tools come with the IMU model as an example.
Also included is the business logic code and instructions to repeat the experiment.

2.1 GPS Subsystem

A GPS subsystem consists of two components, GPS Receiver and GPS processor, see Figure 1. This is
similar to the Sensor and GPS components shown earlier in the paper. While the GPS receiver emulates
a software sensor providing the hardware readout, the GPS processor implements a Kalman Filter. Details
of the implementation of Kalman Filter are not discussed here. When the GPS processor has an updated
position, it sends a ‘tick’ out of its publisher port with the understanding that any subscriber component can
fetch the update synchronously at a later time. Table 1 shows the real-time properties of both components
in the subsystem. Overall, the GPS subsystem runs at a frequency of 0.1Hz. In this particular system, there
are two instances of the GPS subsystem, a primary and a backup, called the secondary subsystem. In this
particular case study, the GPS coordinates were read from a table by the receiver component.

Monitors GPS processor’s facet port is configured with a post-condition to evaluate the correctness of
its internal position data. GPS processor does not have a component level health manager. Therefore, by
default all detected anomalies are propagated to the system health manager and a local action of IGNORE
is actuated.

https://wiki.isis.vanderbilt.edu/mbshm/index.php/Main_Page
https://wiki.isis.vanderbilt.edu/mbshm/index.php/Main_Page
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Fig. 1. Model of an IMU in ACM



Table 1. Details Of the Internal Port/ARINC-653 Processes of Components in the IMU system

Type Component Port Period Deadline DeadlineType
Publisher ADIRUAccelerometer Acceleration 1.0 1.0 HARD
Publisher GPSReceiver data out 10.0 10.0 HARD

Facet GPSProcessor getGPSData -1 -1.0 HARD
Publisher GPSProcessor data out 1.0 1.0 HARD
Consumer GPSProcessor data in 10.0 10.0 HARD
Publisher ADIRUProcessor Output -1.0 -1.0 HARD
Consumer ADIRUProcessor Ac1 -1.0 -1.0 HARD
Consumer ADIRUProcessor Ac2 -1.0 -1.0 HARD
Consumer ADIRUProcessor Ac3 -1.0 -1.0 HARD
Consumer ADIRUProcessor Ac4 -1.0 -1.0 HARD
Consumer ADIRUProcessor Ac5 -1.0 -1.0 HARD
Consumer ADIRUProcessor Ac6 -1.0 -1.0 HARD
Internal ADIRUProcessor ComputationTask 1.0 1.0 HARD
Publisher ADIRUVoter output -1.0 -1.0 HARD
Consumer ADIRUVoter Co1 -1.0 -1.0 HARD
Consumer ADIRUVoter Co2 -1.0 -1.0 HARD
Consumer ADIRUVoter Co3 -1.0 -1.0 HARD
Consumer ADIRUVoter Co4 -1.0 -1.0 HARD
Internal ADIRUVoter VotingTask 1.0 1.0 HARD
Facet PFCNavFilter getPosData -1 -1.0 HARD

Receptacle PFCNavFilter getGPSData -1 -1.0 HARD
Publisher PFCNavFilter position -1.0 -1.0 HARD
Consumer PFCNavFilter acc -1.0 -1.0 HARD
Internal PFCNavFilter invokeGPS 10.0 10.0 HARD
Publisher PFCProcessor posReady -1.0 -1.0 HARD
Consumer PFCProcessor Position -1.0 -1.0 HARD
Receptacle DispVoter getPosData -1 -1.0 HARD
Receptacle DispVoter getPosData -1 -1.0 HARD
Receptacle DispVoter getPosData -1 -1.0 HARD
Publisher DispVoter output -1.0 -1.0 HARD
Consumer DispVoter centerPosToken -1.0 -1.0 HARD
Consumer DispVoter rightPosToken -1.0 -1.0 HARD
Consumer DispVoter leftPosTick -1.0 -1.0 HARD
Internal DispVoter VotingTask 1.0 1.0 HARD

Consumer PositionDisplay position -1.0 -1.0 HARD

2.2 ADIRU Subsystem

The architecture of the ADIRU subsystem (see Figure 1) in this case study is based on the Air Data Inertial
Reference Unit (ADIRU) used on a Boeing 777 aircraft [16,22]. An ADIRU provides airspeed, angle of
attack, altitude as well as inertial position and attitude information to other flight systems. The primary
design principle in Boeing 777’s ADIRU Architecture is multiple levels of redundancy. There are two ADIRU
units: primary and secondary. The primary ADIRU is divided into 4 Fault Containment Areas (FCA), with
each FCA containing multiple Fault Containment Modules (FCM): accelerometers (6 FCM), gyros (6 FCM),
processors (4 FCM), power supplies (3 FCM), ARINC 629 bus (3 FCM). The ADIRU system was designed
to be serviceable, with capability to tolerate up to one fault in each FCA without any maintenance. Systems
can fly with two faults, but it necessitates maintenance upon landing.

In 2005, the ADIRU unit of a Malaysian Air flight was responsible for an inflight upset. Post-flight
analysis [3] revealed that in 2001 accelerometer 5 in the primary ADIRU had failed with high output values
and was subsequently marked as faulty. However, because there was only one failure no maintenance was
requested on the unit, but the status of failed unit was recorded in on-board maintenance memory. However,
on the day of the incident, a power cycle on the primary ADIRU occurred, during flight. Upon reset, the
processors did not check the status of the on-board memory and hence did not regard accelerometer 5 as
faulty. Thereafter, a second in-flight fault was recorded in the accelerometer 6 and was disregarded. Till the
time of the incident the ADIRU processors used a set of equations for acceleration estimation that disregarded
the values measured by accelerometer 5. However, the fault in accelerometer 6 necessitated a reconfiguration
to use a different set of estimation equations. At this point, they allowed the use of accelerometers 1 to 5
as accelerometer 5 was not regarded as faulty, passing the abnormal high acceleration values to all flight
computers. Due to common-mode nature of the fault, voters allowed the incorrect accelerometer data to go
out on all channels. This high value was used by primary flight computers, although a comparison function
used by the flight computers lessened the effect. In summary, a latent software bug and the common-mode



Fig. 2. ADIRU Processor

nature of the accelerometer fault bypassed the redundancy checks and caused the effect to cascade into a
system failure [11].

In this particular case study, gyros are not emulated. There are six instances of accelerometer components.
Each accelerometer component has a periodic publisher that publishes its data every 1 second, see table 1.
Published data consists of a linear acceleration value measured in the axis of the accelerometer and a time
stamp. All accelerometers measure in directions perpendicular to the six faces of a dodecahedron centered at
the origin of the body coordinate system. Running the code generator of the ACM framework produces the
code for all accelerometers. The only portion supplied by the developer is the function that is called in every
cycle to produce the data. We use a lookup table to simulate actual sensor measurements, configured for each
experiment. All acceleration values are fed to the four ADIRU processors. Figure 2 shows the internal data and
control flow of the processor. Each processor consists of six aperiodic consumers (AC1-AC6), each connected
to one accelerometer. Accelerometer data is cached internally in six state variables. ADIRU processor also
contains a periodically triggered internal method for computing body acceleration value. During this step,
the processor solves a set of linear regression equations to estimate the body linear acceleration. If processor
is aware of a fault in one of the accelerometers or aware of the staleness of corresponding cached data, it can
ignore that particular observation and use the other 5 for performing regression. Note that it needs at least
four observations for performing the regression.

Output of each ADIRU processor is the body axis data and is published every second to the three voter
components. The voters consume these data with three consumers. Each voter uses a median algorithm to
choose the middle values and outputs it to flight computer. Like GPS, there is a backup for the ADIRU
subsystem in the IMU assembly.



Monitors In our framework, the design tools allows the system designer to deploy monitors which can be
configured to detect deviations from expected behavior, violations in properties, constraints, and contracts
of an interaction port or component. Based on these monitors, following discrepancies can be currently
identified:

– Lock Time Out : The framework implicitly generates monitors to check for resource starvation. Each
component has a lock (to avoid interference among callers), and if a caller does not get through the lock
within a specified timeout it results in starvation. The value for timeout is either set to a default value
equal to the deadline of the process associated with component port or can be specified by the system
designer.

– Data Validity violation (only applicable to consumers): Any data token consumed by a consumer port
has an associated expiration age. This is also known as the validity period in ARINC-653 sampling ports.
We have extended this to be applicable to all types of component consumer ports, both periodic and
aperiodic.

– Pre-condition Violation: Developers can specify conditions that should be checked before executing.
These conditions can be expressed over the current value or the historical change in the value, or rate of
change of values of variables (with respect to previously known value for same parameter) such as

1. the event-data of asynchronous calls,

2. function-parameters of synchronous calls, and

3. (monitored) state variables of the component.

– User-code Failure: Any error or exception in the user code can be abstracted by the software developer as
an error condition which they can choose to report to the framework. Any unreported error is recognized
as a potential unobservable discrepancy.

– Post-condition Violation: Similar to pre-conditions, but these conditions are checked after the execution
of function associated with the component port.

– Deadline Violation: Any execution started must finish within the specified deadline.

These monitors can be specified via (1) attributes of model elements (e.g. Deadline, Data Validity, Lock
time out), (2) via a simple expression language (e.g. conditions). The expressions can be formed over the
(current) values of variables (parameters of the call, or state variables of the component), their change (delta)
since the last invocation, their rate of change (change divided by a time value). Table 2 provides the summary
of anomalies that can be observed on a component port and the component as a whole.

In this example, monitors are configured to track the resource usage (CPU time) of the publishers
/ consumers in the Components associated with Accelerometers, ADIRU processors, Voters and Display
components. The publisher port in each Accelerometer component is configured with a monitor to observe
the published data via a post-condition. These monitors fire if the published data from the associated
Accelerometer appears to be Stuck-High or Stuck-Low or show a rapid change in value that is more than the
established norms. All the consumer ports in each of the ADIRU-processors, Voters and Display components
have a specified Data-Validity time and the associated monitors trigger when the age of the incoming data
(i.e. the difference between the current time and the time stamp on the data) is more than the specified
Data-Validity time.

In addition to the monitors specified above, the ADIRU processor components look for the absence of
published data on each of the consumer ports, connected to one of the six accelerometers. This is done by
observing the lack of the ENTRY /EXIT events from these ports within a pre-specified timeout period, see
Figure 3. It shows portions of the state machine specification monitoring the events for accelerometer 1.
Once a missing data is detected, the status is set to 0. The status array, indexed from 0 and having six
elements, captures the state of all six channels. Five similar state machines are used for observing the other
accelerometers, in parallel.

CLHM in the ADIRU assembly All Accelerometer and Display components have local health managers.
In case of the Accelerometers, the CLHM, see Figure 4, is configured to issue an IGNORE command when
the post-condition violation is detected in the publisher.



[TIMEOUT(timerval)]/
status.value[0]=0
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Fig. 3. Observer inside the ADIRU processor: This observer ensures that only latest data, received within last 2
seconds is used for computation.

2.3 PFC Subsystem

The PFC subsystem shown in Figure 1 emulates the flight computer which uses the body acceleration data
fed by the ADIRU to track the planes inertial position. Table 1 describes the real-time properties of the
ports and components in this subsystem. It receives the input from one of the voters of ADIRU subsystem.
Typically, this subsystem also receives the information from Gyros to track the vehicle rotation, pitch and
yaw. However, in this particular example we are restricting ourselves to a non-rotating vehicle. Given that



Table 2. Monitoring Specification. Comments are shown in italics.

<Pre-condition>::=<Condition>

<Post-condition>::=<Condition>

<Deadline>::=<double value> /* from the start of the process associated with the port to the end of that method
*/

<Data Validity>::=<double value> /* Max age from time of publication of data to the time when data is con-
sumed*/

<Lock Time Out>::=<double value> /* from start of obtaining lock*/

<Condition>::=<Primitive Clause><op><Primitive Clause>|<Condition><logical op><Condition>|
!<Condition> | True| False

<Primitive Clause>::=<double value>| Delta(Var)| Rate(Var)|Var
/* A Var can be either the component State Variable, or the data received by the publisher, or the argument of the
method defined in the facet or the receptacle*/

<op>::= < | > | <= | >= | == | !=

<logical op>::=&& | ||

ADIRU Accelerometer Component Level Health Manager

e1->Accelerometer 
publisher

Fig. 4. CLHM State-Machine of Accelerometer. Event e1 occurs when the post-condition of the associated port fails.

inertial system using the body acceleration values tends to drift over time, the PFC Nav Filter component
uses a receptacle port to fetch more accurate but slowly refreshing GPS data at a rate of 0.1Hz to reset
its initial condition. The IMU system is configured with three PFC subsystems. All of them are active in
parallel.

Monitors The acceleration consumer port of PFC Nav Filter component is configured with a pre-condition
to detect rapid changes in the data fed to these consumers consistent with the physical limits on acceleration
and jerk (rate of change of acceleration) in each one of the body axes. It also has a post-condition to check the
correctness of the data received from GPS. There is no health manager configured in the component. Lack
of health manager implies that all local anomalies are ignored and reported to the system health manager.

2.4 Display Subsystems

There are two instances of the display subsystem. The display subsystem receives the notification from each
PFC subsystem that a position update is available. This information is buffered internally. Periodically, at a
rate of 1 Hz, it uses three receptacles to fetch the data from the PFC components. Upon receipt of the data,
it computes the median value and displays it. Both instances are active in the assembly at the same time.

Note 1. It should be noted that the communication patterns used in the case study, a published data update
tick, followed by a synchronous call for fetching the data via a receptacle is intentional. Our goal is to show
the richness of interaction patterns that are possible within the ACM framework.



Table 3. SLHM Functions. Here c denotes the component name and s denotes a subsystem name. Unless otherwise
specified usage of the subsystem name in a command implies apply to all contained components.

Action Semantics

IS FAULTY (c|s) Returns true if the component is faulty.. A subsystem is marked as faulty if the minimum
number of components required for work is not available.

IS NOT FAULTY
(c|s)

Returns false if the component or subsystem is faulty

RESET (c|s) Instructs the component to execute its Reset method.

STOP (c|s) Instructs the component to switch to Inactive mode. Component stops executing the func-
tionality of all its ports. If subsystem is argument, command is applied to all its components

START (c|s) Instructs the component to switch to Active mode. Component starts executing the function-
ality of all its ports.

DISABLE OUTPUT
(c|s)

Instructs the component to switch to Semi-Active mode. Only Consumer and Provides port
are operational.

REWIRE (c,i,pc) i: Interface Name, pc: Provider Component Name. This command Instructs Component (c)
to switch its receptacle Interface (i) to connect to the approriate facet interface in another
component (pc).

CHECK POINT (c|s) Instructs the component to Checkpoint its current state-variables.

RESTORE (c|s) Instructs the component to Restore its state-variables from the Checkpoint.

2.5 Generated TFPG Model

The generated TFPG model is too large to be displayed graphically. Instead, we have provided the complex-
ity information of the graph here. Overall, there were 114 activation modes, 120 root failure sources, 234
unobserved discrepancies, 34 observed discrepancies or alarms, and 821 failure propagation links. This gen-
erated TFPG model is used by the reasoner in the Diagnosis Engine component. When new data is received
from the Alarm Aggregator component, the reasoner generates a set of hypotheses that best describe the
cause for the alarms. As new alarms are received it updates the hypotheses. The hypotheses with the best
metric (Plausibility, Robustness) are regarded as the most plausible explanation. Further, if a system-level
mitigation strategy is specified, then the component containing the source failure modes is identified and the
information is passed on to the component hosting the system-level mitigation strategy.

2.6 System Health Manager

System level mitigation strategy is modeled as a hierarchical timed state machine. Table 3 lists the statements
(functions) that can be used in the state machine to express the guard conditions (to check if a component
is faulty) and actions (mitigation commands). These strategies are reactive in nature and aim to restore the
functionality by cold/ warm reset or shifting to redundant component.

In this example, we augmented the system assembly shown in Figure 1 with the three SLHM components.
Due to complexity and number of interconnections a visual rendering of the augmented assembly has not
been provided.

Figure 5 shows the internal of system fault mitigation strategy. Only strategies concerned with the
ADIRU and GPS subsystem are shown in the figure. Initially, system is setup such that only the primary
ADIRU subsystem and the primary GPS subsystems are active. It can be seen from the state machine that
if the diagnoser implicates Accelermoter5 as faulty, the SLHM sends it a stop command. When two or more
accelerometers fail in the primary ADIRU, the SLHM sends a command to stop the primary subsystem
and start the secondary subsystem. Figure 1 shows that the network connection between the three flight
computers and the secondary already exists. It was just inactive when the system started. Upon receipt of
the start command, this links become active and the system starts using the secondary ADIRU. If in future
the primary ADIRU subsystem is mitigated such that there is no fault, then the SLHM can revert back to
it if the Secondary system fails.

The mitigation in case of GPS subsystem involves the use of REWIRE command, see Table 3. This
command is preceded by shutting down the primary subsystem and activating the secondary system. Rewire
directs all three flight computers to use the secondary system for GPS update. Once the SLHM sends a



command it waits for the alarm aggregator and the diagnoser to update their internal model of the system
state. If a confirmation from affected component is not received within a bounded time that component is
marked as faulty.

In a hard real-time system all time and network bandwidth has to be preallocated to solve the scheduling
problem. Thus, during mitigation it is not possible to instantiate new components. However, a board or a
component can be started and a communication link activated, given that its worst case load was accounted
during system design.

Table 4. Deployment details of the IMU assembly. Given the hyperperiod and partition periods are same, each
partition is executed only once in a hyperperiod.

Module Host Partition Dur Per Subsystem Component
Name Name tion(s) iod(s)

System Hyper period =1 sec
SecondaryRest durip04 sPart3Rest 0.25 1.0 Secondary ADIRU VoterRight
SecondaryRest durip04 sPart3Rest 0.25 1.0 Secondary ADIRU ADIRUComputer3
SecondaryRest durip04 sPart3Rest 0.25 1.0 Right PFC PFCProcessor
SecondaryRest durip04 sPart1Rest 0.25 1.0 Secondary ADIRU VoterLeft
SecondaryRest durip04 sPart1Rest 0.25 1.0 Secondary ADIRU ADIRUComputer1
SecondaryRest durip04 sPart4Rest 0.23 1.0 Secondary ADIRU ADIRUComputer4
SecondaryRest durip04 sPart4Rest 0.23 1.0 Center PFC PFCProcessor
SecondaryRest durip04 sPart4Rest 0.23 1.0 Center PFC PFCNavFilter
SecondaryRest durip04 sPart2Rest 0.25 1.0 Secondary ADIRU ADIRUComputer2
SecondaryRest durip04 sPart2Rest 0.25 1.0 Secondary ADIRU VoterCenter
SecondaryRest durip04 sPart2Rest 0.25 1.0 Right PFC PFCNavFilter
SecondaryAcc durip02 sPart1 0.16 1.0 Secondary ADIRU Accelerometer1
SecondaryAcc durip02 sPart2 0.16 1.0 Secondary ADIRU Accelerometer2
SecondaryAcc durip02 sPart3 0.16 1.0 Secondary ADIRU Accelerometer3
SecondaryAcc durip02 sPart4 0.16 1.0 Secondary ADIRU Accelerometer4
SecondaryAcc durip02 sPart5 0.16 1.0 Secondary ADIRU Accelerometer5
SecondaryAcc durip02 sPart6 0.15 1.0 Secondary ADIRU Accelerometer6
PrimaryAcc durip06 pPart5 0.16 1.0 Primary ADIRU Accelerometer5
PrimaryAcc durip06 pPart4 0.16 1.0 Primary ADIRU Accelerometer4
PrimaryAcc durip06 pPart4 0.16 1.0 Secondary GPS GPSProcessor
PrimaryAcc durip06 pPart3 0.16 1.0 Primary ADIRU Accelerometer3
PrimaryAcc durip06 pPart3 0.16 1.0 Secondary GPS GPSReceiver
PrimaryAcc durip06 pPart2 0.16 1.0 Primary ADIRU Accelerometer2
PrimaryAcc durip06 pPart2 0.16 1.0 Primary GPS GPSProcessor
PrimaryAcc durip06 pPart6 0.15 1.0 Primary ADIRU Accelerometer6
PrimaryAcc durip06 pPart1 0.16 1.0 Primary ADIRU Accelerometer1
PrimaryAcc durip06 pPart1 0.16 1.0 Primary GPS GPSReceiver
PrimaryRest durip05 pPart1Rest 0.25 1.0 Primary ADIRU ADIRUComputer1
PrimaryRest durip05 pPart1Rest 0.25 1.0 Primary ADIRU VoterLeft
PrimaryRest durip05 pPart2Rest 0.25 1.0 Primary ADIRU ADIRUComputer2
PrimaryRest durip05 pPart2Rest 0.25 1.0 Primary ADIRU VoterCenter
PrimaryRest durip05 pPart2Rest 0.25 1.0 Left PFC PFCNavFilter
PrimaryRest durip05 pPart3Rest 0.25 1.0 Primary ADIRU ADIRUComputer3
PrimaryRest durip05 pPart3Rest 0.25 1.0 Primary ADIRU VoterRight
PrimaryRest durip05 pPart4Rest 0.22 1.0 Primary ADIRU ADIRUComputer4
PrimaryRest durip05 pPart4Rest 0.22 1.0 Left PFC PFCProcessor

Display durip03 CoPilotPart 0.5 1.0 CoPilot Disp DispVoter
Display durip03 CoPilotyPart 0.5 1.0 CoPilot Disp DispComponent
Display durip03 PilotPart 0.5 1.0 Pilot Disp DispVoter
Display durip03 PilotPart 0.5 1.0 Pilot Disp DispComponent

SHMModule durip09 SHMPartition 1.0 1.0 SLHM AlarmAggregator
SHMModule durip09 SHMPartition 1.0 1.0 SLHM DiagnosisEngine
SHMModule durip09 SHMPartition 1.0 1.0 SLHM ResponseEngine

2.7 Deployment

Table 4 shows the deployment detail of the IMU assembly. Overall, in this case study six modules were used.
Each module was sub-divided in to partitions and deployed on to one core of a machine in our lab. Details
of the partition such as periodicity and duration and the component instances allocated to the partition
are also given in the table. The system health manager components were deployed in a single partition on
a separate module synchronizing the execution of all other modules. The runtime framework ensures that
all modules run in a synchronized manner with the specified system-wide hyper period of 1 second. At the



start of each hyper period a system health manager module sent a synchronization message to each module
manager, which executes the module schedule. This is similar to the technique in the TTP/A protocol [13].

We deployed all the six modules in the IMU assembly (Table 4) on six computers in our lab, deployed
in an isolated subnet. These computers were running the ARINC Component runtime. Upon initialization,
all modules synchronized with the system module that ran the diagnoser and system response/ mitigation
engine. Thereafter, each module cyclically scheduled its partitions. All modules resynchronized with the
system module at the start of each hyper period. The code necessary for this distributed synchronization
was auto generated from the ADIRU deployment model in which each module was mapped to a physical
core on a processor.

2.8 Execution

Failure Scenario In this case study we injected following failures one by one: (1) A fault was introduced
in the Primary ADIRU Accelerometer6 code such that its data is stuck high. (2) Then, a similar fault
was injected in the Primary ADIRU Accelerometer5. (3) Subsequently, fault was injected in Accelerometer
4. Since 3 accelerometers are now faulty, primary ADIRU cannot provide the body acceleration data. (4)
Finally, a fault was introduced in the Primary GPS Processor such that the position jumps high.

Table 5 shows relevant portions of the log file formatted to be displayed as a table. Column 2 is the name
of the partition from which the message was recorded, Column 3 is the relative time in seconds since the start
of experiment, event 1. Last Column is the descriptive message. At events 2, 10, and 20 three accelerometers
failure were injected. It can be noted that there is always an approximate one second shift between the time
of injection and time when alarm is registered on the system health manager. This is because the alarm
aggregator buffers the alarms in a hyper period (1 second) before sending it to the diagnoser. This is to
increase the likelihood that all related alarms are processed together. It can be seen that at event 25 more
than two accelerometers from primary ADIRU were registered as faulty. This causes the stop messages to be
sent to all components in the primary ADIRU subsystem, event 26. This is followed by start of Secondary
ADIRU subsystem (27). Then, Confirmation from all components of primary and secondary system is received
(abstracted into single event, event 29). Since Secondary ADIRU was in semi-active state, its accelerometers
were already running and hence they ignore the start command sent by the health manager. It should be
noted that each of these confirmations are also received with a delay due to the buffering action of Alarm
Aggregator. Events 30 - 47 show the injection of GPS fault and the final recovery, including rewiring of PFC
receptacles to the secondary GPS subsystem.

Table 6. Formatted Log file from the IMU execution.

Part Unix Time Message

1 SHM 1306811930.14 Ready
2 pPart6 1306811972.11 Injecting Failure in Primary Acclerometer6
3 SHM 1306811973.138385746 ALARM AM Primary ADIRU Subsystem Accelerometer6 Acceleration POSTCONDITION FAILURE
4 SHM 1306811973.160051000 DIAGNOSER : DIAGNOSIS RESULTS : FAULTY COMPONENT Pri-

mary ADIRU Subsystem Accelerometer6 Subsystem Primary ADIRU Subsystem
5 SHM 1306811973.160613885 SHM: SETTING COMPONENT Primary ADIRU Subsystem Accelerometer6 TO FAULTY STATUS
6 SHM 1306811973.160999370 SHM: COMMAND STOP SENT TO COMPONENT Primary ADIRU Subsystem Accelerometer6 Inac-

tivated: Component Accelerometer6
7 SHM 1306811975.183065786 DIAGNOSER : DIAGNOSIS RESULTS : FAULTY COMPONENT Pri-

mary ADIRU Subsystem Accelerometer6 Subsystem Primary ADIRU Subsystem
8 SHM 1306811975.183663159 SHM: COMPONENT Primary ADIRU Subsystem Accelerometer6 EXECUTED PREVIOUS COM-

MAND
9 SHM 1306811975.184238910 SHM: SETTING COMPONENT Primary ADIRU Subsystem Accelerometer6 TO FAULTY STATUS
10 pPart6 1306811982.122613333 [From Primary ADIRU Subsystem Accelerometer5]Injecting Failure
11 SHM 1306811983.138341453 DIAGNOSER : ALARM RECEIVED : AM Primary ADIRU Subsystem Accelerometer5 Acceleration

POSTCONDITION FAILURE Alarm::Publisher Acceleration:Component Accelerometer5:Subsystem
Primary ADIRU Subsystem

12 SHM 1306811983.182080758 DIAGNOSER : DIAGNOSIS RESULTS : FAULTY COMPONENT Pri-
mary ADIRU Subsystem Accelerometer6 Faulty: Component Accelerometer6:Subsystem Pri-
mary ADIRU Subsystem

13 SHM 1306811983.182210971 DIAGNOSER : DIAGNOSIS RESULTS : FAULTY COMPONENT Pri-
mary ADIRU Subsystem Accelerometer5 Faulty: Component Accelerometer5:Subsystem Pri-
mary ADIRU Subsystem:Subsystem Primary ADIRU Subsystem

continued on next page
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on Time Message

1  SHM 0.00 Ready

2  pPart6 41.97 [From Primary_ADIRU_Subsystem_Accelerometer6]Injecting Failure

3  SHM 43.00 ALARM RECEIVED : AM_Primary_ADIRU_Subsystem_Accelerometer6_Acceleration_POSTCONDITION_FAILURE

4  SHM 43.02  FAULTY COMPONENT Primary_ADIRU_Subsystem_Accelerometer6  Subsystem Primary_ADIRU_Subsystem 

6  SHM 43.02  COMMAND STOP SENT TO COMPONENT Primary_ADIRU_Subsystem_Accelerometer6

7  SHM 45.04  FAULTY COMPONENT Primary_ADIRU_Subsystem_Accelerometer6  Subsystem Primary_ADIRU_Subsystem 

8  SHM 45.05  COMPONENT Primary_ADIRU_Subsystem_Accelerometer6 EXECUTED PREVIOUS COMMAND 

10  pPart6 51.98 [From Primary_ADIRU_Subsystem_Accelerometer5]Injecting Failure

11  SHM 53.00 ALARM RECEIVED : AM_Primary_ADIRU_Subsystem_Accelerometer5_Acceleration_POSTCONDITION_FAILURE

12  SHM 53.04  FAULTY COMPONENT Primary_ADIRU_Subsystem_Accelerometer6  Faulty: Component Accelerometer6

13  SHM 53.04  FAULTY COMPONENT Primary_ADIRU_Subsystem_Accelerometer5  Faulty: Component Accelerometer5

15  SHM 53.04  COMMAND STOP SENT TO COMPONENT Primary_ADIRU_Subsystem_Accelerometer5 

16  SHM 55.10  FAULTY COMPONENT Primary_ADIRU_Subsystem_Accelerometer6  Subsystem Primary_ADIRU_Subsystem 

17  SHM 55.10  FAULTY COMPONENT Primary_ADIRU_Subsystem_Accelerometer5  Subsystem Primary_ADIRU_Subsystem 

19  SHM 55.10  COMPONENT Primary_ADIRU_Subsystem_Accelerometer5 EXECUTED PREVIOUS COMMAND 

20  pPart6 56.03 [From Primary_ADIRU_Subsystem_Accelerometer4]Injecting Failure

21  SHM 58.00 ALARM RECEIVED : AM_Primary_ADIRU_Subsystem_Accelerometer4_Acceleration_POSTCONDITION_FAILURE

22  SHM 58.09  FAULTY COMPONENT Primary_ADIRU_Subsystem_Accelerometer6 Subsystem Primary_ADIRU_Subsystem 

24  SHM 58.09  FAULTY COMPONENT Primary_ADIRU_Subsystem_Accelerometer4 Subsystem Primary_ADIRU_Subsystem 

25  SHM 58.09  FAULTY COMPONENT Primary_ADIRU_Subsystem_Accelerometer5 Subsystem Primary_ADIRU_Subsystem 

26  SHM 58.09

 COMMAND STOP ISSUED TO SUBSYSTEM Primary_ADIRU_Subsystem:  

Primary_ADIRU_Subsystem_Accelerometer1,  Primary_ADIRU_Subsystem_Accelerometer2, 

Primary_ADIRU_Subsystem_Accelerometer3, Primary_ADIRU_Subsystem_Accelerometer4, 

Primary_ADIRU_Subsystem_ADIRUComputer1,Primary_ADIRU_Subsystem_ADIRUComputer2,Primary_ADIRU_Su

bsystem_ADIRUComputer3,Primary_ADIRU_Subsystem_ADIRUComputer4,Primary_ADIRU_Subsystem_VoterLeft,

Primary_ADIRU_Subsystem_VoterRight,Primary_ADIRU_Subsystem_VoterCenter

27  SHM 58.09

 COMMAND START ISSUED TO SUBSYSTEM Secondary_ADIRU_Subsystem: 

Secondary_ADIRU_Subsystem_Accelerometer1,  Secondary_ADIRU_Subsystem_Accelerometer2, 

Secondary_ADIRU_Subsystem_Accelerometer3, Secondary_ADIRU_Subsystem_Accelerometer4, 

Secondary_ADIRU_Subsystem_Accelerometer5,Secondary_ADIRU_Subsystem_Accelerometer6,Secondary_ADIR

U_Subsystem_ADIRUComputer1,Secondary_ADIRU_Subsystem_ADIRUComputer2,Secondary_ADIRU_Subsystem_

ADIRUComputer3,Secondary_ADIRU_Subsystem_ADIRUComputer4,Secondary_ADIRU_Subsystem_VoterLeft, 

Secondary_ADIRU_Subsystem_VoterRight,Secondary_ADIRU_Subsystem_VoterCenter

29  SHM

60.88-

71.20  Primary_ADIRU_Subsystem and  Secondary_ADIRU_Subsystem  EXECUTED PREVIOUS COMMANDS

30  pPart2 91.58 [From Primary_GPS_Subsystem_GPSProcessor]gps_data_src injecting fault

31  SHM 94.00

ALARM RECEIVED : 

AM_Primary_GPS_Subsystem_GPSProcessor_gps_data_src_getGPSData_POSTCONDITION_FAILURE

33  SHM 101.69  FAULTY COMPONENT Primary_ADIRU_Subsystem_Accelerometer6

34  SHM 101.69  FAULTY COMPONENT Primary_ADIRU_Subsystem_Accelerometer4

35  SHM 101.69  FAULTY COMPONENT Primary_ADIRU_Subsystem_Accelerometer5

36  SHM 101.69  FAULTY COMPONENT Primary_GPS_Subsystem_GPSReceiver

38  SHM 101.69  FAULTY COMPONENT Primary_GPS_Subsystem_GPSProcessor

39  SHM 101.69

 COMMAND STOP ISSUED TO SUBSYSTEM Primary_GPS_Subsystem: Primary_GPS_Subsystem_GPSReceiver, 

Primary_GPS_Subsystem_GPSPRocessor

40  SHM 101.69

 COMMAND START ISSUED TO SUBSYSTEM Secondary_GPS_Subsystem: Secondary_GPS_Subsystem_GPSReceiver, 

Secondary_GPS_Subsystem_GPSProcessor

41  SHM 101.69  COMMAND REWIRE_INTEFACE SENT TO COMPONENT Left_PFC_Subsystem_PFCNavFilter 

43  SHM 101.69

 REWIRE COMMAND DETAILS: INTERFACE Left_PFC_Subsystem_PFCNavFilter::GPSDataSource NEW-PROVIDER-

COMPONENT Secondary_GPS_Subsystem_GPSProcessor 

44  SHM 101.69

 COMMAND REWIRE_INTEFACE SENT TO COMPONENT Right_PFC_Subsystem_PFCNavFilter : DETAILS: INTERFACE 

Right_PFC_Subsystem_PFCNavFilter::GPSDataSource NEW-PROVIDER-COMPONENT 

Secondary_GPS_Subsystem_GPSProcessor 

45  SHM 101.69

 COMMAND REWIRE_INTEFACE SENT TO COMPONENT Center_PFC_Subsystem_PFCNavFilter : DETAILS: 

INTERFACE Center_PFC_Subsystem_PFCNavFilter::GPSDataSource NEW-PROVIDER-COMPONENT 

Secondary_GPS_Subsystem_GPSProcessor 

47  SHM

105.85-

106.7  Command Execution Acknowledgement 

Table 5. Formatted Log file. Event 1 at 1306811930.14 Unix Time
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14 SHM 1306811983.182696581 SHM: SETTING COMPONENT Primary ADIRU Subsystem Accelerometer6 TO FAULTY STATUS
15 SHM 1306811983.182770950 SHM: SETTING COMPONENT Primary ADIRU Subsystem Accelerometer5 TO FAULTY STATUS
16 SHM 1306811983.183137684 SHM: COMMAND STOP SENT TO COMPONENT Primary ADIRU Subsystem Accelerometer5 Inac-

tivated: Component Accelerometer5
17 SHM 1306811985.237113225 DIAGNOSER : DIAGNOSIS RESULTS : FAULTY COMPONENT Pri-

mary ADIRU Subsystem Accelerometer6 Subsystem Primary ADIRU Subsystem
18 SHM 1306811985.237253693 DIAGNOSER : DIAGNOSIS RESULTS : FAULTY COMPONENT Pri-

mary ADIRU Subsystem Accelerometer5 Subsystem Primary ADIRU Subsystem
19 SHM 1306811985.237794079 SHM: COMPONENT Primary ADIRU Subsystem Accelerometer5 EXECUTED PREVIOUS COM-

MAND
20 SHM 1306811985.238387117 SHM: SETTING COMPONENT Primary ADIRU Subsystem Accelerometer6 TO FAULTY STATUS
21 SHM 1306811985.238463380 SHM: SETTING COMPONENT Primary ADIRU Subsystem Accelerometer5 TO FAULTY STATUS
22 pPart6 1306811986.165013846 [From Primary ADIRU Subsystem Accelerometer4]Injecting Failure
23 SHM 1306811988.138344947 DIAGNOSER : ALARM RECEIVED : AM Primary ADIRU Subsystem Accelerometer4 Acceleration

POSTCONDITION FAILURE Alarm::Publisher Acceleration:Component Accelerometer4:Subsystem
Primary ADIRU Subsystem

24 SHM 1306811988.226906017 DIAGNOSER : DIAGNOSIS RESULTS : FAULTY COMPONENT Pri-
mary ADIRU Subsystem Accelerometer6 Subsystem Primary ADIRU Subsystem

25 SHM 1306811988.227034156 DIAGNOSER : DIAGNOSIS RESULTS : FAULTY COMPONENT Pri-
mary ADIRU Subsystem Accelerometer4 Subsystem Primary ADIRU Subsystem

26 SHM 1306811988.227139408 DIAGNOSER : DIAGNOSIS RESULTS : FAULTY COMPONENT Pri-
mary ADIRU Subsystem Accelerometer5 Subsystem Primary ADIRU Subsystem

27 SHM 1306811988.227648089 SHM: SETTING COMPONENT Primary ADIRU Subsystem Accelerometer6 TO FAULTY STATUS
28 SHM 1306811988.227722922 SHM: SETTING COMPONENT Primary ADIRU Subsystem Accelerometer4 TO FAULTY STATUS
29 SHM 1306811988.227793248 SHM: SETTING COMPONENT Primary ADIRU Subsystem Accelerometer5 TO FAULTY STATUS
30 SHM 1306811988.228152141 SHM: COMMAND STOP ISSUED TO SUBSYSTEM Primary ADIRU Subsystem Inactivated: Subsys-

tem Primary ADIRU Subsystem
31 SHM 1306811988.228296000 SHM: COMMAND STOP SENT TO COMPONENT Primary ADIRU Subsystem Accelerometer1 Inac-

tivated: Component Accelerometer1Inactivated: Subsystem Primary ADIRU Subsystem
32 SHM 1306811988.228532016 SHM: COMMAND STOP SENT TO COMPONENT Primary ADIRU Subsystem Accelerometer6 Inac-

tivated: Component Accelerometer6Inactivated: Subsystem Primary ADIRU Subsystem
33 SHM 1306811988.228754993 SHM: COMMAND STOP SENT TO COMPONENT Primary ADIRU Subsystem Accelerometer2 Inac-

tivated: Component Accelerometer2Inactivated: Subsystem Primary ADIRU Subsystem
34 SHM 1306811988.229002154 SHM: COMMAND STOP SENT TO COMPONENT Primary ADIRU Subsystem Accelerometer3 Inac-

tivated: Component Accelerometer3Inactivated: Subsystem Primary ADIRU Subsystem
35 SHM 1306811988.229231811 SHM: COMMAND STOP SENT TO COMPONENT Primary ADIRU Subsystem Accelerometer4 Inac-

tivated: Component Accelerometer4Inactivated: Subsystem Primary ADIRU Subsystem
36 SHM 1306811988.229479328 SHM: COMMAND STOP SENT TO COMPONENT Primary ADIRU Subsystem Accelerometer5 Inac-

tivated: Component Accelerometer5Inactivated: Subsystem Primary ADIRU Subsystem
37 SHM 1306811988.229704612 SHM: COMMAND STOP SENT TO COMPONENT Primary ADIRU Subsystem ADIRUComputer1

Inactivated: Component ADIRUComputer1Inactivated: Subsystem Primary ADIRU Subsystem
38 SHM 1306811988.229953940 SHM: COMMAND STOP SENT TO COMPONENT Primary ADIRU Subsystem VoterLeft Inactivated:

Component VoterLeftInactivated: Subsystem Primary ADIRU Subsystem
39 SHM 1306811988.230183390 SHM: COMMAND STOP SENT TO COMPONENT Primary ADIRU Subsystem ADIRUComputer2

Inactivated: Component ADIRUComputer2Inactivated: Subsystem Primary ADIRU Subsystem
40 SHM 1306811988.230411190 SHM: COMMAND STOP SENT TO COMPONENT Primary ADIRU Subsystem VoterCenter Inacti-

vated: Component VoterCenterInactivated: Subsystem Primary ADIRU Subsystem
41 SHM 1306811988.230636827 SHM: COMMAND STOP SENT TO COMPONENT Primary ADIRU Subsystem ADIRUComputer3

Inactivated: Component ADIRUComputer3Inactivated: Subsystem Primary ADIRU Subsystem
42 SHM 1306811988.230865748 SHM: COMMAND STOP SENT TO COMPONENT Primary ADIRU Subsystem VoterRight Inacti-

vated: Component VoterRightInactivated: Subsystem Primary ADIRU Subsystem
43 SHM 1306811988.231091917 SHM: COMMAND STOP SENT TO COMPONENT Primary ADIRU Subsystem ADIRUComputer4

Inactivated: Component ADIRUComputer4Inactivated: Subsystem Primary ADIRU Subsystem
44 SHM 1306811988.231309720 SHM: COMMAND START ISSUED TO SUBSYSTEM Secondary ADIRU Subsystem Activated: Sub-

system Secondary ADIRU Subsystem
45 SHM 1306811988.231441068 SHM: COMMAND START SENT TO COMPONENT Secondary ADIRU Subsystem Accelerometer5

Activated: Component Accelerometer5Activated: Subsystem Secondary ADIRU Subsystem
46 SHM 1306811988.231678584 SHM: COMMAND START SENT TO COMPONENT Secondary ADIRU Subsystem Accelerometer1

Activated: Component Accelerometer1Activated: Subsystem Secondary ADIRU Subsystem
47 SHM 1306811988.231907056 SHM: COMMAND START SENT TO COMPONENT Secondary ADIRU Subsystem Accelerometer4

Activated: Component Accelerometer4Activated: Subsystem Secondary ADIRU Subsystem
48 SHM 1306811988.232140229 SHM: COMMAND START SENT TO COMPONENT Secondary ADIRU Subsystem Accelerometer2

Activated: Component Accelerometer2Activated: Subsystem Secondary ADIRU Subsystem
49 SHM 1306811988.232390930 SHM: COMMAND START SENT TO COMPONENT Secondary ADIRU Subsystem Accelerometer6

Activated: Component Accelerometer6Activated: Subsystem Secondary ADIRU Subsystem
50 SHM 1306811988.232645527 SHM: COMMAND START SENT TO COMPONENT Secondary ADIRU Subsystem Accelerometer3

Activated: Component Accelerometer3Activated: Subsystem Secondary ADIRU Subsystem
51 SHM 1306811988.232882717 SHM: COMMAND START SENT TO COMPONENT Secondary ADIRU Subsystem VoterRight Acti-

vated: Component VoterRightActivated: Subsystem Secondary ADIRU Subsystem
52 SHM 1306811988.233121047 SHM: COMMAND START SENT TO COMPONENT Secondary ADIRU Subsystem ADIRUComputer3

Activated: Component ADIRUComputer3Activated: Subsystem Secondary ADIRU Subsystem
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53 SHM 1306811988.233366532 SHM: COMMAND START SENT TO COMPONENT Secondary ADIRU Subsystem VoterLeft Acti-
vated: Component VoterLeftActivated: Subsystem Secondary ADIRU Subsystem

54 SHM 1306811988.233608990 SHM: COMMAND START SENT TO COMPONENT Secondary ADIRU Subsystem ADIRUComputer1
Activated: Component ADIRUComputer1Activated: Subsystem Secondary ADIRU Subsystem

55 SHM 1306811988.233833918 SHM: COMMAND START SENT TO COMPONENT Secondary ADIRU Subsystem ADIRUComputer2
Activated: Component ADIRUComputer2Activated: Subsystem Secondary ADIRU Subsystem

56 SHM 1306811988.234076470 SHM: COMMAND START SENT TO COMPONENT Secondary ADIRU Subsystem VoterCenter Acti-
vated: Component VoterCenterActivated: Subsystem Secondary ADIRU Subsystem

57 SHM 1306811988.234314897 SHM: COMMAND START SENT TO COMPONENT Secondary ADIRU Subsystem ADIRUComputer4
Activated: Component ADIRUComputer4Activated: Subsystem Secondary ADIRU Subsystem

58 SHM 1306811991.017957452 SHM: COMPONENT Primary ADIRU Subsystem Accelerometer1 EXECUTED PREVIOUS COM-
MAND

59 SHM 1306811991.018033766 SHM: COMPONENT Primary ADIRU Subsystem Accelerometer2 EXECUTED PREVIOUS COM-
MAND

60 SHM 1306811991.018104460 SHM: COMPONENT Primary ADIRU Subsystem Accelerometer3 EXECUTED PREVIOUS COM-
MAND

61 SHM 1306811991.018172888 SHM: COMPONENT Primary ADIRU Subsystem Accelerometer4 EXECUTED PREVIOUS COM-
MAND

62 SHM 1306811996.353463118 SHM: COMPONENT Secondary ADIRU Subsystem VoterLeft EXECUTED PREVIOUS COMMAND
63 SHM 1306811996.353574715 SHM: COMPONENT Secondary ADIRU Subsystem VoterCenter EXECUTED PREVIOUS COM-

MAND
64 SHM 1306811996.353644921 SHM: COMPONENT Secondary ADIRU Subsystem VoterRight EXECUTED PREVIOUS COMMAND
65 SHM 1306812001.337392119 SHM: COMPONENT Primary ADIRU Subsystem VoterLeft EXECUTED PREVIOUS COMMAND
66 SHM 1306812001.337514104 SHM: COMPONENT Primary ADIRU Subsystem ADIRU Computer1 EXECUTED PREVIOUS COM-

MAND
67 SHM 1306812001.337587265 SHM: COMPONENT Primary ADIRU Subsystem VoterCenter EXECUTED PREVIOUS COMMAND
68 SHM 1306812001.337654861 SHM: COMPONENT Primary ADIRU Subsystem ADIRU Computer2 EXECUTED PREVIOUS COM-

MAND
69 SHM 1306812001.337720781 SHM: COMPONENT Primary ADIRU Subsystem VoterRight EXECUTED PREVIOUS COMMAND
70 SHM 1306812001.337792430 SHM: COMPONENT Primary ADIRU Subsystem ADIRU Computer3 EXECUTED PREVIOUS COM-

MAND
71 SHM 1306812001.337859599 SHM: COMPONENT Primary ADIRU Subsystem ADIRU Computer4 EXECUTED PREVIOUS COM-

MAND
72 pPart2 1306812021.722214929 [From Primary GPS Subsystem GPSProcessor]gps data src injecting fault
73 SHM 1306812024.138428206 DIAGNOSER : ALARM RECEIVED : AM Primary GPS Subsystem GPSProcessor

gps data src getGPSData POSTCONDITION FAILURE Alarm::Method getGPSData:Provided
gps data src:Component GPSProcessor:Subsystem Primary GPS Subsystem

74 SHM 1306812031.823803072 DIAGNOSER : DIAGNOSIS RESULTS : FAULTY COMPONENT Pri-
mary GPS Subsystem GPSReceiver Subsystem Primary GPS Subsystem

75 SHM 1306812031.823958923 DIAGNOSER : DIAGNOSIS RESULTS : FAULTY COMPONENT Pri-
mary ADIRU Subsystem Accelerometer6 Subsystem Primary ADIRU Subsystem

76 SHM 1306812031.824066362 DIAGNOSER : DIAGNOSIS RESULTS : FAULTY COMPONENT Pri-
mary GPS Subsystem GPSProcessor Subsystem Primary GPS Subsystem

77 SHM 1306812031.824177648 DIAGNOSER : DIAGNOSIS RESULTS : FAULTY COMPONENT Pri-
mary ADIRU Subsystem Accelerometer4 Subsystem Primary ADIRU Subsystem

78 SHM 1306812031.824286538 DIAGNOSER : DIAGNOSIS RESULTS : FAULTY COMPONENT Pri-
mary ADIRU Subsystem Accelerometer5 Subsystem Primary ADIRU Subsystem

79 SHM 1306812031.824915858 SHM: SETTING COMPONENT Primary GPS Subsystem GPSReceiver TO FAULTY STATUS
80 SHM 1306812031.825002192 SHM: SETTING COMPONENT Primary ADIRU Subsystem Accelerometer6 TO FAULTY STATUS
81 SHM 1306812031.825087094 SHM: SETTING COMPONENT Primary GPS Subsystem GPSProcessor TO FAULTY STATUS
82 SHM 1306812031.825164800 SHM: SETTING COMPONENT Primary ADIRU Subsystem Accelerometer4 TO FAULTY STATUS
83 SHM 1306812031.825236589 SHM: SETTING COMPONENT Primary ADIRU Subsystem Accelerometer5 TO FAULTY STATUS
84 SHM 1306812031.825562303 SHM: COMMAND STOP ISSUED TO SUBSYSTEM Primary GPS Subsystem Inactivated: Subsystem

Primary GPS Subsystem
85 SHM 1306812031.825705730 SHM: COMMAND STOP SENT TO COMPONENT Primary GPS Subsystem GPSReceiver Inacti-

vated: Component GPSReceiverInactivated: Subsystem Primary GPS Subsystem
86 SHM 1306812031.825984165 SHM: COMMAND STOP SENT TO COMPONENT Primary GPS Subsystem GPSProcessor Inacti-

vated: Component GPSProcessorInactivated: Subsystem Primary GPS Subsystem
87 SHM 1306812031.826209854 SHM: COMMAND START ISSUED TO SUBSYSTEM Secondary GPS Subsystem Activated: Subsys-

tem Secondary GPS Subsystem
88 SHM 1306812031.826349636 SHM: COMMAND START SENT TO COMPONENT Secondary GPS Subsystem GPSReceiver Acti-

vated: Component GPSReceiverActivated: Subsystem Secondary GPS Subsystem
89 SHM 1306812031.826591712 SHM: COMMAND START SENT TO COMPONENT Secondary GPS Subsystem GPSProcessor Acti-

vated: Component GPSProcessorActivated: Subsystem Secondary GPS Subsystem
90 SHM 1306812031.826868861 SHM: COMMAND REWIRE INTEFACE SENT TO COMPONENT

Left PFC Subsystem PFCNavFilter
91 SHM 1306812031.827022578 SHM: REWIRE COMMAND DETAILS: INTERFACE

Left PFC Subsystem PFCNavFilter::GPSDataSource
NEW-PROVIDER-COMPONENT Secondary GPS Subsystem GPSProcessor

92 SHM 1306812031.827116318 SHM: COMMAND REWIRE INTEFACE SENT TO COMPONENT
Right PFC Subsystem PFCNavFilter
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93 SHM 1306812031.827267327 SHM: REWIRE COMMAND DETAILS: INTERFACE
Right PFC Subsystem PFCNavFilter::GPSDataSource
NEW-PROVIDER-COMPONENT Secondary GPS Subsystem GPSProcessor

94 SHM 1306812031.827358278 SHM: COMMAND REWIRE INTEFACE SENT TO COMPONENT
Center PFC Subsystem PFCNavFilter

95 SHM 1306812031.827498855 SHM: REWIRE COMMAND DETAILS: INTERFACE
Center PFC Subsystem PFCNavFilter::GPSDataSource
NEW-PROVIDER-COMPONENT Secondary GPS Subsystem GPSProcessor

96 SHM 1306812035.983657688 SHM: COMPONENT Primary GPS Subsystem GPSReceiver EXECUTED PREVIOUS COMMAND
97 SHM 1306812035.983770669 SHM: COMPONENT Primary GPS Subsystem GPSProcessor EXECUTED PREVIOUS COMMAND
98 SHM 1306812035.983849759 SHM: COMPONENT Left PFC Subsystem PFCNavFilter EXECUTED PREVIOUS COMMAND
99 SHM 1306812035.983928751 SHM: COMPONENT Secondary GPS Subsystem GPSProcessor EXECUTED PREVIOUS COMMAND

3 Conclusion

In summary, the report demonstrated the effectiveness of a two-level health management strategy by replicat-
ing a real-life episode involving on an aircraft subsystem - Inertial Measurement Unit (IMU). The design and
implementation of the example realistic IMU system involved a real-time component model that introduces
component-based software engineering techniques into real-time systems. Components, their interfaces, and
interactions are explicitly modeled, and these models are annotated with observable pre- and post-conditions,
as well as timing requirements. An anomaly detection system is constructed from these specifications which
performs the monitoring on the software system, and, if needed, triggers a health management (mitigation)
action. Health management happens first on the component level and then if required at the system-level.
The mitigation at the component level is facilitated by a designer-specified reactive state machine. At the
system level, a diagnosis process is triggered first which isolates the source of the cascading fault. The di-
agnosis result in turn trigger the system level mitigation strategy - either reactive or delibartive - which is
responsible for restoring the system functionality.
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Entry: 
counter=0;
P_ADIRUFailed=false

S_ADIRUFaile=false

P_GPSFailed=false

S_GPSFailed=false

Nominal Faulty

Initial

[IS_FAULTY(Primary_ADIRU_Subsystem_Accelerometer1)] / 
counter++; 

STOP(Primary_ADIRU_Subsystem_Accelerometer1);

FaultyNominal

Initial

[IS_FAULTY(Primary_ADIRU_Subsystem_Accelerometer2)] / 
counter++; 

STOP(Primary_ADIRU_Subsystem_Accelerometer2);

FaultyNominal

Initial

[IS_FAULTY(Primary_ADIRU_Subsystem_Accelerometer3)] / 
counter++; 

STOP(Primary_ADIRU_Subsystem_Accelerometer3);

Nominal Faulty

Initial

[IS_FAULTY(Primary_ADIRU_Subsystem_Accelerometer4)] / 
counter++; 

STOP(Primary_ADIRU_Subsystem_Accelerometer4);

FaultyNominal

Initial

[IS_FAULTY(Primary_ADIRU_Subsystem_Accelerometer5)] / 
counter++; 

STOP(Primary_ADIRU_Subsystem_Accelerometer5);

FaultyNominal

Initial

[IS_FAULTY(Primary_ADIRU_Subsystem_Accelerometer6)] / 
counter++; 

STOP(Primary_ADIRU_Subsystem_Accelerometer6);

Parallel Sub states  of 
Primary ADIRU Strategy

Fig. 5. Part of SHM State Machine from the IMU Assembly. The state machine for mitigating problems with sec-
ondary is similar to the primary.
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