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Abstract-Complexity of software systems has reached the 

point where we need run-time mechanisms that can be used 

to provide fault management services. Testing and verifica­

tion may not cover all possible scenarios that a system will 

encounter, hence a simpler, yet formally specified run-time 

monitoring, diagnosis, and fault mitigation architecture is 

needed to increase the software system's dependability. The 

approach described in this paper borrows concepts and prin­

ciples from the field of 'Systems Health Management' for 

complex systems and implements a two level health man­

agement strategy that can be applied through a model-based 

software development process. The Component-level Health 

Manager (CLHM) for software components provides a local­

ized and limited functionality for managing the health of a 

component locally. It also reports to the higher-level Sys­

tem Health Manager (SHM) which manages the health of 

the overall system. SHM consists of a diagnosis engine that 

uses the timed fault propagation (TFPG) model based on the 

component assembly. It reasons about the anomalies reported 

by CLHM and hypothesizes about the possible fault sources. 

Thereafter, necessary system level mitigation action can be 

taken. System-level mitigation approaches are subject of on­

going investigations and have not been included in this paper. 

We conclude the paper with case study and discussion. 
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1. INTRODUCTION 

Core logic for functions in complex cyber-physical systems 

like aircraft and automobiles is increasingly being imple­

mented in software. Software was originally used to imple­

ment subsystem-specific functions (e.g. an anti-lock braking 

system in cars), but today software interacts with other sub­

systems as well e.g. with the engine control or the vehicle 

stability system and is responsible for their coordinated op­

eration. It is self-evident that the correctness of software is 

essential for overall system functions. 

As the complexity of software increases, existing verification 

and testing technology can barely keep up. Novel methods 

based on formal (mathematical) techniques are being used for 

verifying critical software functions, but less critical software 

systems are often not subjected to the same rigorous verifica­

tion. There is a high likelihood for defects in software that 

manifest themselves only under exceptional circumstances. 

These circumstances may include faults in the hardware sys­

tem, including both the computing and non-computing hard­

ware. Often, the system is not prepared for such faults. 

There is a well-established literature of software fault toler­

ance wherein some of the techniques of hardware fault toler­

ance based on redundancy and voting, like triple modular re­

dundancy, are applied to the software domain [19], [27], [8]. 
While the architectural principles of software fault tolerance 

are clear, the complexity of software and various intercon­

nections has grown to the point that by itself this has become 

a potential source of faults; i.e. the implementation of soft­

ware fault tolerance may lead to faults. We argue therefore 

that such techniques do not provide a sufficient technology 

anymore and additional approaches are needed. 

The answer, arguably, lies in two principles: (1) the soft­

ware fault management should be kept as simple as possi­

ble, and (2) the software fault management system should be 

built according to very strict standards - possibly automati­

cally generated from specifications. We conjecture that these 

goals can be achieved if software fault management tech­

nology embraces new software development paradigms, like 



component-based software and model-driven development. 

Furthermore, current software fault management can be en­

hanced by borrowing additional techniques from the field of 

system health management that deals with complex engineer­

ing systems where faults in their operation must be detected, 

diagnosed, mitigated, and prognosticated. System health 

management typically includes the activities of anomaly de­

tection, fault source identification (diagnosis), fault effect 

mitigation (in operation), maintenance (offline), and fault 

prognostics (online or offline) [23], [18]. The techniques of 

SHM are typically mathematical algorithms and engineering 

processes, possibly implemented on some computational sys­

tem that provides health management functions for the oper­

ator, for the maintainer, and for the sustaining engineer. 

Some points to note about system health management and 

typical software fault tolerant design are: (1) system health 

management deals with the entire system, not only with a 

single subsystem or component; which is typically the case 

in software fault-tolerance approaches, (2) while fault toler­

ance primarily deals with abrupt, catastrophic faults, system 

health management operates in continuum ranging from sim­

ple anomalies through degradations to abrupt and complete 

faults, and (3) while the goal of typical software fault tol­

erance techniques is to mask the failure, health management 

explicitly aims at isolating the root failure and even predicting 

future faults from early precursor anomalies of those faults.3 

In this paper we discuss the principles of software health 

management, in a model-based conceptual and development 

framework. First we discuss the model-based approach we 

follow, then explain a software component model we devel­

oped, show how the model can serve for constructing compo­

nent level and system level health management services, and 

then illustrate its use through a case study. The paper con­

cludes with a brief review of the related work and a summary. 

2. BACKGROUND ON MODEL-BASED DESIG N 

In the past 15 years a novel approach to the development of 

complex software systems has been developed and applied: 

model-driven development (MDD). The key idea is to use 

models in all phases of the development: analysis, design, 

implementation, testing, maintenance and evolution. This ap­

proach has been codified in two related and overlapping direc­

tions: the Model-driven Architecture (MDA) [3] of the Object 

Management Group (OMG), and the Model-Integrated Com­

puting (MIC) [4] approach that our team advocates. MDD 

relies on the use of models that capture relevant properties of 

the system to be developed (e.g. requirements, architecture, 

behaviors, components, etc.) and uses these models in gen­

erating (or modifying) code, other engineering artifacts, etc. 

Perhaps the greatest success of MDD is in the field of embed­

ded control systems and signal processing: today's flight soft-

3This is also true for Byzantine failures. While voting techniques can mask 
byzantine failure, a holistic system-wide approach is required for isolating 
the root failure mode and taking necessary actions. 
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ware is often developed in SimulinkiStateflow [2] or Matrix­

X [5]- that implement their own flavor of MDD. Properties of 

MDD relevant for the goals of software health management 

are as follows: 

l. Models represent the system, its requirements, its compo­

nents and their behaviors, and these models capture the de­

signer's knowledge of the system. 

2. Models are, in essence, higher-level programs that influ­

ence many details of the implementation. 

3. Models could be available at operation time, e.g. embed­

ded in the running system. 

4. For this study, the system built using MDD is component­

based: software is decomposed into well-defined components 

that are executed under the control of a component platform 

- a sort of 'operating system' for components that provides 

services for coordinating component interactions. 

5. The component architecture is clearly reflected in and ex­

plicitly modeled by the models. 

In the MDA approach, the key notion is the use of 

Platform-Independent Models (PIMs) to describe the sys­

tem in high-level terms, then refine these models (possibly 

using model transformations) into Platform-Specific Models 

(PSMs) which are then directly used in the implementation 

(which itself could - wholly or partially - be generated from 

models). In the MIC approach, the use of Domain-Specific 

Modeling Languages (DSMLs) is advocated (that allow in­

creases in productivity via the use of domain-specific abstrac­

tions), as well as the application of model transformations for 

integrating analysis and other tools into an MDD process. In 

either case, the central notion is that of the model, which is 

tightly coupled to the actual implementation, and the imple­

mentation (code) cannot exists without it. 

3. PRINCIPLES OF SOFTWARE HEALTH 
MANAGEMENT 

Health management is performed on the running system with 

the goal to diagnose and isolate faults close to their source so 

that a fault in a sub-system does not lead to a general failure 

of the global system. It involves four different phases: 

l. Detection: Anomalous behavior is detected by observing 

various measurements. Typically, an anomaly constitutes vi­

olation of certain conditions which should be satisfied by the 

system or the sub-system. 

2. Isolation: Having detected one or more anomalies, the 

goal is to isolate the potential source(s) of fault(s); 

3. Mitigation: Given the current system state and the isolated 

fault source(s), mitigation implies taking actions to reduce or 

eliminate the fault effects; 

4. Prognostics: Looking forward in time, prognostics is done 

to predict future observable anomalies, faults, and failures. 

To apply these techniques to software we must start by iden­

tifying the basic 'Fault Containment Units'. We assume that 

software systems are builtfrom 'software components', where 
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Figure 1. Hierarchical Layout of Component-Level and 

System-Level Health Managers 

each component is a fault containment unit. Components en­

capsulate (and generalize) objects that provide functionality 

and we expect that these components are well-defined, in­

dependently developed, verified, and tested. Furthermore, 

all conununication and synchronization among components 

is facilitated by a component framework that provides ser­

vices for all component interactions, and no component inter­

actions happen through 'out-of-band' channels. This compo­

nent framework acts as a middleware, provides composition 

services, and facilitates all messaging and synchronization 

among components, and is used to support fault management. 

Section 4 provides a brief background on the component 

framework used for the work presented in this paper. This 

framework assumes that the underlying operating system is 

ARINC-653 [1] compliant, state of the art operating system 

used in Integrated Modular Avionics. Appendix A provides a 

brief overview of ARINC-6534. 

There are various levels at which health management tech­

niques can be applied: ranging from the level of individual 

components or the level of subsystems, to the whole sys­

tem. As shown in figure 1, we have focused on two levels 

of software health management: Component level that is lim­

ited to the component, and the System level that includes sys­

tem level information for doing diagnosis to identify the root 

failure mode(s). 

4Please note that even though this paper uses an ARINC-653 based frame­
work, these techniques are generic and can be applied to other real-time sys­
tems that can be configured statically during initialization. 
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Component-level health management (CLHM) for software 

components detects anomalies, identifies and isolates the 

fault causes of those anomalies (if feasible), prognosticates 

future faults, and mitigates effects of faults - on the level of 

individual components. We envision CLHM implemented as 

a 'side-by-side' object that is attached to a specific compo­

nent and acts as its health manager. It provides a localized and 

limited functionality for managing the health of one compo­

nent, but it also reports to higher-level health manager(s) (the 

system health manager). The challenge in defining this local 

health management is to ensure that the local diagnosis and 

mitigation are globally consistent. 

System Health Manager (SHM) manages the overall health 

of the System (Component Assembly). The CLHM pro­

cesses hosted inside each of the components report their in­

put (alarms monitored events) and output (mitigation action) 

to the System Health Manager. It is important to know the 

local mitigation action because it could affect how the faults 

cascade through the system. Thereafter, the SHM is respon­

sible for the identification of root failure source(s)5. Once the 

fault source is identified (diagnosed), an appropriate mitiga­

tion strategy could be employed. This as mentioned earlier is 

the topic of ongoing investigations. 

4. OVERVIEW OF ARINC COMPONENT 
MODEL (ACM) 

The ARINC Component Model (ACM) [11],[12] is built 

upon the capabilities of the ARINC-653 [1] standard (see 

Appendix). ACM follows the MIC approach (see section 2) 

and borrows concepts from other software component mod­

els, notably from the CORBA Component Model (CCM) [25] 

with a focus on precisely defined component interaction se­

mantics, enabling timing constraints and allowing component 

interactions to be monitored effectively. 

Figure 2 illustrates the main features of ARINC Component 

Model. A component can have four different kinds of interac­

tion ports - consumer port, publisher port, provided interface 

port (similar to a facet in CCM) and required interface port 

(similar to a CCM receptacle). A publisher port is a source 

of events: this port is used to produce events that will be con­

sumed by another component/so A publisher port needs to be 

triggered to publish an event (probably read from some in­

ternal state variable or a hardware source). This triggering 

can be either periodic or aperiodic (sporadic). While, a peri­

odic publisher is triggered at regular intervals by a clock, an 

aperiodic publisher is invoked (sporadically) by an internal 

method of the component, possibly the implementation code 

belonging to another port. 

A consumer port, as the name suggests, acts as a sink for 

events. Like a publisher port, it can be triggered periodically 

(by a clock) or aperiodically (by the arrival of an event) to 

consume an event. While an aperiodic consumer consumes 

5We allow multiple failure mode hypotheses. 
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all the events published by its publisher on a FIFO basis (de­

structive read), a periodic consumer samples the events pub­

lished at a specified rate (nondestructive read). 

ware and are serviced by the provided port's implementation 

in FIFO order. 

A provided interface port or facet contains the implementa­

tion for the methods defined in the provided interface and 

services the request issued on these interfaces by a recepta­

cle. The incoming client requests are queued by the middle-
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Two additional concepts exist in ACM as compared to the 

CCM: state variables, which are similar to attributes in CCM 

but cannot be modified from outside component, and compo­

nent triggers, which are internal, periodically activated meth­

ods within a component that can be used for internal book-



keeping and checking state invariants. 

The implementation methods associated with the component 

trigger and interaction ports (publisher, consumer, facet, and 

receptacle) are initialized as ARINC-653 processes. They 

have to finish their unit of work within a specified deadline. 

This deadline can be qualified as HARD (strict) or SOFT 

(relatively lenient). A HARD deadline violation is an error 

that requires intervention from the underlying middleware. A 

SOFT deadline violation results in a warning. 

Like the deadline, the models can specify another property 

that the implementations must respect: contracts. These con­

tracts are expressed as pre-conditions and/or post-conditions. 

Any contract violation results in an error. This concept 

is based upon the logic system developed by Hoare [16]. 

The key feature of this logic is the concept of assertions of 

the form {pre} P {post} commonly known as Hoare Triple, 

where P is a computer program, pre is a pre-condition that is 

assumed to be true before the program is executed, and post 
is the post-condition that is true after the program is executed. 

Component Interactions 

While each component and its associated ports, states, and 

internal triggers can be individually configured, an assembly 

is not complete until the interactions between the ports of all 

components have been configured. The association between 

the ports depends on their type (synchronous/asynchronous) 

and the event/interface type associated with the port. Two 

kinds of interactions: (1) asynchronous interactions and (2) 

synchronous interactions are possible between components. 

The possible combination of these interactions with periodic 

and aperiodic triggering of processes that are bound to the re­

spective ports gives rise to a richer set of behaviors compared 

to CCM. 

Asynchronous Interactions: These interactions occur when 

a publish port of a component is connected to a consumer port 

of another component. While a consumer can be connected 

to only one publisher, a publisher may be connected to one 

or more consumers. Strict type matching on the event type is 

required between the publisher and its consumers. 

A periodic consumer always exhibits sampling behavior. 

Even if the rate of the publisher is indeterminate, for example 

if the publisher is aperiodic, setting the period of the con­

sumer ensures that the events from the publisher are sam­

pled at a specific rate. When the interacting publisher and 

consumer both are periodic, the value of the consumer's pe­

riod relative to the publisher's determines if the consumer is 

over-sampling (higher rate of consumption or lower period 

compared to publisher) or under-sampling (lower rate of con­

sumption or higher periodicity compared to publisher). 

Interaction between a periodic publisher and an aperiodic 

consumer is indicative of a pattern where the sink or the con­

sumer is reactive in nature. In such a case, the consumer port 
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stores incoming published events in a queue, which are con­

sumed in a FIFO manner. If the queue size is configured ap­

propriately, this allows the consumer to operate on all of the 

events received. 

The case for interaction between an aperiodic publisher and 

an aperiodic consumer is similar to the one between a peri­

odic publisher and an aperiodic consumer. 

Synchronous Interactions: This interaction implies call­

return semantics: the caller component ' calls out' via the re­

quired interface port to the connected provided interface port 

of the callee component. A required interface port can be 

associated with a provided interface port of an identical in­

terface type. A provides port can be associated with one or 

more requires ports. Because of the synchronous nature of 

these interactions, the deadline of required interface method 

(i.e. the caller) must be greater than the deadline value for the 

provided interface method (i.e. the callee). 

Synchronous ports in this model are always aperiodic. The in­

teraction patterns observed in synchronous ports is borrowed 

from CCM. The key difference is deadline monitoring. The 

default type of interaction is call-return or two-way commu­

nication i.e. the required interface port waits for the provided 

interface port to finish its operation and return the results. 

Modeling and Design Environment: The framework imple­

menting ACM comes with a modeling language that allows 

the component developers to model a component and the set 

of services that it provides independent of actual deployment 

configuration, enabling preliminary constraint based verifica­

tion of the system for well-formedness. An example for well­

formed ness is that each required port must be connected to 

precisely one provided port. Once fully specified, the com­

ponent model captures the component's real-time properties 

and resource requirements. It also captures the internal data 

flow and control flow within the component. System integra­

tors configure models of software assemblies specifying the 

architecture of the system built from interacting components. 

While specifying component models in the modeling envi­

ronment, developers can also specify local monitors and local 

health management actions for each component (described in 

sections 5 and 6). Once the assembly has been specified, sys­

tem integrators are required to specify the models for system­

level health management (described later in section 7). Dur­

ing the deployment and integration process, system integra­

tors associate each component with an ARINC-653 partition. 

Thereafter, code generation tools help the integrators to gen­

erate non-functional glue code and find a suitable partition 

schedule and deploy the assembly. The developers write the 

functional code for each component using only the exposed 

interfaces provided by the framework. They are expected not 

to invoke the underlying low-level platform (APEX) services 

directly. Such restrictions enable us to use the well-defined 

semantics of specified interaction types between the compo-



rr= 
- - -

1 1 
- - - - - - - - - - CPU=1 

1 HYPERPERIOD = 0.002 

PARTITION_NAME = Partition2 

1 PARTITION NAME = Partition1 

Partition2 EXECUTABLE = JPartition2/Partition2 
1 data_outE 

tA 
3jdataJn data_out� f-'!. 33dataJn 

gps_data_src 0 pi � gps_data_src 

I ...!:n�o�en
_

t _ I 1 1 Partition1
-

EXECUTABLE = JPartition1/Partition1 

� C.2!!!E0n� __ N�sp�o�en_t _ IIIIIIIIISCHEDULING INFORMATION BEGINSIIIIIIIIII 
Start Part1 

Stop Part 1 Stop Part2 Partition1 SCHEDULE = 0, 0.001 
ove Messages Start Part1 Partition2 

-
SCHEDULE = 0.0012,0.0008 

Part 1 

00:00:00 

Period(secs) Component 

0.004 Sensor 

0.004 GPS 

Sporadic GPS 

Sporadic NavDisptay 

Sporadic NavDisptay 

Hyper period 1 
Frame Size =2 ms 

Port 

data out 

Part 2 

00:00:02 

data in -after processing sends an event to Disptay 

gps data src. GetGPSData 

data in -after processing calls GetGPSData 

gps data src. GetGPSData 

WCETsecs 

0.004 

0.004 

0.004 

0.004 

0.004 

IIIIIIIIISCHEDULING INFORMATION ENDSIIIIIIIIII 
Partition2 SAMPLINGPORT= Partition2_SP_0 

Partition1
-

SAMPLINGPORT= Partition1_SP_0 

1IIIIIIIIIIIIIIIi////11111111111111111111111111111111111 
Partition2 SP 0 MAXMESSAGESIZE = 36 
Partition2 

-
SP 

-
0 

-
REFRESH PERIOD = 0.004 

Partition2 
-

SP 
-

0 
-

DIRECTION = DESTINATION 
I I I I I I I I I I I I I II ii/// I I /il I /ill I I I I I I I I I I I I I I I I I I I I I I I II I 

Partition1 SP 0 MAXMESSAGESIZE = 36 
Partition1

-
SP 

-
0 

-
REFRESH PERIOD = 0.004 

Partition1
-

SP 
-

0 
-

DIRECTION = SOURCE 
1IIIIIIIIIIIIIIi////II/ill/i111111111111111111111111111 I 

CHANNEL NAME= ChannelO 

ChannelO SOURCE = Partition1 SP 0 

ChanneIO=DESTINATION = PartTtion2_SP_0 

Figure 3. GPS Software Assembly used in the case study - Unit of time is seconds. 

nents and analyze the system failure propagation at design 

time before deployment. This in turn allows us to generate the 

necessary diagnosis procedures required. This is explained 

later in section 7. Thus during the deployment and integra­

tion process, code generators can also generate the required 

health management framework. The generated code can be 

later compiled and executed on the runtime system. 

Example 

Figure 4 shows an assembly of three components deployed 

on two ARINC partitions. We will use this example in the 

case study later on. Connections between two ports have been 

annotated with the (periodicity, deadline) pair, measured in 

milliseconds, of the downstream port. Partition 1 contains 

the Sensor Component. The sensor component publishes an 

event every 4 milliseconds. 

Partition 2 contains the GPS and Navigation Display com­

ponent. The GPS component consumes the event published 

by sensor at a periodic rate of 4 milliseconds. Afterwards it 

publishes an event, which is sporadically consumed by the 

Navigation Display (abbreviated as display). Thereafter, the 

display component updates its location by using getGPSData 

provided interface of the GPS Component. The publish­

consume connection between sensor and GPS components 

is implemented via a sampling port (Sampling ports are ba­

sic inter-partition communication mechanism in ARINC 653 

platforms). A Channel connects the source sampling port 

from partition 1 to destination sampling port in partition 2. 

This figure also describes the periodic schedule followed by 

the partitions, overseen by a controller process called Module 

Manager [Ill. This schedule is repeated every 2 ms (hyperpe­

riod). In each cycle, Partition 1 runs with a phase of 0 ms for 

1 ms (duration). Partition 2's phase is l.2 ms. It runs for 0.8 

ms (duration). This schedule ensures that the two partitions 
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are temporally isolated. 

5. DISCREPANCY DETECTION/MONITORING 
SPECIFICATIONS 

The health of the software system/assembly and its individual 

components can be tracked by deploying multiple monitors 

throughout the system. Each monitor checks for violations 

of a property or constraint that is local to a port or a compo­

nent. The status of these monitors is reported to Health Man­

agers at one or more levels (Component or System) to take 

the appropriate mitigation action. The modeling language al­

lows system integrators to define these monitors and declare 

whether they should be reported at the local or the system 

level. Figure 4 summarizes different places (or ports) where 

a component's behavior can be monitored to detect discrep­

ancies. Based on these monitors, following discrepancies can 

be currently identified: 

• Lock Time Out: The framework implicitly generates mon­

itors to check for resource starvation. Each component has 

a lock (to avoid interference among callers), and if a caller 

does not get through the lock within a specified timeout it 

results in starvation. The value for timeout is either set to a 

default value equal to the deadline of the process associated 

with component port or can be specified by the system de-



<PreCondition>::=<Condition> 
<PostCondition>::-<Condition> 
<Deadline>::-<double value> /* from the start of the process associated with the port to the end of that method */ 
<Data_ Validity>::-<double value> /* Max age from time of publication of data to the time when data is consumed*/ 
<Lock Time Out>::-<double value> /* from start of obtaining lock*/ 
<Condition>::=<Primitive Clause> <op> < Primitive Clause>1 <Condition> <logical op><Condition>1 kCondition> I True I False 
<Primitive Clause>::-<double value>1 Delta(Var)1 Rate(Var)IVar 
/* A Var can be either the component State Variable, or the data received by the publisher, or the argument of the method defined in the facet or the receptacle*/ 
<op>::= < I > I <= I >= I == I != 
<logical op>::-&& I II 

Table 1. Monitoring Specification. Comments are shown in italics. 

Issued By 11M Action Semantics 
CLHM IGNORE Continue as if nothing has happened 
CLHM ABORT Discontinue current operation, but operation can run again 
CLHM USE_PAST �ATA Use most recent data (only for operations that expect fresh data) 
CLHM STOP Discontinue current operation 

Aperiodic processes (ports): operation can run again 
Periodic processes (ports): operation must be enabled by a future START HM action 

CLHM START Re-enable a STOP-ped periodic operation 
CLHM RESTART A Macro for STOP followed by a START for the current operation 

Following actions can be issued only by a System health manager. 
SHM RESET Stop aU operations, initialize state of component, clear all queues, 

start all periodic operations 
SHM CHECKPOINT Save component state 
SHM RESTORE Restore component state to the last saved state 

Table 2. Component and System Health Manager Actions. Note that STOP for all process of a component in combination 

with start of processes from a redundant component can be used to reconfigure the system. The network link from the 

redundant component should be created at system initialization time. 

signer. 

• Data Validity violation (only applicable to consumers): 

Any data token consumed by a consumer port has an asso­

ciated expiration age. This is also known as the validity pe­

riod in ARINC-653 sampling ports. We have extended this to 

be applicable to all types of component consumer ports, both 

periodic and aperiodic. 

• Pre-condition Violation: Developers can specify condi­

tions that should be checked before executing. These condi­

tions can be expressed over the current value or the historical 

change in the value, or rate of change of values of variables 

(with respect to previously known value for same parameter) 

such as 

1. the event-data of asynchronous calls, 

2. function-parameters of synchronous calls, and 

3. (monitored) state variables of the component. 

• User-code Failure: Any error or exception in the user code 

can be abstracted by the software developer as an error con­

dition which they can choose to report to the framework. Any 

unreported error is recognized as a potential unobservable 

discrepancy. 

• Post-condition Violation: Similar to preconditions, but 

these conditions are checked after the execution of function 

associated with the component port. 

• Deadline Violation: Any execution started must finish 

within the specified deadline. 

These monitors can be specified via (1) attributes of model el­

ements (e.g. Deadline, Data_Validity, Lock time out), (2) via 

a simple expression language (e.g. conditions). The expres-

7 

sions can be formed over the (current) values of variables (pa­

rameters of the call, or state variables of the component), their 

change (delta) since the last invocation, their rate of change 

(change divided by a time value). Table 1 presents a sum­

mary. 

6. COMPONENT-LEVEL HEALTH 
MANAGEMENT 

A Component Level Health Manager (CLHM), as the name 

suggests, observes the health of a component. The oper­

ation of a CLHM can be specified as a state machine in 

the modeling environment. It can be configured to react 

with a mitigation action from a pre-defined set in response 

to violations observed by component monitors. Formally, a 

health manager can be described as a timed state machine 

H M =< S, Si, M, Zr+, T, A >, where 

• S is the set of all possible states for the health manager. 

• Si E S is the singleton initial state. 

• M is the set of all monitored events that are reported to the 

health manager by a component process or the framework. 

• Zr+ is the set of all events generated due to passage of time. 

• A is the set of all possible mitigation actions issued by the 

health manager. Currently, supported mitigation actions are 

specified in Table 2. 
• T : S x (M U Zr+) -+ A x S is the set of all possible 

transitions that can change the state of the manager due to 

passage of time or the arrival of an input event. To ensure a 

non-blocking state machine, the framework assumes a default 
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Figure 5. Flow chart describing sequence of monitors and health manager response for a consumer port. 

self-transition with the IGNORE action if the health manager 

receives an event which it cannot process in the current state. 

The process associated with the health manager is sporadi­

cally triggered by events generated either by the framework 

(for resource and deadline violation) or by the port monitors 

associated with the process. Each monitor checks if its spec­

ified condition is being satisfied. Upon detecting a violation, 

the monitors report to the component-level health manager. 

The CLHM's internal state machine tracks the component's 

state and issues mitigation actions. Processes that trigger the 

health manager can block using a blackboard to receive the 

health manager action6; they are finally released when the 

health manager publishes a response (mitigation action) on 

their respective blackboard. 

Example: Execution Sequence of Generated Monitors 
and Component Health Manager Figure 5 shows the 

flowchart of the code generated to handle incoming messages 

on a consumer port. The shaded gray decision boxes are as­

sociated with the generated monitors. The failed monitored 

discrepancy is always reported to the local component health 

manager. Deadline violation is always monitored in parallel 

by the runtime framework. The white boxes are the possible 

actions taken by the local health manager. 

7. SYSTEM-LEVEL HEALTH MANAGEMENT 

In our implementation, the System Health Manager (SHM) 

is a collection of three different components, shown in fig­

ure 6. These components can either be deployed in a sepa­

rately reserved system module, or they can be deployed in a 

module shared by other components in the system assembly. 

The aggregator component is responsible for receiving all the 

alarm inputs, including the local component health manager 

decisions and passing them to the diagnosis engine. The ape­

riodic consumer inside the diagnosis engine runs in an ape­

riodic ARINC-653 process, which is triggered by the alarms 

sent by the aggregator. The third component is the response 

engine - this component is still under development. 

6Blackboards are primitive, shared-memory type inter-process communica­
tion structures implemented by ARINC-653. 

8 

The diagnosis engine uses a timed fault propagation (TFPG) 

model. A TFPG is a labeled directed graph where nodes rep­

resent either failure modes, which are fault causes, or discrep­

ancies, which are off-nominal conditions that are the effects 

of failure modes. Edges between nodes in the graph capture 

the effect of failure propagation over time in the underlying 

dynamic system. To represent failure propagation in multi­

mode (switching) systems, edges in the graph model can be 

activated or deactivated depending on a set of possible op­

eration modes of the system. Appendix B provides a brief 

overview of TFPG. 

The diagnosis engine uses the TFPG model of the software 

assembly under management to reason about the input alarms 

and the local responses received from different component 

level health manager. It then hypothesizes the possible faults 

that could have generated those alarms. As more information 

becomes available, the SHM (using the diagnosis engine) im­

proves its fault-hypothesis as needed, which can then poten­

tially be used to drive the mitigation strategy at the system 

level. Currently, available System level mitigation actions are 

listed in Table 2. However, this list is not final as system-level 

mitigation approaches are subject of ongoing investigations. 

Creating the System Level Fault Propagation Model for 
System-Level Diagnosis 

The fault propagation model for the entire system involves 

capturing the propagations within each component as well 

as capturing the propagations across component boundaries. 

While the latter can be automatically derived from the inter­

actions captured by the software assembly (via component 

ports) the former can be derived from the interactions cap­

tured by the data/control flow model inside each component. 

This automatic derivation of fault propagation from compo­

nent and assembly models is possible because the end-points 

of these interactions - the component ports - exhibit a well 

defined behavior/interaction pattern 7. This pattern is depen­

dent on the specific port-type - Publisher, Consumer, Pro­

vides Interface, Requires Interface - and is somewhat inde-

7Pormal description of these interaction semantics is available in the ap­
pendix of the related technical report [13] 
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Figure 6. Components belonging to the system health manager. 

pendent of the additional properties - data/event types, inter­

faces/methods, periodicity, deadline - that customize a port. 

Hence, if a template fault propagation model can be con­

structed for each of the different port-types, then using the 

interactions captured in the control/data flow model of the 

component and the assembly model of the system, the fault 

propagation graph for the entire system can be generated. 

In principle, this approach is similar to the failure propagation 

and transformation calculus described by Wallace [28], which 

showed how architectural wiring of components and failure 

behavior of individual components can be used to compute 

failure properties for the entire system. 

The template fault propagation model for each kind of inter­

action port deals with: 

• Failures Modes that represent the failures originating from 

within the interaction port 

• Monitored Discrepancies whose presence is detected 

through the Health Monitor Alarms 

• The Unmonitored / silent Discrepancies whose presence is 

not detected through alarms 

• The Input Discrepancy ports that represent entry points of 

failure effects from outside the interaction port 

• The Output Discrepancy ports that represent exit points of 

failure effects to outside the interaction port 

• The failure propagation links between the entities described 

above 

• The Mode Variables that enable/disable a failure propaga­

tion edge based on their value which is set by the Component 

Health Manager's Response 

The Failure Modes / Discrepancies are directly related to the 

list of monitors described in section 5. These include failure 

modes / discrepancies related to one or more of the following 

violations, failures, and problems - LOCK-Problem, Valid­

ity violation, Pre-condition failure, User code failure, Post­

Condition failure, Deadline violation. The Mode Variables 

are related to the Component Health Manager's response to 

the errors detected by monitors - LOCK-Problem�esponse, 

Validity _ Violation�esponse etc. The Input/Output Discrep­

ancy ports list includes various manifestations of the prob­

lems listed above - No/ Late/ Invalid Data Published, No/ 

Late/ Invalid Return Data, Bad Input/Output Data, No Invoke, 

No Update etc. 

Figure 7 captures the failure propagation template model of 

a periodic publisher and a periodic consumer. Additionally, 

it captures the failure interaction (red lines) between the pub­

lisher and consumer. In any component, the exact number and 

9 

type of the Failure Modes, MonitoredlUnmonitored discrep­

ancies, Input/Output ports and the failure propagation links 

between them is determined by specific type of the interac­

tion port - Publisher / Consumer / Provides Interface / Re­

quires Interface. It should also be noted that sometimes it 

might not be possible to monitor some of the failures / alarms 

mentioned above. In such cases, these observed discrepancies 

are turned into unobserved discrepancies and the fault effect 

propagates through the discrepancy without raising any ob­

servation (alarm). The resulting template failure propagation 

model captures: (1) The effect of failures originating from 

other interaction-ports, (2) The cascading effects of failures 

within the interaction port, and (3) The effect of failures prop­

agating to other interaction-ports. 

As discussed earlier in this section, the component failure 

propagation model is generated by an algorithm, automati­

cally, by instantiating the appropriate TFPG template-model 

for each interaction-port in the component. Thereafter, the in­

formation in the component's data/control flow model is used 

to generate the failure propagation links between the TFPG 

models of the interaction-ports within the same component. 

These failure propagation links connect input and output dis­

crepancy ports in these TFPG models. Finally, the system 

level failure propagation model is generated by using the in­

teraction information in the assembly model. Each link in the 

assembly model is translated into one or more failure prop­

agation links between the TFPG models of the appropriate 

interaction-ports belonging to different components. 

Example: Figure 7 shows a small portion of the failure prop­

agation model between two components for the example de­

scribed in section 4, figure 4. It shows the failure interac­

tions (red lines) between a publisher and consumer. While the 

detailed failure propagation template-model of the publisher 

and consumer port are encapsulated within the box, the output 

and input discrepancy ports of the two models are connected 

through failure propagation links that cut across the boxes. A 

high level view of the full TFPG model for this example is 

shown in Figure 11. 

As discussed in section 4, asynchronous interaction between a 

publisher port and a consumer port produces a fault propaga­

tion in the direction of data/event flow i.e. from the publisher 

to the consumer, while the synchronous (blocking) interaction 

pattern between a Requires interface and its corresponding 

Provider interface involves fault propagation in both direc­

tions. The fault propagation within a component is captured 

through the propagations across the bad updates on the state 

variables within the component, observed as pre-condition or 
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post-condition monitors on the interfaces/interactions ports 

that update or read from those state variables. 

8. CASE STUDY 

In this case study we consider the example of the GPS as­

sembly discussed in section 4. First, we describe the nom­

inal execution of the system. Then, we discuss component 

level health management and system-level diagnosis using 

two fault scenarios. This case study does not cover system 

level mitigation. 

Baseline: No Fault. Figure 8 shows the timed sequence 

of events as they happen during the first frame of operation. 
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These sequence charts were plotted using the plotter package 

from OMNeT ++8. oth event marks the start of the module 

manager, which then creates the Linux processes for the two 

partitions. Each partition then creates its respective (APEX) 

processes and signals the module manager. This all happens 

before the frames are scheduled. After the occurrence of oth 

event, module manager signals partition 1 to start. Upon start, 

partition 1 starts the ORB process that handles all CORBA­

related functions. It then starts the sensor health manager. 

Note that all processes are started in an order based on prior­

ity. Finally, it starts the periodic sensor process at event num­

ber 8. The sensor process publishes an event at event number 

8http://www.omnetpp.org! 
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9 and finishes its execution at event number 10. After 1 mil­

lisecond since its start, partition 1 is stopped by the module 

manager at event number 14. Inunediately afterwards, parti­

tion 2 is started. Partition 2 starts all its CORBA ORB process 

and health managers at the beginning of its period. At event 

26, partition 2 starts the periodic GPS consumer process. It 

consumes the sensor event at event 27. At event 27, GPS pub­

lisher process produces an event and finishes its execution cy­

cle at 28. The production of GPS event causes the sporadic 

release of aperiodic consumer process in Navigation Display 

(event 33). The navigation process uses remote procedure 

call to invoke the GPS get data ARINC process. The GPS 

data value is returned to navigation process at event 49. It 

finishes the execution at event 51. Partition 2 is stopped after 

1 millisecond from its start. This marks the end of one frame. 

Note that these events do not capture the internal functional 

logic of the GPS algorithm. Moreover, the claim of No-fault 
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in this sequence of events is made because of the absence of 

any violation of component health monitors. 

Fault Scenario: For the next two subsections we consider 

a scenario in which Sensor (figure 4) stops publishing data. 

First we describe the local component level health manage­

ment action, which includes local detection as well as miti­

gation. Then we will show an example of system level diag­

nosis. System level mitigation has not been included in this 

example, as it still work in progress. 

Component Level Health Management Example 

Validity Violation at GPS Consumer Port. Sensor pub­

lishes an event every 4 milliseconds in the nominal condition. 

In this experiment, we injected a fault in the code such the 

sensor misses all event publications after its first execution. 

Figure 9 shows the experiment events that elapsed after the 
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sensor fault injection. As can be seen in the figure, there is no 

activity in Partition 1 because of the sensor-fault (event # 57 to 

59). The GPS process is started by partition 2 at event 65. At 

this time (event #66), the validity condition specified in the 

method that handles the incoming event fails. This condition 

checks the Boolean value of a validity flag that is set by the 

framework every time the sampling port is read. This validity 

flag is set to false if the age of the event stored in the sampling 

port is older than the refresh period specified for the sampling 

port (4 milliseconds in this case). Upon detection, the GPS 

process raises an error at event #67, which causes the release 

of GPS health manager at event #68. In this case, the GPS 

health manager (see figure 10) publishes a USE-PASLDATA 

response back at event #68. The USE-PAS T ...DATA response 

(received in the datajn process at event #69) means that the 

process can continue and use the previously cached value. 

Bad GPS Data at NavDisplay Port The fault introduced due 

to the missing sensor event and the GPS's response of use past 

data (event #69) results in a fault in the Navigation-Display 

component. Event numbers 73 to 88 in Figure 9 capture the 

snapshot corresponding to this experiment. The GPS's getG­

PSData process sends out bad data at event #78 when queried 

by the navigation display at event #75 using the remote pro­

cedure call. The bad data is defined by the rate of change of 

GPS data being less than a threshold. This fault simulates an 

error in the filtering algorithm in the GPS such that it loses 

track of the actual position because the sensor data did not 

get updated. . At event #81, the post condition check of the 

remote procedure call is violated. This violation is defined 

by a threshold on the R ATE of change of current GPS data 

compared to past data (last sample). The navigation display 

component raises an error at event #82 to its CLHM. At event 

#86, it receives a REFUSE response from the health manager 

(see figure lO(a)). The REFUSE response means that the pro­

cess that detected the fault should immediately abort further 

processing and return cleanly. The effect of this action is that 

the navigation's GPS coordinates are not updated as the re-
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mote procedure call did not finish without error. The next 

subsection discusses the system level health management ac­

tions related to this fault cascade scenario. 

System Level Health Management Example 

Figure 11 shows the high-level TFPG model for the sys­

tem/assembly described in figure 4. The detailed TFPG­

model specific to each interaction pattern is contained inside 

the respective TFPG component model (brown box). The 

figure shows failure propagation between the Sensor pub­

lisher (SensoLdata_out) and GPS consumer(GPS_datajn), 

the GPS publisher (GPS_data_out) and NavDisplay con­

sumer (NavDisplay_datajn), the requires method in NavDis­

play(NavDisplay _gps_data_srcgetGPSData) and the pro­

vides method in GPS (GPS_gps_data_srcgetGPSData), the 

effect of the bad updates on state variables and the entities 

updating or reading the state-variables. 

System Level Diagnosis Process: Figure 12 shows the as­

sembly in figure 4 augmented with Component and System 

level Health Managers and the interaction between them. The 

TFPG diagnosis engine hosted inside the SHM component 

is instantiated with the generated TFPG model of the sys­

tem/assembly. When it receives the first alarm from a fault 

scenario, it reasons about it by generating all hypotheses that 

could have possibly triggered the alarm. Each hypothesis lists 

its possible failure modes and their possible timing interval, 

the triggered-alarms that are supportive of the hypothesis, the 

triggered alarms that are inconsistent with the hypothesis, the 

missing alarms that should have triggered, and the alarms 

that are expected to trigger in future. Additionally, the rea­

soner computes hypothesis metrics such as plausibility and 

robustness that provide a means of comparison. The higher 

the metrics the more reasonable it is to expect the hypothesis 

to be the real cause of the problem. As more alarms are pro­

duced, the hypothesis are further refined. If the new alarms 

are supportive of existing hypotheses, they are updated to re­

flect the refinement in their metrics and alarm list. If the new 



:;l
 

IJQ
 = ;;! ""'
 

�
 :;j ""C:l
 

0
 

-
S 0 

w
 

0- �
 

8'
 

'"' 9- (l) po '" '" (l) S 0- .:z
 

da
ta

_o
ut

 �
 

-,4
 

]i
da

ta
_i

n 
4,

4 
�

 

-,4
 

da
ta

_o
ut

L
 

�
da

ta
_i

n 
gp

s_
da

ta
_s

rc
 0

 
v

 
gp

s_
da

ta
_s

rc
 

S
en

so
r 

C
om

po
ne

nt
 

G
P

S
 C

om
po

ne
nt

 
N

av
D

is
pl

ay
 C

om
po

ne
nt

 

_/
 

T
h

e
 S

y
s

te
m

 T
F

P
G

 i
s

 g
e

n
e

ra
te

d
 f

ro
m

 t
h

e
 g

iv
e

n
 a

s
s

e
m

b
ly

 m
o

d
e

l 
f"

-;;
 -

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--r
 -

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
j-

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--;.

-,.
---

I 
I 

I 
I 

I 
I 

I 
I 

r
�

�
 

I 
G

P
S

.d
a

ta
 

in
 

I 
-

I 
lo

ck
Tl

m
eo

ut
 F

ai
lu

re
 

lo
ck

Ti
m

eo
ut

_F
al

iu
re

 
G

P
S

 9
P

S
_

l n
te

rtl
a

L
s

ta
te

_
b

a
d

 

a
 

0 
-

N
oo

ot
aP

ub
lis

he
d 

Vo
lld

lty
Fo

liu
re

 I
N

 
In

vo
lid

St
at

e5 
�

 
• 

e::
 �

�s
�:

 F
ro

m
 R

e 
ul

re
s 

In
va

lid
Da

ta
Pu

bl
is

he
d 

B
ad

 D
at

a_
IN

 
-

M
ls

sl
ng

St
at

eU
pd

at
e 

� 

·.
L

 
-R

 
I-

F 
-R

 q 
I 

Lo
te

oo
to

Pu
bl

is
he

d 
I.a

od
 R

es
ul

t 
Fr

om
 R

eq
ui

re
s 

Lo
te

St
at

eU
pd

ot
e 

I 
at

e_
 e

su
 t_

 r
om

_ 
eq

u 
re

s 
-

-
-

I I I I 
N

a
vD

is
p

la
y.

L
o

ca
IS

e
n

s
o

rD
a

ta
_

B
A

� 
S

e
n

s
o

L
d

a
ta

 
o

u
t 

! 
I 

II I 
I 

III 
I 

I 
I 

N
a

vD
is

p
la

y.
d

a
ta

j
n

 
I 
tavD

iS
P

la
y.

L
O

C
k

F
M

 

�
 

I I 
.•

 ao
do

ot
a 

IN
 

.B
ad

_R
es

�l
t_

Fr
om

_R
eq

Ul
re

S 
G

P
S

.s
e

n
s

o
r_

d
a

ta
_

B
A

D
 

• L
at

e_
R

es
ul

t_
Fr

om
_R

eq
ui

re
s 

N
ot

in
vo

ke
d_

IN
 

: 
L

oc
kT

lm
eo

ut
_F

al
iu

re
 

N
00

3t
3P

ub
iis

he
d
i 

I::
 : Hotlnv

ok
ed

_I
N

 
In

va
lid

Da
ta

Pu
bl

is
he

d 
,: 

I
 _

B
ad

Da
ta

_I
N

 
L

at
eD

at
aP

ub
lis

he
d 

..
.. -

-
t-

-
-'

 
B

ad
_R

es
ul

t_
Fr

om
_R

eq
ui

re
s 

L
at

e_
R

es
ul

t_
Fr

om
_R

eq
ul

re
s 

N
ot

ln
vo

ke
d_

O
ut

 

G
P

S
.d

a
ta

_
o

u
t 

l
oe

kT
lm

eo
ut

J
al

iu
re

 
B

ad
Da

ta
_I

N
 

• B
ad

_R
es

ul
t_

Fr
om

_R
eq

ul
re

s 
.l

at
e_

Re
su

lt_
Fr

om
_R

eq
ui

re
s 

N
ot

in
vo

ke
d_

IN
 

.B
ad

Da
ta

_I
N

 
In

va
lid

Da
ta

 :f-
-

-
-

-
-

-
�: .!t1- 7

:
ln

va
lld

-R
et

ur
n-

D
at

a-
Fr

om
-p

ro
vl

 
la

te
D

at
a

-
i' 

. -
La

te
_R

et
ur

n_
O

at
a_

Fr
om

_P
ro

vl
de

s 
N

ot
in

vo
ke

d_
O

ut
.

 
I 

.B
ad

_R
es

ul
t_

Fr
om

_R
eq

ui
re

s 
• L

al
e_

R
es

ul
t_

Fr
om

_R
eq

ui
re

s 

G
P

S
.g

p
s

_
d

a
ta

_
s

rc
.g

e
tG

P
S

D
a

ta
 

N
ot

ln
vo

ke
d-

'N
 

G
P

S
 

N
av

D
is

pl
ay

 

N
ot

in
vo

ke
d_

O
ul

 
In

va
lid

St
at

e 
M

ls
sl

ng
St

al
eU

pd
at

e 
L

at
eS

ta
ie

U
pd

at
8 

C
om

po
ne

nt
 

i 
C

om
po

ne
nt

 

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
 ���

�:�
�:�

 __
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

 l _
_

_
_

_
 ���

�:�
�:�

 __
_

_
_

_
_

_
_

_
_

_
 �

!�
��

�i
��

�
�!

��
��

_�
��

 

S
en

so
r 

C
om

po
ne

nt
 

P
ro

ce
ss

es
 



Sensor Component GPS Component 

:h AlarmConsumer TopHypothesis 

DiagnosisEngine 

OutDut Of Alarm Aaareaator 

}- HypthesisConsumer 

ys em esponse nglOe 
(Not Implemented Yet) 

28916:Partition311273281809.3607066221 HME I RECEIVED Monitor: Error Code 2, Component 2, Process 7, Partition 1, Local HM Action 5, time 1273281808760746705 

28916:Partition311273281809.3609523931 HME I RECEIVED Monitor: Error Code 5, Component 3, Process 11, Partition 1, Local HM Action 0, time 1273281808761494007 

28916:Partition311273281813.3606371281 HME I RECEIVED Monitor: Error Code 2, Component 2, Process 7, Partition 1, Local HM Action 5, time 1273281812760731758 

28916:Partition311273281813.3608891861 HME I RECEIVED Monitor: Error Code 5, Component 3, Process 11, Partition 1, Local HM Action 0, time 1273281812761455453 

28916:Partition311273281821.3606426471 HME I RECEIVED Monitor: Error Code 5, Component 3, Process 11, Partition 1, Local HM Action 0, time 1273281820761304597 

Output Of Diagnosis Engine 
1. ===============[ Alarm Monitor AM_GPS_datajn_VALIDITYJAILURE Triggered at TIME = 24.3411 ============================ 

2. ===============[ TFPG REA50NSER INVOKED. TIME = 24.3411 ============================ 

3. =================[ UPDATING ALARMS TRIGGERED.I================= 

4. =====================[ DISCREPANCY ALARM DISC_GPS_datajn_VALIDITYJAILURE [AM_GPS_data_in_VALIDITYJAILURE TRIGGERED 1============= 

5. =================[ Hypothesis Group 1 1================= 

6. Fault: FM_Sensor_data_out_USER_CODE Component: GPSAssembly failure rate: 0.000000 earliest time: 0.000000 latest time: 24.341104 

7. ------- Supporting Alarms :DISC_GPS_datajn_VALIDITYJAILURE [AM_GPS_data_in_VALIDITYJAILURE I 

8. ------- Expected Alarms :DISC_NavDisplay...,gps_data_source...,getGPSData]OSTCONDITION_FAILURE [AM_NavDisplay...,gps_data_source...,getGPSData]OSTCONDITIONJAILURE I 

9. ------- Plausibility: 100.000000 Robustness: 50.000000 FRMetric: 0 

10. =================[ Hypothesis Group 2 1================= 

11. Fault: Sensor_LOCK]ROBLEM Component: GPSAssembly failure rate: 0.000000 earliest time: 0.000000 latest time: 24.341104 

12. ------- Supporting Alarms :DISC_GPS_datajn_VALIDITYJAILURE [AM_GPS_data_in_VALIDITYJAILURE I 

13. ------- Expected Alarms :DISC_NavDisplay...,gps_data_source...,getGPSData_POSTCONDITIONJAILURE [AM_NavDisplay...,gps_data_source...,getGPSData]OSTCONDITIONJAILURE I 

14. ------- Plausibility: 100.000000 Robustness: 50.000000 FRMetric: 0 

15. ===============[ Alarm Monitor AM_NavDisplay...,gps_data_source...,getGPSData]OSTCONDITIONJAILURE Triggered at TIME = 24.3417 ==================== 

16. ===============[ TFPG REASONSER INVOKED. TIME = 24.3417 ============================ 

17. =================[ UPDATING ALARMS TRIGGERED.I================= 

18. =====================[ DISCREPANCY ALARM DISC_NavDisplay...,gps_data_source...,getGPSData]OSTCONDITIONJAILURE [ 

AM_NavDisplay...,gps_data_source...,getGPSData]OSTCONDITIONJAILURE TRIGGERED 1==================== 

19. =================[ Hypothesis Group 1 1================= 

20. Fault: FM_Sensor_data_out_USER_CODE Component: GPSAssembly failure rate: 0.000000 earliest time: 0.000000 latest time: 24.341104 

21. ------- Supporting Alarms :DISC_ GPS_data_in_ VALIDITY JAILURE [ AM_ GPS_data_in_ VALIDITY JAILURE IDISC_NavDisplay...,gps_data_source...,getGPSData]OSTCONDITIONJAI LURE [ 

AM_NavDisplay...,gps_data_source...,getGPSData]OSTCONDITIONJAILURE I 

22. ------- Plausibility: 100.000000 Robustness: 100.000000 FRMetric: 0 

23. =================[ Hypothesis Group 2 1================= 

24. Fault: Sensor_LOCK]ROBLEM Component: GPSAssembly failure rate: 0.000000 earliest time: 0.000000 latest time: 24.341104 

25. ------- Supporting Alarms :DISC_ GPS_data_in_ VALIDITY JAILURE [ AM_ GPS_data_in_ VALIDITY JAILURE IDISC_NavDisplay...,gps_data_source...,getGPSData]OSTCONDITIONJAI LURE [ 

AM_NavDisplay...,gps_data_source...,getGPSData]OSTCONDITIONJAILURE I 

26. ------- Plausibility: 100.000000 Robustness: 100.000000 FRMetric: 0 

Figure 12. This figures shows augmentation of the assembly shown in figure 4 with an alarm aggregator component, the 

diagnosis engine, and the system level response engine. Details of this last component are not in this paper, as it is the subject 

of our ongoing research. Also shown are the results from the alarm aggregator and the diagnosis engine. 

alarms are not supportive of any of the existing hypotheses 

with the highest plausibility, then the reasoner refines these 

hypotheses such that hypotheses can explain these alarms. 

Figure 12 also shows the TFPG-results for fault scenario un­

der study. The initial alarm is generated because of data­

validity violations in the consumer of the GPS component. 

When this alarm was reported to the local Component Health 

manager, it issued a response directing the GPS component 

to use past data (USE-PAS T J)ATA). While the issue was re­

solved local to the GPS component, the combined effect of 

the failure and mitigation action propagated to the Naviga­

tion Display component. In the Navigation Display compo­

nent, a monitor observing the post-condition violation on a 

Required interface was triggered because the GPS-data vali­

dated its constraints. These two alarms were sent to the Sys­

tem Health Manager and processed by the TFPG-Diagnoser. 

As can be seen from the results, the system correctly gener­

ated two hypotheses (figure 12, lines 20 and 24). The first 
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hypothesis blamed the sensor component lock to be the root 

problem. The second hypothesis blamed the user level code 

in the sensor publisher process to be the root failure mode. In 

this situation the second hypothesis was the true cause. How­

ever, because in this example lock time out monitors were 

not specified the diagnoser was not able to reasonably disam­

biguate between the two possibilities. 

9. RELATED WORK 

One notable approach to system health management for phys­

ical systems is to design a controller that inherently drives the 

system back in safe region upon failure of a system. This 

is the basis of goal-based control paradigm [29] that sup­

ports a deductive controller that is responsible for observing 

the plant's state (mode estimation) and issuing commands to 

move the plant through a sequence of states that achieves the 

specified goal. This approach inherently provides for fault re­

covery (to the extent feasible) by using the control program to 

set an appropriate configuration goal that attempts to negate 



the problems caused by faults in the physical system. How­

ever, these control algorithms are themselves typically imple­

mented in software and are therefore reliant on the fault-free 

behavior of related software components. 

Formal argument for checking correctness of execution of a 

computer program based on a first order logic system was first 

presented by Hoare in [16]. Later this concept was extended 

to distributed systems by Meyer in [21], [17]. A contract im­

plemented by Meyer specified the requires and ensure clauses 

as assertions specified by a list of boolean expressions. These 

assertions were specified as logic operations upon the value 

domain of the program variables and were compiled out in 

the running system. In ACM, these correctness conditions are 

specified by preconditions and post conditions, which can be 

defined over both the value-domain and temporal domain of 

program variables as well as the state variables belonging to 

the component. We envision that these checks are performed 

in real-time on the system. This is especially necessary be­

cause there is a high likelihood for software defects being 

present in complex systems that arise only under exceptional 

circumstances. These circumstances may include faults in 

the hardware system (including both the computing and non­

computing hardware) - software is very often not prepared for 

hardware faults [13]. 

Conmy et al. presented a framework for certifying Inte­

grated Modular Avionics applications build on ARINC-653 

platforms in [9]. Their main approach was the use of 'safety 

contracts' to validate the system at design time. They defined 

the relationship between two or more components within a 

safety critical system. However, they did not present any de­

tails on the nature of these contracts and how they can be 

specified. We believe that a similar approach can be taken 

to formulate acceptance criteria, in terms of "correct" value­

domain and temporal-domain properties that will let us detect 

any deviation in a component's behavior. 

Nicholson presented the concept of reconfiguration in inte­

grated modular systems running on operating systems that 

provide robust spatial and temporal partitioning in [22]. He 

identified that health monitoring is critical for a safety-critical 

software system and that in the future it will be necessary to 

trade-off redundancy based fault tolerance for the ability of 

"reconfiguration on failure" while still operational. He de­

scribed that a possibility for achieving this goal is to use a 

set of lookup tables, similar to the health monitoring tables 

used in ARINC-653 system specification, that maps trigger 

event to a set of system blue-prints providing the mapping 

functions. Furthermore, he identified that this kind of recon­

figuration is more amenable to failures that happen gradually, 

indicated by parameter deviations. 

Goldberg and Horvath have discussed discrepancy monitor­

ing in the context of ARINC-653 health-management archi­

tecture in [14]. They describe extensions to the application 

executive component, software instrumentation and a tempo-
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ral logic run-time framework. Their method primarily de­

pends on modeling the expected timed behavior of a process, 

a partition, or a core module - the different levels of fault­

protection layers. All behavior models contain "faulty states" 

which represent the violation of an expected property. They 

associate mitigation functions using callbacks with each fault. 

Sammapun et al. describe a run-time verification approach 

for properties written in a timed variant of LTL called MEDL 

in [26]. They described an architecture called RT-MaC for 

checking the properties of a target program during run-time. 

All properties are evaluated based on a sequence of obser­

vations made on a "target program". To make these observa­

tions all target programs are modified to include a "filter" that 

generates the interesting event and reports values to the event 

recognizer. The event recognizer is a module that forwards 

the events to a checker that can check the property. Timing 

properties are checked by using watchdog timers on the ma­

chines executing the target program. Main difference in this 

approach and the approach of Goldberg and Horvath outlined 

in previous paragraph is that RT-MaC supports an "until" op­

erator that allows specification of a time bound where a given 

property must hold. Both of these efforts provided valuable 

input to our design of run-time component level health man­

agement. 

10. SUMMARY 

This paper presented our first steps towards building a Soft­

ware Health Management technology that extends beyond 

classical software fault tolerance techniques. In the ap­

proach, we briefly discussed our framework first that com­

bines component-oriented software construction with a real­

time operating system with partitioning capability (ARINC 

653). Based on this framework, we defined an approach for 

'Component-level Software Health Management' and created 

a model-based toolsuite (modeling tool, generators, and soft­

ware platform) that supports the model-driven engineering of 

component-based systems with health management services. 

We also showed how we can perform system-level diagno­

sis, which is required for system level health management, 

where faults occur in and propagate across many compo­

nents. Our diagnosis procedure is based on a Timed Fail­

ure Propagation model for the system, automatically synthe­

sized from the software assembly models. Our current work 

is focusing on extending the component level mitigation pro­

cedure to the system-level, where more sophisticated miti­

gation logic is necessary. We also plan to extend this work 

to the entire, larger system: a cyber-physical system, like a 

large sub-system of an aerospace vehicle, that may have its 

own, non-software failure modes. The challenge in that level 

is to integrate health management across the entire hardware 

/ software ensemble. Additionally, we hope to leverage our 

work with distributed TFPG reasoners [20] and explore a dis­

tributed health management approach that addresses issues 

related to single point of failures, scalability, and other issues. 



ApPENDIX 

1. BACKGROUND ON ARINC-653 

The ARINC-653 software specification describes the stan­
dard Application Executive (APEX) kernel and associated 
services that should be supported by safety-critical real-time 
operating system (RTOS) used in avionics. It has also been 
proposed as the standard operating system interface on space 
missions [10]. The APEX kernel in such systems is required 
to provide robust spatial and temporal partitioning. The pur­
pose of such partitioning is to provide functional separation 
between applications for fault-containment. A partition in 
this environment is similar to an application process in regu­
lar operating systems, however, it is completely isolated, both 
spatially and temporally, from other partitions in the system 
and it also acts as a fault-containment unit. It also provides 
a reactive health monitoring service that supports recovery 
actions by using call-back functions, which are mapped to 
specific error conditions in configuration tables at the parti­
tion/module/system level. 

Spatial partitioning [14] ensures exclusive use of a memory 
region for a partition by an ARINC process (unless other­
wise mentioned, a 'process' is meant to be understood as an 
'ARINC Process' throughout this paper). It is similar to a 
thread in regular operating systems. Each partition has prede­
termined areas of allocated memory and its processes are pro­
hibited from accessing memory outside of the partition's de­
fined memory area. The protection for memory is enforced by 
the use of memory management hardware. This guarantees 
that a faulty process in a partition cannot ruin the data struc­
tures of other processes in different partitions. For instance, 
space partitioning can be used to separate the low-criticality 
vehicle management components from safety-critical flight 
control components. Faults in the vehicle management com­
ponents must not destroy or interfere with the flight control 
components, and this property could be ensured via the parti­
tioning mechanism. 

Temporal partitioning [14] refers to the strict time-slicing of 
partitions, guaranteeing access for the partitions to the pro­
cessing resource(s) according to a fixed, periodic schedule. 
The operating system core (supported by hardware timer de­
vices) is responsible for enforcing the partitioning and man­
aging the individual partitions. The partitions are scheduled 
on a fixed-time basis, and the order and timing of partitions 
are defined at configuration time. This provides determinis­
tic scheduling whereby the partitions are allowed to access 
the processor or other hardware resources for only a prede­
termined period of time. Temporal partitioning guarantees 
that a partition has exclusive access to the resources during 
its assigned time period. It also guarantees that when the pre­
determined period of execution time of a partition is over, the 
execution of the partition will be interrupted and the partition 
itself will be put into a dormant state. Then, the next partition 
in the schedule order will be granted the right to execution. 
Note that all shared hardware resources must be managed by 
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the partitioning operating system in order to ensure that con­
trol of the resource is relinquished when the time-slice for the 
corresponding partition expires. 

2. BACKGROUND ON TFPG 

Timed failure propagation graphs (TFPG) are causal models 
that capture the temporal characteristics of failure propaga­
tion in dynamic systems. A TFPG is a labeled directed graph. 
Nodes in graph represent either failure modes (fault causes), 
or discrepancies (off-nominal conditions that are the effects 
of failure modes). Edges between nodes capture the propaga­
tion of the failure effect. Formally, a TFPG is represented as 
a tuple (F, D, E, M, A), where: 

• F is a nonempty set of failure nodes. 
• D is a nonempty set of discrepancy nodes. Each discrep­
ancy node is of AND or OR type.9. Further, if a discrepancy 
is observable then it is associated with an alarm. 
• E <;;; V x V is a set of edges connecting the set of all nodes 
V = F U D. Each edge has a minimum and a maximum time 
interval within which the failure effect will propagate from 
the source to the destination node. Further, an edge can be 
active or inactive based on the state of its associated system 
modes. 
• 1\;[ is a nonempty set of system modes. 
• A is a nonempty set of alarms. 

The TFPG model serves as the basis for a robust online di­
agnosis scheme that reasons about the system failures based 
on the events (alarms and modes) observed in real-time[15], 
[7],[6]. The model is used to derive efficient reasoning algo­
rithms that implement fault diagnostics: fault source identifi­
cation by tracing observed discrepancies back to their orig­
inating failure modes. The TFPG approach has been ap­
plied and evaluated for various aerospace and industrial sys­
tems[24]. More recently, a distributed approach has been de­
veloped for reasoning with TFPG[20]. 

ACKNOWLEDGMENTS 

This paper is based upon work supported by NASA under 
award NNX08AY 49A. Any opinions, findings, and conclu­
sions or recOlmnendations expressed in this material are those 
of the author(s) and do not necessarily reflect the views of the 
National Aeronautics and Space Administration. The authors 
would like to thank Dr Paul Miner, Eric Cooper, and Suzette 
Person of NASA LaRC for their help and guidance on the 
project. 

REFERENCES 

[1] "Arinc specification 653-2: Avionics application soft­
ware standard interface part 1 - required services," Tech. 
Rep. 

[2] "Math works, Inc., www.mathworks.com ... 

9 An OR(AND) type discrepancy node will be activated when the failure 
propagates to the node from any (all) of its predecessor nodes. 



[3] 

[4] 

[5] 

[6] 

[7] 

"Model-Driven Architecture," www.omg.org/mda. 

"Model-Integrated Computing," http://www.isis. 

vanderbilt.edulresearchIMIC. 

"National Instruments," www.ni.com. 

S. Abdelwahed, G. Karsai, N. Mahadevan, and S. C. 

Ofsthun, "Practical considerations in systems diagnosis 

using timed failure propagation graph models," Instru­

mentation and Measurement, IEEE Transactions on, 

vol. 58, no. 2, pp. 240-247, February 2009. 

S. Abdelwahed, G. Karsai, and G. Biswas, "A 

consistency-based robust diagnosis approach for tempo­

ral causal systems," in in The 16th International Work­

shop on Principles of Diagnosis, 2005, pp. 73-79. 

[8] R. Butler, "A primer on architectural level 

fault tolerance," NASA Scientific and Techni­

cal Information (STI) Program Office, Report 

No. NASAlTM-2008-215108, Tech. Rep., 2008. 

[Online]. Available: http://shemesh.larc.nasa.gov/fml 

papers/Butler-TM-2008-2151 08-Primer-FT.pdf 

[9] P. Conmy, J. McDermid, and M. Nicholson, "Safety 

analysis and certification of open distributed systems," 

in International System Safety Conference" Denver, 

2002. 

[10] N. Diniz and J. Rufino, " ARINC 653 in space," in Data 

Systems in Aerospace. European Space Agency, May 

2005. 

[11] A. Dubey, G. Karsai, R. Kereskenyi, and N. Mahade­

van, "A real-time component framework: Experience 

with ccm and arinc-653," Object-Oriented Real-Time 

Distributed Computing, IEEE International Symposium 

on,pp. 143-150,2010. 

[12] A. Dubey, G. Karsai, and N. Mahadevan, "A component 

model for hard-real time systems: Ccm with arinc-653," 

Softw., Pract. Exper., to Appear. 

[13] --, 'Towards model-based software health man­

agement for real-time systems. " Institute for Soft­

ware Integrated Systems, Vanderbilt University, Tech. 

Rep. ISIS-1O-106, August 2010. [Online]. Available: 

http://isis.vanderbilt.edu/node/4196 

[14] A. Goldberg and G. Horvath, "Software fault protection 

with ARINC 653," in Proc. IEEE Aerospace Confer­

ence, March 2007, pp. 1-11. 

[15] S. Hayden, N. Oza, R. Mah, R. Mackey, S. Narasimhan, 

G. Karsai, S. Poll, S. Deb, and M. Shirley, "Diagnostic 

technology evaluation report for on-board crew launch 

vehicle," NASA, Tech. Rep., 2006. 

[16] c. A. R. Hoare, "An axiomatic basis for computer pro­

grarmning," Commun. ACM, vol. 12, no. 10, pp. 576--

580, 1969. 

[17] J-M. Jezequel and B. Meyer, "Design by contract: The 

lessons of ariane," Computer, vol. 30, no. 1, pp. 129-

130, 1997. 

17 

[18] S. Johnson, Ed., System Health Management: With 

Aerospace Applications. John Wiley & Sons, Inc, 

Based on papers from First International Forum on Inte­

grated System Health Engineering and Management in 

Aerospace, 2005. To Appear in 2011. 

[19] M. R. Lyu, Software Fault Tolerance. John Wiley & 

Sons, Inc, 1995, vol. New York, NY, USA. [Online]. 

Available: http://www.cse.cuhk.edu.hk/�lyu/book/sft/ 

[20] N. Mahadevan, S. Abdelwahed, A. Dubey, and G. Kar­

sai, "Distributed diagnosis of complex causal sys­

tems using timed failure propagation graph models," in 

IEEE Systems Readiness Technology Conference, AU­

TOTESTCON,201O. 

[21] B. Meyer, "Applying "design by contract "," Computer, 

vol. 25, no. 10,pp. 40-51, 1992. 

[22] M. Nicholson, "Health monitoring for reconfigurable 

integrated control systems," Constituents of Modern 

System safety Thinking. Proceedings of the Thirteenth 

Safety-critical Systems Symposium., vol. 5, pp. 149-

162,2007. 

[23] S. Ofsthun, "Integrated vehicle health management 

for aerospace platforms," Instrumentation Measurement 

Magazine, IEEE, vol. 5, no. 3, pp. 21 - 24, Sep. 2002. 

[24] S. C. Ofsthun and S. Abdelwahed, "Practical applica­

tions of timed failure propagation graphs for vehicle di­

agnosis," in Proc. IEEE Autotestcon, 17-20 Sept. 2007, 

pp. 250-259. 

[25] A. Puder, "MICO: An open source CORBA implemen­

tation," IEEE Softw., vol. 21, no. 4, pp. 17-19,2004. 

[26] U. Sammapun, I. Lee, and O. Sokolsky, "RT-MaC: run­

time monitoring and checking of quantitative and prob­

abilistic properties," in Proc. 11th IEEE International 

Conference on Embedded and Real-Time Computing 

Systems and Applications, 17-19 Aug. 2005, pp. 147-

153. 

[27] W. Torres-pomales, "Software fault tolerance: A 

tutorial," NASA, Tech. Rep., 2000. [Online]. Avail­

able: http://citeseerx.ist.psu.edu/viewdoc/summary? 

doi=lO. 1. 1.32.8307 

[28] M. Wallace, "Modular architectural representation and 

analysis of fault propagation and transformation," Elec­

tron. Notes Theor. Comput. Sci., vol. 141, no. 3, pp. 53-

71,2005. 

[29] B. C. Williams, M. Ingham, S. Chung, P. Elliott, 

M. Hotbaur, and G. T. Sullivan, "Model-based program­

ming of fault-aware systems," Al Magazine, vol. 24, 

no. 4,pp. 61-75,2004. 



BIOGRAPHY 

Abhishek Dubey is a Research Sci­

entist at the Institute for Software In­

tegrated Systems at Vanderbilt Univer­

sity. He has nine years of experience 

in software engineering. He conducts 

research in theory and application of 

model-predictive control for managing 

. performance of distributed computing 

systems, in design of fault-tolerant software frameworks for 

scientific computing, in practice of model-integrated comput­

ing, and in fault-adaptive control technology for software in 

hard real-time systems. He received his Bachelors from the 

Institute of Technology, Banaras Hindu University, India in 

2001, and received his M.S and PhD from Vanderbilt Univer­

sity in 2005 and 2009 respectively. He has published over 20 

research papers and is a member of IEEE. 

Gabor Karsai is Professor of Electrical 

and Computer Engineering at Vanderbilt 

University and Senior Research Scientist 

at the Institute for Software-Integrated. 

He has over twenty years of experience 

in software engineering. He conducts re­

search in the design and implementation 

" \ 
of advanced software systems for real-

time, intelligent control systems, and in prograrmning tools 

for building visual programming environments, and in the 

theory and practice of model-integrated computing. He re­

ceived his BSc and MSc from the Technical University of 

Budapest, in 1982 and 1984, respectively, and his PhD from 

Vanderbilt University in 1988, all in electrical and computer 

engineering. He has published over 100 papers, and he is the 

co-author of four patents. 

Nagabhushan Mahadevan is a Se­

nior Staff Engineer at the Institute for 

Software Integrated Systems (ISIS), De­

partment of Electrical Engineering and 

Computer Science, Vanderbilt Univer­

sity, Nashville, TN, where his work is fo­

cused on using model-based techniques 

towards diagnosis, distributed diagno­

sis, software health management, adaptation of software­

intensive systems and quality-of-service management. He re­

ceived his M.S. degree in Computer Engineering and Chem­

ical Engineering from the University of South Carolina, 

Columbia, and B.E.(Hons.) degree in Chemical Engineering 

from Birla Institute of Technology and Science, Pilani, India. 

18 


