
A Real-Time Component Framework: Experience with CCM and ARINC-653

Abhishek Dubey Gabor Karsai Robert Kereskenyi Nagabhushan Mahadevan

Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN 37203, USA

Abstract—The complexity of software in systems like
aerospace vehicles has reached the point where new techniques
are needed to ensure system dependability while improving the
productivity of developers. One possible approach is to use
precisely defined software execution platforms that (1) enable
the system to be composed from separate components, (2)
restrict component interactions and prevent fault propagation,
and (3) whose compositional properties are well-known. In this
paper we describe the initial steps towards building a platform
that combines component-based software construction with
hard real-time operating system services. Specifically, the paper
discusses how the CORBA Component Model (CCM) could
be combined with the ARINC-653 platform services and the
lessons learned from this experiment. The results point towards
both extending the CCM as well as revising the ARINC-653.

I. INTRODUCTION

Software today often acts as the ultimate tool to imple-
ment functionality in cyber-physical systems and to integrate
functions across various subsystems. Consequently, size and
complexity of software is growing, often exponentially,
and our technologies that ensure systems are dependable
must keep up with this growth. One such technology is
component-based software development: a concept that has
been around since the early days of software engineering.
Component-based development is built on the notion that
software should be assembled from pre-fabricated and -
tested software components that are customized and inte-
grated via a component platform: a software framework.
During the past two decades several software component
models have been developed: COM and its follower .NET
by Microsoft, the CORBA Component Model defined by
OMG and implemented by many vendors, and Java Beans
supported by Sun, just to name the three major ones. The
component models define what a component is, how it can
be customized, how it could be deployed on the platform,
and how the components can interact via the platform. The
primary goal of components is to promote reusability and
to increase the productivity of developers. Furthermore, if
the component model is well-designed, then the properties
of the resulting system can be determined from properties
of the components and how they are composed. Yet another
potential benefit of using components is fault-management
and -containment: the component framework can catch faults
in components at run-time and take some appropriate action
(e.g. restart the component) before the effect propagates to
other components.

In spite of the apparent benefits of a component-based
approach to development, little work has been done on
applying these concepts to hard real-time systems. It is
well-known that the complexity of hard real-time systems
keeps increasing, and employing reusable components and
robust composition techniques are crucial. In this paper,
we describe the early results of a research effort that
aims at developing a component framework for hard real-
time systems. The software component framework provides
capabilities similar to the ones in the CORBA Component
Model (CCM), but it is built on the ARINC-653 platform
abstractions. The bigger goal is to use this software com-
ponent framework later as a foundation for software health
management: an extension to classical software fault toler-
ance. We envision ‘software health managers’ that monitor
components, detect anomalies, and take mitigation actions –
all in a real-time context where dependability is required.

The paper is organized as follows. The second section
provides the background for the real-time component frame-
work we are constructing, while the subsequent sections
detail our approach towards combining the CORBA Com-
ponent Model with the hard real-time ARINC-653 platform
services and present our results. The paper concludes with
a comparison with related work and a summary.

II. BACKGROUND

This section provides the necessary background on
ARINC-653 platform services and our component model,
two main technologies used in this work.

A. ARINC-653/APEX partitioning kernel

The ARINC-653 software specification describes the stan-
dard Application Executive (APEX) kernel and associated
services that should be supported by safety-critical real-
time operating systems (RTOS) used in avionics. It has also
been proposed as the standard operating system interface on
space missions [7]. The APEX kernel in such systems is
required to provide robust spatial and temporal partitioning
to support functional separation between applications for
fault-containment. The standard also describes a simple
reactive health management service that supports recovery
actions by using call-back functions that are mapped to
specific error conditions in configuration tables at the parti-
tion/module/system level.

2010 13th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing

1555-0885/10 $26.00 © 2010 IEEE

DOI 10.1109/ISORC.2010.39

143

Spatial partitioning [11] ensures exclusive use of a mem-
ory region for a partition by ARINC processes (unless
otherwise mentioned, a ‘process’ is meant to be understood
as an ‘ARINC Process’ in the rest of this paper). An ARINC
Process is similar to a thread in regular operating sys-
tems. Each partition has predetermined, statically allocated
memory and its processes are prohibited from accessing
memory outside of the partition’s defined memory area.
The memory protection is enforced by memory management
hardware. This guarantees that a faulty process in a partition
cannot ruin the data structures of other processes in different
partitions. For instance, space partitioning can be used to
isolate the low-criticality vehicle management components
from safety-critical flight control components.

Temporal partitioning [11] refers to the strict temporal
separation of partitions, guaranteeing access for the par-
titions to the processing resource(s) according to a fixed,
periodic schedule. The operating system core (supported
by hardware timer devices) is responsible for enforcing
the partitioning and managing the individual partitions. The
partitions are scheduled on a fixed-time basis, and the order
and timing of partitions is defined at configuration time.
This provides deterministic scheduling whereby the parti-
tions are allowed to access the processor or other hardware
resources for only predetermined intervals of time. Temporal
partitioning guarantees that a partition has exclusive access
to the resources during its assigned time interval. It also
guarantees that when the predetermined interval of execution
time of a partition is over, the execution of the partition will
be interrupted and the partition be placed into a dormant
state. Then, the next partition in the schedule order will
be granted the right to execution. Note that all shared
hardware resources must be managed by the partitioning
operating system in order to ensure that control of a resource
is relinquished when the time slice for the corresponding
partition expires.

B. ARINC Component Model

Our Component Model (Figure 1) is an extension of
the standard CORBA Component Model (CCM). Like the
CCM, component interactions can be either synchronous
(serviced through provides/uses interfaces) or asynchronous
(serviced through event sources/sinks). However, unlike the
standard CCM where the functional logic belonging to an
interface port is either executed on a new, dynamically
created, or pre-existing but dynamically released worker-
thread, here the functional logic for each port is executed as
a separate ARINC process, which is defined and bound to
the port during initialization. Due to the restrictions imposed
by the ARINC specification, neither dynamic creation nor
re-binding of the ARINC processes to a different port is
permitted. Naturally, this indicates a shortcoming caused by
constraints enforced by ARINC.

Furthermore, differently from CCM, each ARINC process

Figure 1. Component Model

Figure 2. Example: Component Interactions. Here each interface is
annotated with its (periodicity,deadline) in seconds.

bound to a specific port of the component is configured as
either periodic or aperiodic. Periodic processes are released
by the framework with a fixed frequency using a timer
trigger. Aperiodic processes are released by (asynchronous)
event-triggers or by (synchronous) method invocations. The
possible combinations of synchronous and asynchronous
interactions with periodic and aperiodic triggering gives rise
to a rich set of potential component interaction behaviors.
Another difference between this model and the standard
CCM is the availability of interfaces for monitoring the
component state and resource usage. This could be used by
the software health manager (mentioned earlier) to detect
anomalous behaviors in the component. Figure 2 shows a
simple example assembly of components. The Sensor com-
ponent contains an asynchronous publisher interface (source
port) that is triggered periodically (every 4 sec). The event
published by this interface is consumed by a periodically
triggered asynchronous consumer/event sink port on the GPS
component (every 4 sec). Note that the event sink process
is periodically released, and each such invocation reads the
last event published by the Sensor. If the Sensor does not
update the event frequently enough, the GPS may read stale
data. The consumer process in the GPS, in turn, produces
an event that is published through the GPS’s event publisher
port. This event triggers the aperiodic consumer / event sink
port on the Navigation Display component. Upon activation,
the display component uses an interface provided by the
GPS to retrieve the position data via a synchronous method
invocation call into the GPS component.

III. LAYERING THE COMPONENT MODEL ON
ARINC-653

ARINC-653 systems group Processes into spatially and
temporally separated Partitions, with one or more Partitions

144

Figure 3. Layers of the ARINC Component Framework.

assigned to each Module, and one or more Modules (proces-
sor hosts) form a System. The Partitions and their underlying
Processes are created during system initialization and their
dynamic creation is not supported. The user configures
Partitions and their underlying Processes with their real-
time properties (Priority, Periodicity, Duration, Worst Case
Execution Time, Soft/Hard deadline etc.) The Partitions
are precisely scheduled at run-time and their Processes
are monitored to check for deadline violations. Processes
within a Partition are independent, should share data only
via the intra-partition services, and are responsible for their
individual state. Intra-partition communication is provided
using Buffers that provide a queue for passing data messages
and Blackboards that allow processes to read, write and clear
a single-item data message. Inter-partition communication is
asynchronous and is provided using ports and channels that
can be used for sampling or queuing of messages. Inter-
process, intra-partition synchronization is supported through
Semaphores and Events.

In a typical CCM deployment, the computational objects
are grouped into Components that serve as run-time contain-
ers and form a layer between the objects and the underlying
Object Request Broker (ORB). Each native operating system
process contains an instance of the ORB that hosts the
Components. Dynamic memory and resource allocation is
permitted in a typical CCM system. If Components are con-
figured as session-oriented, a new instance of the Component
is created dynamically for each session request, if not then
a single instance of the Component persists. The methods
implemented inside a Component share and update the state
of the Component. All interactions between Components
happen through ports that are used to publish events and
to receive subscribed events, or ports that provide or use
interfaces for synchronous method calls. The communica-
tion between the objects is achieved through the services
provided by the Component layer and the underlying ORB.
Additional synchronization support from the ORB service
libraries and the underlying OS is also available.

In order to build a Component layer within the ARINC-
653 partitions, a mapping needs to be established between
the ARINC-653 APEX layer and the CCM layer. First we

assume the existence of a host operating system that provides
process and thread abstractions. An OS process is spatially
separated from other processes and it can run multiple OS
threads. There could be multiple hosts each running an
OS, connected to a network. An OS process (that holds
one ORB instance) is mapped to a ARINC-653 partition,
and it can host multiple components. In CCM, interface
methods of Components are executed in OS threads. In
our implementation, each component interface method is an
ARINC process that is mapped to an OS thread. All ARINC
processes are instantiated with their respective interface
method’s periodicity (if periodic) and deadline. Note that
ARINC-653 processes cannot be created during runtime;
hence all processes executing interface methods are created
at initialization time. The framework provides the necessary
code to map an ORB request for executing a particular
interface method to the releasing of the associated ARINC
Process (i.e. OS thread). Table I summarizes the mapping
between pure CCM concepts and how they are implemented
in the combined framework.

Figure 3 describes the layers of our framework that
implements the ARINC Component Model (ACM). The
main purpose of this framework is to provide support for
developing and experimenting with component-based sys-
tems using ARINC-653 abstractions on top of Linux. The
secondary goal is to design the top layers: component and
processes such that they can be easily rebuilt over an actual
ARINC-653 kernel. The first two layers are a physical com-
munication network and the physical computing platform.
We have selected Linux as the operating system because it
is widely available, supports a real-time scheduling policy
(SCHED_FIFO), and provides an implementation of the
POSIX thread library. memory partitioning between Linux
processes provided by the Linux Kernel is used to imple-
ment the spatial partitioning between ARINC-653 partitions.
Other layers from bottom to top are as follows.

APEX Services Emulation Library is the next layer.
This library provides implementation of ARINC-653 in-
terface specifications for intra-partition process commu-
nication that includes Blackboards and Buffers. Buffers
provide a queue for passing messages and Blackboards
enable processes to read, write, and clear single message.
Intra-partition process synchronization is supported through
Semaphores and Events. We have also implemented process
and time management services as described in the ARINC-
653 specification. Inter-partition communication is provided
by sampling ports and queuing ports. We can also provide
inter-partition communication using the event channels and
remote procedure calls supported by our ORB layer, which
will be described later in this section. Overall, this layer
was implemented in approximately 15,000 lines of C++
code. Recall that, we implement ARINC-653 processes as
POSIX threads. ARINC-653 processes, just like POSIX
threads share the address space. Processes, both periodic

145

Table I
IMPLEMENTATION OF CCM CONCEPTS IN THE ACM FRAMEWORK. (RMI=REMOTE METHOD INVOCATION)

CCM Target Properties Features of ACM Implementation APEX API Used
Host /Processor N/A An Apex module, mapped to a single CPU core. Module
ORB Instance N/A An Apex partition, mapped to an OS Process. Partition
Component Class N/A Data structure shared by related ARINC processes. Semaphores
Component method Periodic Periodic process, mapped to an OS Thread Process start, stop
Component method Aperiodic Aperiodic process, mapped to an OS Thread Semaphores
Synchronous RMI Periodic Collocated N/A N/A
Synchronous RMI Periodic Non-

collocated
N/A N/A

Synchronous RMI Aperiodic Collocated Caller method signals callee to release then waits for callee until completion. Event, Blackboard
Synchronous RMI Aperiodic Non-

collocated
Caller method sends RMI to release callee then waits for RMI to complete. TCP/IP,

Semaphore, Event
Asynchronous
Publish-Subscribe

Periodic Collocated Callee is periodically triggered and polls event buffer (Blackboard) - validity
flag indicates whether data is stale or fresh

Blackboard

Asynchronous
Publish-Subscribe

Periodic Non-
collocated

Callee is periodically triggered and polls “Sampling Port” - validity flag
indicates whether data is stale or fresh

Sampling port,
Channel

Asynchronous
Publish-Subscribe

Aperiodic Collocated Callee is released when event is available Blackboard,
Semaphore, Event

Asynchronous
Publish-Subscribe

Aperiodic Non-
collocated

Caller notifies via TCP/IP, callee is released upon receipt Blackboard,
Semaphore, Event

Figure 4. Equivalent implementation of a CORBA CCM interface in our framework.

and aperiodic, can only be created at initialization, following
the ARINC-653 specification. Specified process properties
include the expected worst case execution time, which
cannot be changed at run-time. We have designed this layer
such that it can be replaced by a real APEX kernel without
affecting the layers on the top.

APEX Module Manager is the next layer. It is respon-
sible for providing temporal partitioning among partitions
(i.e., Linux processes). Each partition inside a module is
configured with an associated period that identifies the rate
of execution. The partition properties also include the time
duration of execution. It is known that potential partition
jitter will occur if the periods associated with all partitions
in a module are not harmonic i.e., between any given pair
of partitions, the period of the first is an integer multiple

of the second or vice versa [3], [9]. Moreover, the Process
periods should be multiples of respective Partition periods
to reduce process jitter.

The module manager is configured with a fixed cyclic
schedule with pre-determined hyperperiod. The schedule is
computed from the specified partition periods and durations.
The module configuration also specifies the hyperperiod
value, which is the least common multiple of all partition
periods, the partition names, the partition executables, and
their scheduling windows. Note that the module manager
allows execution of one and only one partition inside a given
scheduling window, which is specified with the offset from
the start of the hyperperiod and a duration. The module
manager is responsible for checking that the schedule is
valid before the system can be initialized i.e. all scheduling

146

windows within a hyperperiod can be executed without
overlap. Figure 5 shows the example execution time line of a
module with two partitions and a hyperperiod of 2 seconds.

APEX Partition Scheduler, the next layer, is instantiated
using the APEX services emulation library for each partition.
It implements a priority-based preemptive scheduling algo-
rithm. This scheduler initializes and schedules the (ARINC-
653) processes inside the partition based on their periodicity
and priority. It ensures that all processes finish their execu-
tion within the specified deadline. Upon deadline violation,
the faulty process is prevented from further execution, which
is the specified default action. It is possible to change this
action to allow a restart.

Object Request Broker (ORB) is the next layer. This
framework uses an open source CCM implementation, called
MICO [17]. The main ORB thread is executed as an ape-
riodic ARINC-653 process within the respective partition.
For controllability, the ORB runs at a lower priority than the
partition scheduler. Since ARINC does not allow dynamic
creation of processes at run-time, the ORB is configured to
use a predefined number of worker threads (i.e. ARINC-653
Processes) that are created during initialization.

Component and Process Layers include the glue code
(generated from the definitions of components their inter-
faces provided in an IDL file) and the user-provided imple-
mentation code. The developer is also responsible for spec-
ifying the necessary process properties such as periodicity,
priority, stack size, and deadline. The framework provides
glue code that maps each component interface method to
an ARINC-653 process (see Table I). Due to this mapping,
we have to ensure that one and only one instance of a
component exists and that the instance is created when the
partition is initialized. Also, multiple processes belonging to
the same component may engage read/write locks depending
on whether they were specified as read-only or not.

The last layer on the top consists of Component level
Software Health Managers. These are special ARINC pro-
cesses that can take mitigation actions, if required. Details
about this layer are discussed in [8].

IV. CASE STUDY AND DISCUSSION

To test our framework, we developed the GPS exam-
ple (Figure 2) on two ARINC partitions connected via a
sampling port (for inter-partition communication). Table II
shows all the ARINC-653 processes (and the partition they
were deployed on) required to build this example. The
developer had to write 148 lines of code to implement the ex-
ample, while the 1027 lines of code were generated. Figure 4
shows a portion of the IDL. The bottom left hand side of the
figure shows the code written by the user to implement the
getGPSData interface for the GPS component, when written
for pure MICO CCM implementation. The right hand side
of the figure shows the equivalent code when written in the
ACM framework. Notice that the user provided code is the

Table II
ARINC PROCESSES CREATED BY THE FRAMEWORK FOR THE GPS

EXAMPLE.

Part Process Period Dead Type
-tion Name -line
Part 1 Part1 ORB Process Aperiodic Infinite SOFT
Part 1 Sensor.DataOut 4sec 4sec HARD
Part 1 Sensor HM Aperiodic Infinite SOFT
Part 2 Part2 ORB Process Aperiodic Infinite SOFT
Part 2 GPS.DataIn 4sec 4sec HARD
Part 2 NavDisplay.DataIn Aperiodic 4sec HARD
Part 2 GPS.GetGPSData Aperiodic 4sec HARD
Part 2 GPS HM Aperiodic Infinite SOFT
Part 2 Navigation HM Aperiodic Infinite SOFT

Table III
SUMMARY OF OBSERVED JITTER.

Process Std (µs) Mean (µs) Max (µs)
Part 1 2.26 68.29 72.47
Part 2 2.69 3.49 7.39

GPS.DataIn 0.96 228.16 229.12
Sensor.DataOut 0.74 153 153.77

Figure 5. An example module configuration and the time line of events
as they occur.

same except that the user is not required to explicitly provide
synchronization using locks. The top right corner shows the
framework provided code that is used to translate any ORB
initiated call to getGPSData interface on the GPS component
into a start call for the corresponding ARINC-653 process.
The generated code also blocks the ORB thread that invoked
the CCM method till the corresponding aperiodic process
finishes by using the wait call on an APEX event used for
notification purposes.

The configuration file for this experiment is shown in
Figure 5. The hyper period was set to 2 seconds (period
of both partitions was 2 seconds). Partition 1’s phase was 0
seconds, while its duration was 1 second. Partition 2’s phase

147

was set to 1 second. Its duration was also 1 second. This
ensured that both partition got 1 second of execution time
every 2 seconds. Note that the period of periodic processes
running inside the partition (Table II) is 4 seconds, which
is a multiple of the partition period. This is required to
prevent partition jitter as explained in the previous section.
Each partition has a sampling port. The Channel connects
the source sampling port from partition 1 to destination
sampling port in partition 2. The framework is responsible
for transferring the messages across a channel from a source
port to a destination port (a source port can be linked to
more than one destinations). Table III contains the absolute
jitter statistics for the two partitions and the two periodic
processes inside the partition as measured from the start of
the experiment running on Linux kernel 2.6.28 with high
resolution timers. More experiments were performed to test
the component level health managers (not included in this
paper). Please refer to [8] for details on those experiments.

Lessons learned: (1) Conventional component frame-
works rely heavily on dynamic threading, and they are
typically not dealing with deadline violations. On the other
hand, ARINC-653 relies on statically allocated Processes
whose deadline violations are detectable. These two views
are rather hard to reconcile, and our solution (one stat-
ically allocated ARINC Process per component method)
is not optimal - it uses too many Processes. (2) CCM
implementations such as MICO are designed for general
purpose use. Hence, they allow two kinds of component
life-cycles; service and session. While a service component
is a singleton, a session component is instantiated for each
client request. In an ARINC-653 system, processes cannot
be created at run-time. Therefore, we allow only service
components, i.e., session components are not supported.
Moreover, initialization code is provided by the framework
to ensure that the component instance is created at the start
of a partition. (3) A related problem is the use of dynamic
memory allocation. The ARINC-653 specification requires
that all run-time memory allocation be made on the stack,
and not on the heap. Furthermore, in ARINC-653 each pro-
cess has a specified stack size limit that cannot be violated.
To enforce these, the use of memory management hardware
is needed. (4) We had mentioned in the previous section
that access to a component’s state variables is protected
by using a read/write lock. Mixing remote procedure calls
provided by the CCM implementation in an ARINC-653
environment can lead to a situation where two or more
different processes attempt to acquire the write lock of the
same component. This can potentially lead to a deadlock,
which will eventually be detected as a deadline violation.
To prevent such deadlocks, we require that the call graph of
all remote procedure calls be a directed acyclic graph with
respect to write lock of all components.

Extending CCM: (1) Our component model presented
in Section II is an extension of the standard CORBA

Component Model. We believe that a component level health
management system will require interfaces for resource
usage monitoring and deadline violations. Moreover, we
propose that the CCM be extended with one health man-
ager per component; a possible improvement over ARINC-
653’s one health monitor per partition. (2) The CORBA
interceptors could be used to service the health monitors.
Typical CORBA / CCM implementations, including MICO,
do not allow the use of request and response intercep-
tors on the client and the server side that are attached
to specific Components. However these frameworks allow
generic interceptors that are all called for all incoming
method calls. An alternative is to intercept interface specific
requests and execute them in the respective component’s
health manager. (3) The exception-handling mechanism of
the CCM implementation needs to be extended to sup-
port resource monitoring and recovery. For example, upon
deadline violation, the active Process must be terminated.
However, all locks and resources used by that Process must
be released (this is possible if locks are implemented using
APEX semaphores) and all other Processes blocked by
these locks and resources should be notified. All memory
resources should be freed. This service should be made
part of the extended CCM specification. (4) We also need
extensions to the IDL grammar. Currently, this grammar
does not support the specification of process attributes such
as deadline and periodicity. The extended grammar should
allow specification of all ARINC-653 process properties in
the IDL. Moreover, we need the ability to define whether or
not an interface provided by a component is read-only.

Problems Identified: During our experiments we came
across issues that are important to emphasize: (1) we dis-
covered that in typical CCM implementations like MICO
[17] and CIAO [5], the publish-subscribe connections are
implemented as two-way blocking calls and are not really
asynchronous. In other words, the publisher’s thread will
invoke the subscriber’s consume methods in the same thread.
We have implemented an intra-partition event-based com-
munication mechanism for CORBA Components through
Blackboards and Buffers provided by our APEX library,
where the publisher and the subscriber use separate threads.
Inter-partition CCM event-based communication is mapped
to sampling and queuing ports. (2) The ARINC-653 spec-
ification stipulates that aperiodic processes are allowed to
set or extend their own deadline by using the replenish()
call, which sets the current deadline to current time +
replenish time request. Potentially, this can lead to a
situation where the current deadline is set to an absolute
time, which is earlier than the previous absolute deadline
time. This is a potential ambiguity in the specification and
should be clarified. (3) ARINC-653 specification does not
permit changing the properties of an ARINC process (e.g.
WCET) at runtime. This decision is primarily governed
by the analysis advantages that such static configuration

148

provides. However, as a consequence, we have to create a
new process for each functional logic that needs to run as a
separate thread in a component. This approach results into
a large number of processes for a bigger software assembly.

V. RELATED WORK

A. Real-time Software Component Frameworks

An approach to objects based on time-triggered (periodic)
and event-triggered (aperiodic) methods has been presented
in [12]. The approach described is implemented in the
form of object structures, and many concepts are similar
to our work. However, there are two differences: we rely
on an industry standard specification, ARINC-653, as the
underlying platform, and we build a framework on top of
that to provide specific services for component interactions
and scheduling.

TinyOS [21], ControlShell [18], eCos [10] , Koala [22]
are component-based frameworks geared towards resource
constrained embedded devices. They are primarily event-
triggered and rely on design-time checks and tests to ensure
correctness of implementation. They do not focus on spatial
and temporal partitioning.

The GENESYS (GENeric Embedded SYStem) [16] re-
search project has developed a cross-domain component-
based architecture for embedded systems. It has been de-
signed for achieving (1) compositionality to allow system de-
signers to compose systems using independently developed
and tested components (unit of abstraction), (2) robustness
to provide fault containment and selective restart of compo-
nents upon failure, and (3) energy efficiency by integrating
resource management in the platform design. An important
principle followed in GENESYS architecture is the strict
separation of computational components and communication
paradigm. This makes it possible to design and analyze the
two systems in separation. The work presented in this paper
uses ARINC-653 as the underlying platform which provides
the temporal and spatial separation between applications.
However, it does not restrict the behavior of the underlying
communication protocol. In future, we will investigate the
use of the Avionics Full-Duplex Ethernet (AFDX), which is
a time-deterministic network defined in ARINC 664 standard
[1].

CIAO [5] and PRISM [20] are two component models
built upon the real-time CORBA implementations. PRISM
employs a static component allocation and configuration
policy and supports publish/subscribe paradigm. CIAO sup-
ports both dynamic and static component configurations.
Both CIAO and PRISM have been designed for minimum
overhead and priority preemptive systems. However, the IDL
specification and generated code does not specify deadlines.
Deadline violation monitoring is left to application level user
supplied code. Our work presented in this paper discusses
the enhancements and restrictions required to MICO or

CIAO so that it can be ported to a hard real-time operating
system that supports temporal and spatial partitioning.

Kuz et al. presented a component model called CAmkES
in [13]. They built their system above the L4 micro kernel.
CAmkES does not provide temporal partitioning. Instead,
it is designed to be a low-overhead system that can run
on small computing nodes by enforcing static components
(i.e., a singleton and not a session-based component) and
static bindings. We had to also enforce similar restrictions
in our framework to keep the component interactions simple
and predictable. While this framework has been built and
tested on ARM processors, our prototype ARINC-653 and
CCM framework has been developed for x86 architecture
as it allows more flexibility in experimenting with this
technology.

Delange et al. recently published their work on POK
(PolyORB Kernel) [6]. It uses a modeling framework based
on the ARINC 653 Annex for AADL, a modeling lan-
guage for safety-critical systems, to automatically configure
and deploy processes and partitions upon POK, which is
ARINC-653 compliant. However, this work does not im-
plement a component framework over ARINC-653. DIANA
[19] is a new project for implementing an avionics platform
called Architecture for Independent Distributed Avionics
(AIDA) using Java as the core technology. However, the
choice of using JAVA as the core technology increases the
runtime complexity. Using Java threading model requires
the system to add another layer of scheduling above the
operating system, which makes the analysis of software
assembly very difficult. Another issue with using Java is the
complexity in estimating and bounding memory usage per
thread, which is a critical requirement in the ARINC-653
standard.

Lakshmanan and Rajkumar presented a distributed re-
source kernel framework used to deploy real-time applica-
tions with timing deadlines and resource isolation in [14].
Their system consists of a ‘partitioned’ virtual container
built over their Linux/RK platform. They have reported that
their framework provides temporal resource isolation in that
they ensure that the timing guarantees provided to each
independent application do hold irrespective of the behavior
of other applications by using CPU as a reserved resource.
However, to the best of our knowledge they do not support
process and partition management services as specified in
ARINC-653. Moreover, their framework does not support a
component model.

B. Schedulability analysis for ARINC-653 systems

Schedulability analysis is important for a hard-real time
system. Audsley et al. presented a discussion on the ARINC-
653 standard and schedulability analysis for such systems
in [3]. They showed that partitions can be analyzed in
isolation by aggregating the timing requirements of all
other partitions. Work on a similar problem was recently

149

reported by Easwaran et al. [9]. They focused on using
compositional analysis techniques and took into account the
process communication, jitter, and preemption overheads.
Their techniques can be used to verify the schedule of an
ARINC-653 system before deployment.

Lipari and Bini have shown how to compose hierarchical
scheduling systems which have a global-level scheduler and
a per-application local scheduler [15]. However, they restrict
their approach to using a fixed-priority local scheduler. This
structure is similar to the one found in an ARINC-653
system. However, in an ARINC-653 system processes are
allowed to alter the priority of other processes in the same
partition.

Burns and Lin [4] describe a way to model-check the
properties of a single processor real-time system modeled
using a constrained form of timed automata. However, their
model is restricted due to the semantics of timed automata
which does not allow the clock to behave like a stopwatch
[2]. Consequently, they can only validate scheduling for non-
preemptive systems with known computation time for all
tasks. Therefore, this method can be used only for analyzing
ARINC-653 partitions which are statically scheduled and
cannot be used for analyzing ARINC-653 processes, which
can be suspended during execution by other processes.

All the algorithms mentioned above require the knowledge
of the worst case execution time (WCET) associated with
each task. However, estimating WCET is difficult and as
a consequence it is possible that deadlines are violated
during run-time. Therefore, our framework actively monitors
all deadline. Any violation results in the default action of
stopping the faulty process. An API is available to restart
the faulty Process after a reset.

VI. CONCLUSIONS

This paper presented our first steps towards building a
real-time component model and the underlying framework.
In the approach, we focused on building a framework first
that combines component-oriented software construction
(CCM) with a real-time operating system with partition-
ing capability (ARINC-653). We created a prototype using
Linux processes and POSIX threads for purely experimental
purposes. However, the principles and techniques developed
are portable to ‘real’ ARINC-653 implementations. During
this effort, we have recognized several discrepancies be-
tween CCM and ARINC-653, and these differences lead
us to recognize that further developments are needed that
integrate components with a hard real-time platform.

ACKNOWLEDGMENTS

This paper is based upon work supported by NASA
under award NNX08AY49A. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the National Aeronautics and Space Administration.

The authors would like to thank Paul Miner, Eric Cooper,
and Suzette Person of NASA Langley Research Center for
their help and guidance on the project.

REFERENCES

[1] R. L. Alena, J. P. Ossenfort, K. I. Laws, A. Goforth, and F. Figueroa.
Communications for integrated modular avionics. In Proc. IEEE
Aerospace Conference, pages 1–18, 3–10 March 2007.

[2] R. Alur and D. L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

[3] N. Audsley and A. Wellings. Analysing APEX applications. In RTSS
’96: Proceedings of the 17th IEEE Real-Time Systems Symposium,
page 39, 1996.

[4] A. P. Burns and T. M. Lin. An engineering process for the verification
of real-time systems. Formal Aspects of Computing, 19(1):111–136,
March 2007.

[5] CIAO. http://download.dre.vanderbilt.edu/.
[6] J. Delange, L. Pautet, and P. Feiler. Validating safety and security

requirements for partitioned architectures. In Ada-Europe ’09:
Proceedings of the 14th Ada-Europe International Conference on
Reliable Software Technologies, pages 30–43.

[7] N. Diniz and J. Rufino. ARINC 653 in space. In Data Systems in
Aerospace. European Space Agency, May 2005.

[8] A. Dubey, G. Karsai, R. Kereskenyi, and N. Mahadevan. Towards
a real-time component framework for software health management.
Technical Report ISIS-09-111, Institute for Software Integrated Sys-
tems, Vanderbilt University, Nov 2009. www.isis.vanderbilt.edu/sites/
default/files/TechReport2009.pdf.

[9] A. Easwaran, I. Lee, O. Sokolsky, and S. Vestal. A composi-
tional framework for avionics (ARINC-653) systems. Technical
Report MS-CIS-09-04, University of Pennsylvania, Feb 2009. http:
//repository.upenn.edu/cis reports/898/.

[10] eCos. http://ecos.sourceware.org/.
[11] A. Goldberg and G. Horvath. Software fault protection with ARINC

653. In Proc. IEEE Aerospace Conference, pages 1–11, March 2007.
[12] K. Kim. Object structures for real-time systems and simulators.

Computer, 30(8):62–70, Aug 1997.
[13] I. Kuz, Y. Liu, I. Gorton, and G. Heiser. CAmkES: A component

model for secure microkernel-based embedded systems. Journal of
Systems and Software, 80(5):687–699, 2007.

[14] K. Lakshmanan and R. Rajkumar. Distributed resource kernels: OS
support for end-to-end resource isolation. Real-Time and Embedded
Technology and Applications Symposium, IEEE, 0:195–204, 2008.

[15] G. Lipari and E. Bini. A methodology for designing hierarchical
scheduling systems. J. Embedded Comput., 1(2):257–269, 2005.

[16] R. Obermaisser and H. Kopetz, editors. Genesys An Artemis Cross-
Domain Reference Architecture For Embedded Systems. Sudwest-
deutscher Verlag fur Hochschulschriften AG, 2009.

[17] A. Puder. MICO: An open source CORBA implementation. IEEE
Softw., 21(4):17–19, 2004.

[18] S. Schneider, V. Chen, J. Steele, and G. Pardo-Castellote. The
controlshell component-based real-time programming system, and
its application to the marsokhod martian rover. SIGPLAN Not.,
30(11):146–155, 1995.

[19] T. Schoofs, E. Jenn, S. Leriche, K. Nilsen, L. Gauthier, and
M. Richard-Foy. Use of PERC Pico in the AIDA avionics platform.
In JTRES ’09: Proceedings of the 7th International Workshop on Java
Technologies for Real-Time and Embedded Systems, pages 169–178,
2009.

[20] M. Schulte. Model-based integration of reusable component-based
avionics systems - a case study. In ISORC 2005, pages 62–71.

[21] Tinyos. http://webs.cs.berkeley.edu/tos/.
[22] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee.

The koala component model for consumer electronics software.
Computer, 33(3):78–85, 2000.

150

