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Abstract

In this paper, we describe the design of a scientific work-
flow execution framework that integrates run-time verifica-
tion to monitor its execution and checking it against the for-
mal specifications. For controlling workflow execution, this
framework provides for data provenance, execution track-
ing and online monitoring of each workflow task, also re-
ferred to as participants. The sequence of participants is
described in an abstract parameterized view, which is used
to generate concrete data dependency based sequence of
participants with defined arguments. As participants be-
longing to a workflow are mapped onto machines and ex-
ecuted, periodic and on-demand monitoring of vital health
parameters on allocated nodes is enabled according to pre-
specified invariant conditions with actions to be taken upon
violation of invariants.

1. Introduction and Problem Motivation

Current computing power and storage capabilities allied
to distributed computing models allow the production of e-
science in areas such as biology, disaster simulation, and
physics among others. The organization and reliable pro-
cessing of the massive information produced is critical for
its effective use in new discoveries. The long range ob-
jective of our group is to support the computation infras-
tructure needed for studying the physics of Lattice Quan-
tum Chromodynamics (LQCD) by using computer simula-
tions1. LQCD, numerical study of QCD quantum field the-
ory on a four-dimensional discrete lattice, generates consid-
erable data that are processed at several institutions. Appli-
cations, software libraries, input data and workflow2 recipes

1http://www.usqcd.org/fnal/
2A workflow is a planned set of computation jobs.

Table 1. Cluster Evaluation Metrics.

AvailabilityT2
T1 =

∫ T2

T1
OnlineNodes.dt∫ T2

T1
NodesinCluster.dt

(1)

UtilizationT2
T1 =

∫ T2

T1
BusyNodes.dt∫ T2

T1
OnlineNodes.dt

(2)

ProductivityT2
T1 =

∫ T2

T1
SuccessfulJobs.dt∫ T2

T1
BusyNodes.dt

(3)

are shared among collaborators worldwide3.
Unlike many e-science experiments that make use of

Grid resources4 for harvesting capacity processing power,
LQCD computations employ tightly-coupled parallel pro-
cessing, which require computers with high-speed, low-
latency networks. At Fermi lab in Batavia IL, majority of
the computers that are used for LQCD computations are
dedicated clusters. Use of dedicated clusters allow fine tun-
ing of binary codes to exploit capabilities of underlying ar-
chitecture. LQCD workflows can effectively exploit the ca-
pacity of one or more parallel computers by running many
independent computations at once.

Clusters built out of commodity computers, used for sci-
entific computing, exhibit intermittent faults, which can re-
sult in systemic failures when operated over a long contin-
uous period for executing workflows. While executing, a
typical workflow can spawn hundreds of jobs. Many of
these jobs are computation intensive and use MPI across
dozens to hundreds of processing nodes. Typically, several
users analyze different workflows on the clusters concur-
rently. Given the scale of numbers, diagnosing job failures,

3Information about LQCD project can be obtained from
http://www.usqcd.org/

4See DOE Scientific Computing on Grid initiative at
http://www.doesciencegrid.org/

2009 Sixth IEEE Conference and Workshops on Engineering of Autonomic and Autonomous Systems

978-0-7695-3623-1/09 $25.00 © 2009 IEEE
DOI 10.1109/EASe.2009.13

87



fault isolation and fault mitigation becomes critical, specifi-
cally when the success of whole workflow might be affected
by even one job failure.

Manual administration, though essential, is slow to re-
spond to the intermittent faults. Therefore, we need to sup-
plement it by an autonomic management subsystem that can
provide effective management support to the administrators.

We measure the effective use of our machines by using
three metrics, which are availability, utilization and pro-
ductivity (see table 1). The primary accounting measure-
ment is node-hours. We use node-hours instead of com-
putation cycles as we have homogeneous clusters. A node
hour is the number of hours that can be used for computa-
tion on a computing node. In the table, T1 and T2 are the
global timestamps specifying the duration of metric evalu-
ation. Availability is the ratio of number of nodes online
versus all the nodes available in the cluster (including of-
fline machines). Utilization measures the number of nodes
that are busy. Productivity is the fraction of busy time that
was spent in doing successful workflows i.e. ones that did
not fails. Here, we are discounting cases where a workflow
might succeed but due to various algorithmic reasons might
lead to unproductive data.

In typical e-science workflows, the Grid is used as the
main source for job processing and close remote applica-
tion monitoring is limited [14]. On the other hand, it has
the advantage of replicating the same job on different sites
for fault tolerance purposes. This flexibility does not exist
in the dedicated LQCD processing environment. We need
to increase productivity by enabling reliable operation over
available hardware without use of redundancy.

To increase productivity, we must provide

• Workflow Management Framework: Current process-
ing model relies on simple Perl-based scripting work-
flow languages for driving LQCD workflows. We re-
quire a framework that provides specification and exe-
cution of workflows with data provenance using a for-
mal dataflow based language.

• Fault Isolation: Identify and explicitly specify condi-
tions for all jobs belonging to a workflow, which when
failed will constitute a fault. Also, we need to construct
proper observers and formal logic that will be required
to monitor these conditions.

• Sensor Framework: We require a framework of sensors
that provide the basic monitoring information [6].

• Fault Prediction: If we can identify explicit failure
conditions, we can do a search over all specified work-
flows to predict the failure of executions in near future.

• Fault Mitigation: Currently, recovery from failures is
manual and is the responsibility of the user running the

experiment, i.e. understand failures from log files and
restart processing from a known working state. We
need to automate the execution of mitigation actions.

Sole addition of a monitoring and reliability framework
as an add-on does not suffice to properly add failure feed-
back and recovery action to the current workflow execution
model. A proper solution is to have both systems integrated
from the design specification.

In this paper, we propose a framework for executing sci-
entific workflows with integrated reliability features. Dur-
ing the workflow specification, each job (participant) has its
execution conditions (invariant sets) and associated actions
identified. At execution time, the workflow system interacts
with the monitoring system in order to have conditions pe-
riodically verified and receive notifications if conditions are
violated.

2. Formal Foundations

2.1. Preliminaries: Model of Time

To reduce the complexity of maintaining multiple clocks,
we assume the notion of a global time, T , that is monoton-
ically increasing and dense in the set of rational numbers
Q. We use rationals rather than real numbers because they
correspond to practically measurable time intervals i.e. that
can be measured by clocks with finite precision. All model
values and all measurements are defined with respect to this
global time. It is implemented on all cluster computers us-
ing a synchronization protocol such as NTP.

To define invariant conditions that must be true for a
workflow we require a timed automaton model to observe
the behavior of the system while it is executing. Timed au-
tomaton is a classical model used for abstracting time-based
behaviors of systems, which are influenced by time [3, 9].
It consists of a finite set of states called locations and a fi-
nite set of real-valued clocks. Time passes at a uniform rate
for each clock in the automaton. Instantaneous transitions
between locations are triggered by the satisfaction of asso-
ciated clock constraints known as guards. During a transi-
tion, a clock is allowed to be reset to zero. Clock constraints
called invariants are added to all locations to make them ur-
gent. These invariant constraints must be satisfied for the
system to validly stay at a location. A timed automaton that
cannot transition out of a location with violated invariant is
said to be blocked. For a detailed formal definition, readers
are encouraged to refer to [3].

2.2. Resources

Generic workflow management problem is defined over
a set of “Deployment Resources”. Deployment resources
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can be further divided into computation and communica-
tion resources. In this discussion, we will ignore communi-
cation resources and focus on computation resources.

Computation attributes correspond to hardware facilities
required to execute computation tasks, including process-
ing speed (number of instructions per second), memory size
(amount of random access memory required). Formally, de-
ployment resources are defined as a structure R = (AC),
referred to as resource domain, consisting of a set AC of
computation resource attributes. A resource r ∈ R is de-
fined as a tuple r = (n, d, u), where n is the name, d is
the valid range of values, u is the measurement unit. For
example, (‘cpu’, [0,4], GHz) ∈ AC .

2.3. Computation Nodes N

Scientific workflows are executed and managed over a
set of computation nodes that provide the resources R men-
tioned in previous section. This resource configuration
RCR, defined with respect to the computation domain R
is a structure RCR = (N,E, φ), where

• N is the set of available physical computing machines.

• E ⊆ P×P is a set of communication links connecting
computation machines.

• φ : N × R → < is a resource capacity level map,
where φ(n, r) is the level of resource r in the node n.

2.4. Participants Pt

Each computation task is defined as a participant Pt in
the system. A scientific computation task takes in a number
of parameters from the set of input parameters I , and gen-
erates a number of output products from the set of output
products O: Pt : 2I → 2O. Here 2I represents a power set
of parameters.

Participants are classified into categories called partici-
pant types, denoted by PT . A participant type is a class
of algorithms used for generating similar products but with
varying quality parameters. For example, numerical inte-
gration is a “participant type”, while Gauss algorithm or
the Simpson’s rule algorithm are its implementations and
hence its participants. Choosing one participant belonging
to a type over another is an optimization problem that con-
siders all the quality properties of all participants. However,
discussion about quality parameters is out of scope of this
paper.

For every participant, we denote by a map, ψ : Pt×R→
<, the minimum required resources to run the participant on
one node. For example, ψ(Pt,

′ RAM′) = 512 means that
the algorithm implemented by participant Pt cannot run if
the available RAM is less than 512 MB.

Figure 1. Sample workflow definition

A participant is generally a legacy application invoked
from within a scripting language program. Typically, they
are parallelized over multiple computation nodes. The rela-
tionship between participants is defined by a workflow W .

2.5. Workflows W

All participants belonging to a workflow are related to
each other by control and data dependencies. The work-
flow is defined as W (Pts, Ips, Dpt), where Pts is the set
of participants, Ips is the set of user input parameters and
Dpt ⊆ Pts × Pts defines a set of dependencies between the
participants. A Workflow, therefore, is a plan dictating how
various participants will be executed.

Scientific workflows require the coordination of data
processing activities, resulting in executions driven by data
dependencies; whereas in business workflows, the control
dependencies describe the processing steps, which usu-
ally are coordinating activities between individuals and sys-
tems [14]. A pictorial example of a workflow is shown in
figure 1, where Pt is represented by a circle of different
shades for distinct participants, arrows define the data de-
pendenciesDps, which added to input parameter sets define
a workflow W .

The task of running a workflow W is carried out by an
“execution engine”, We. The input to We is a workflow
and input parameters sets (fig. 1) described in a workflow
language format. Currently, there is no agreed standard for
scientific workflow languages. Several groups have devel-
oped languages, such as SwiftScript [15] and AGWL [8],
that are specific for their respective execution engine.

Ideally, the execution engineWe is responsible for track-
ing the run time dependencies Dps and enable participants
as dependencies are met and input data are available. How-
ever, this is not true in all workflow engines that are cur-
rently available.

2.6. Task Allocation Map

Task allocation map is used by a workflow engine to as-
sign computing nodes that will be used to execute a partic-
ipant. Formally, given a participant Pt and the set of com-
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putation nodes N , the task allocation map θ : Pt → 2N

allocates a number of nodes to a participant.
The task allocation map is computed with respect to a

scheduling policy. This is an active area of research. In this
paper, we assume the existence of such a policy. We use
PBS/Torque for imposing the scheduling policy5.

Note that a valid task allocation map θ has to satisfy the
following:

Resources Nodes allocated to a participant Pt must have
the minimum amount of resources required. Notice
that the unit of scheduling that we consider is a com-
putation node. Alternative scheduling policies may al-
locate a participant a specific CPU core on a node.

(∀r ∈ R)(∀n ∈ θ(Pt))(φ(n, r) ≥ ψ(Pt, r))

2.7. Sensors and Filters

A sensor program is used to monitor the current utiliza-
tion of computation resources associated with a node. It is
a map S : N ×R × T → <. It provides a measurement of
current value with the current timestamp for the resource.
For all resources, sensor scripts produce normalized values.
Therefore, the actual value in terms of a measurement unit
of the resource can be attained by S(n, r) ∗ φ(n, r). The
timing of a sensor program can be periodic or aperiodic.
Jitter and synchronization are two challenges posed by sen-
sors executing in a computing cluster. A detailed discussion
about these can be found in [6].

In order to sieve unimportant sensor information, they
are used with a filter. As the name suggests, a filter eval-
uates the measurement by the sensor against the filter cri-
teria. Outputs of a filter are events. Events are a tuple,
E = (Type,Timestamp,Value). A type is a unique combi-
nation of the computation node identifier and resource. For
example, the event generated for sensor S(n, r) will have
a type of n.r. Timestamp is the time of measurement and
Value is the actual measure.

These events on a global time scale can be correlated to
get interesting statistical insight into general cluster health.
For example, a sustained rate of increase in temperature
from a region in cluster signifies a cooling system failure.
We currently employ and use the temperature based corre-
lation.

Heartbeat: For computing nodes, a specialized sensor
called heartbeat [6] acts as watchdog and informs whether
a computing node is online or not. A Heartbeat Sensor is
in fact a combination of a periodic sensor on the concerned
computing node and a filter on a monitoring node. Overall
this combination generates events with two possible values

5http://www.clusterresources.com/pages/products/torque-resource-
manager.php

{0, 1}, where 0 means the node is offline and 1 means the
node is online. We denote heartbeat sensor asH : P ×T →
{0, 1}. Liveness condition for a node named pion1 implies
thatH(pion1, t) = 1, where t is the current time.

2.8. Events and Conditions

Timed Traces of Events: Output of a sensor and filter
combination are timed traces of events, which are sequences
of the form < a1, t1 >,< a2, t2 >, · · · , < an, tn >, where
a1, · · · , an are events and t1, · · · tn ∈ Q are the times at
which those events have occurred. Every event is typed by
the name of the sensor and computation node that it is being
generated from. We maintain these entity relationships by
using a configuration database.

These timed traces of events are converted to an interval
timed trace defined over measured value of resources. It is
done by using a zero-order hold digital to analog filter.

Interval Timed Trace: From a given timed trace
of event, which are discrete in nature, one can cre-
ate an interval timed trace, which is defined over con-
tinuous time ranges. It is a timed trace of the form
τ1a1.value, τ2a2.value, · · · , τnan.value, τn+1 where τi is
an interval [tmin, tmax] ⊆ Q, ai.value is the measurement
value contained in the event ai. There is one interval timed
trace for each type of an event.

Query Operator: For an interval timed trace, we spec-
ify a query operator query : Q × Type → < that pro-
vides the measurement value at that time. Here Type is
a universal set of all types of events. This query operator
can be used from an observing computing node to evalu-
ate condition over resource variables on another node using
predicates ≤, <,>,≥. Since this query operator is implic-
itly defined by association to a sensor type, we will omit
it for brevity and in this paper write conditions directly on
the interval timed trace of a sensor type. More details are
discussed in next section.

2.9. Runtime Checkable Properties

The underlying foundation of specifying safe operation
conditions for workflows is a system of logic based on
events and conditions. Events occur instantaneously dur-
ing system execution. Conditions represent state of systems
over duration of global time. Primitive conditions are de-
fined with respect to a measure provided by a sensor. Primi-
tive events are defined with respect to start and end of prim-
itive conditions and specialized actions such as start of a
workflow participant.

Properties that can be tested for a participant are speci-
fied over timed traces of events and interval timed traces of
conditions. The set of all properties is denoted as P. We
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divide the set of properties that can be specified into two
groups:

Untimed Untimed properties are instantaneous properties
defined as a predicate over current value of resource
type as specified by its interval timed trace. Formally,
given an interval timed trace, the untimed properties
are defined as P ::= p|!p|P ∧ P |P ∨ P , where p is
a primitive property defined using the query operator
described in previous section, a real number and the
predicates ≤, <,>,≥.

Timed Timed properties are defined using timed computa-
tion tree logic (TCTL) [10] and references therein.

• Reachability: These sets of properties deal with
the possible satisfaction of a given untimed prop-
erty a in a possible future state of the system. For
example, the TCTL formula E3φ is true if the
predicate logic formula φ ∈ P is eventually sat-
isfied on any execution path of the system.

• Invariance: These sets of properties are also
termed as safety properties. As the name sug-
gests, invariance properties are supposed to be
either true or false throughout the execution life-
time of the system. For example, the TCTL for-
mula A2φ is true if the system always satisfies
the predicate logic formula φ ∈ P . We use the
invariance property A2φ to describe the safe set
for a participant.

• Liveness: Liveness of a system means that it will
never deadlock, i.e. in all the states of the system
either there will be an enabled transition and/or
time will be allowed to pass without violating any
location invariants. Liveness is also related to the
system responsiveness. For example, the TCTL
formula A2(ψ → A3φ) is true if a state of the
system satisfying ψ ∈ P always eventually leads
to a state satisfying φ ∈ P .

In the current state of the framework we only support un-
timed properties and invariance properties. They are speci-
fied for all participants as preconditions, invariant condi-
tions, and postconditions. Preconditions (postconditions)
are untimed and evaluated before (after) participant starts
(finishes). Invariant conditions must be true during the exe-
cution of a participant.

2.10. Monitors: Checking for Satisfaction
of a Property

Given a property φ ∈ P, the set of all valid properties,
we construct a timed automaton representation. We call this
a model of the property. For all such models, a universal

state fault is used to represent the state that the property
has been violated. The satisfaction condition is then the
dual of acceptance of a given timed/interval trace by this
model. The module in the framework that performs this
check is called a Reflex Engine[5]. We call the class of
reflex engines that are used to identify the faults, which are
induced due to violation of properties Monitors.

Example: dCache [4] is well known and respected as a
powerful distributed storage resource manager. It provides a
single rooted view of the file system to any actor that wants
to access or store a file. In the basic configuration, an actor
such as a participant sends the request to access a file to the
manager of the pools. The manager sends the participant the
information about the actual node where the file is stored on
and the absolute path to the file. In our clusters, we have
seen that sometimes the pool manager dies i.e. it does not
respond to a request. In such a case, a participant that is
scheduled to execute cannot run. To improve productivity,
we specify a precondition that the pool manager is alive for
all participants.

Let pm ∈ N be the pool manager. Then we specify the
property H(pm, t) > 0, t ∈ Q is the time at which the
property is evaluated.

3. Distributed Monitoring and Mitigation
Framework

Before describing the overview of cluster-wide frame-
work let us explore the architecture of monitoring, diag-
nosing and mitigation framework running on a computation
node.

3.1. Reflex Engine architecture on a com-
putation Node

Recall that the key monitoring timed traces and event
traces are generated by sensor and filter programs working
together. In our previous work, we had presented a dis-
tributed monitoring framework used in our clusters [6]. In
the same paper, we had also described a scheduling algo-
rithm used to execute the sensors on all computing nodes.

Along with the sensors all computation nodes also con-
tain two real-time reflex engine modules. A real-time reflex
engine contains one or more timed state machines that can
accept a timed event trace and/or an interval timed trace.
We divide all possible reflex engines into two sets, moni-
tors and mitigators. Note that this is only a logical classifi-
cation. Both of them have the same semantics. Refer to [5]
for a detailed discussion.

Fig. 2 describes the basic structure inside a managed
node. The lowest layer is the hardware. Above it we have
the operating system, which schedules all the user space and
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Figure 2. A computing node in the real time
reflex and healing framework.

kernel space tasks. In the user space, we have the reflex en-
gine module.

A reflex engine module on a computing node is called
manager. It is composed of three distinct user level pro-
cesses. First process is used to execute all the sensor and
filters to generate events. Second process is a reflex engine
classified as monitor. It has several monitors that can con-
sume some of the events received in its buffer. The event-
based scheduler maintains a lookup table for the event-type
and the monitor that can use the event. Once an event comes
in it is forwarded by the scheduler to the appropriate mon-
itor. The timer is used by the monitor to measure the in-
terval of time to check if a given interval timed trace vio-
lates the monitored property. All monitors execute on their
own thread and maintain their state during execution. Upon
reaching a faulty state, they generate an event which is again
a tuple with a type, timestamp and, if applicable, the last
measured value that caused the violation.

Monitors are divided into groups, general purpose i.e.
they are always on, and participant specific i.e. they are
turned on/off on-demand.

The third process, the mitigation reflex engine, works
similarly but the state machines are mitigation strategies,
which cause various set of actions upon occurrence of a cer-
tain type of fault event. Semantics of mitigation strategies
are discussed in [5].

3.2. Distribution: Hierarchy of Managers

Reflex engine managers are distributed across the clus-
ter on all computation nodes. To aid in fault isolation and
quick recovery, they are divided into regions based on their
racks (fig 3). Each region is managed by a head node that is
identified as the regional manager. This manager relays the
sensor information for the computing nodes under its super-
vision to the database. Local Managers run on all computa-
tion nodes that are used in execution of participants. They
are used to monitor and mitigate the behaviors internal to
that node.

Figure 3. Hierarchical reflex engines

We follow the principles of autonomic computing [13]
and try to incorporate the mitigation and monitor state ma-
chines as close to the source as possible. In other words,
most of them are located on the concerned computation
node. However, some commands such as IPMI reset6 and
the heartbeat monitors need to be outside concerned ma-
chine and are placed on the regional node. Monitoring in-
formation from all nodes is channeled into a database for
future forensic analysis, if required.

Centralized Control: The centralized controller over-
sees the reported events generated across the cluster. It in-
tegrates with the workflow framework and report violations
of conditions/events that might trigger a workflow failure.
We will present the steps in this integration in section 5. It
also contains an http rendering engine to visually report the
system health as a whole.

4. Workflow Framework

To coordinate the computation of a large number of ap-
plications (participants Pt), physicists describe the work to
be performed in a generic recipe called parameterized work-
flow. Typically, the parameterized workflows are of two
classes: creation of configuration gauge ensembles and pro-
cess of ensembles in analysis campaigns. The parameter-
ized workflow in conjunction with a set of input parameters
yields a concrete workflow. Example of input parameters
are values for particle masses.

Management of input parameters is one of the require-
ments outlined for LQCD workflows [12]. In order to pro-
vide an integrated workflow and reliability environment we
have developed an object oriented provenance model. This
model is used for describing and managing input products,
maintain participant types, participants and also the respec-
tive runtime and resource information. It is also used to
generate products and related properties. This framework
enables us to restart a workflow from last point-of-failure.
Provenance model is described in next section.

6IPMI is a standardized management protocol that can be used to reset
the power of a machine out of band
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4.1. Provenance Model

We use an object-oriented model for describing the
provenance classes and their relationships. Groups of
classes are implicitly divided into three spaces: parameter,
data provenance, and process execution spaces. The spaces
do not define a hard boundary between sets of classes, but
rather a logical and functional aggregation.

The parameter space archives all parameters used as in-
put for workflows, including physics parameters (e.g. parti-
cle masses), algorithmic parameters (e.g. convergence crite-
ria) and execution parameters (e.g. number of nodes used).
Parameters are name-value pairs that can be grouped in sets.
Groups of parameters are used to describe the physics prop-
erties of ensembles or hold analysis campaign attributes.
Parameter sets are optionally identified by names.

The relationship between input and output products is
kept within the data provenance space. Data products are
modeled as Products, which have optional ProductProp-
erties. An example of a product generated from a configura-
tion generation workflow is the ensemble configuration file
named l612f21b6600m0290m0484.6. Its parent configura-
tion file is the product named l612f21b6600m0290m0484.3
and child l612f21b6600m0290m0484.9. These specific
names are complicated. However, we reduce this accidental
complexity by use of a database with specific tables imple-
menting these relationships.

The products also have a reference to the workflow par-
ticipant instance that generated it, allowing the file to be
reproduced by reconstructing the processing steps.

The process execution space holds information regard-
ing workflows and participants. Each generic class of par-
ticipant is defined as a ParticipantType (e.g. numerical in-
tegration). An actual implementation of a ParticipantType
is realized by a Participant (e.g. Gauss algorithm version
2). The Participant holds information about the binary code,
including command line format, description of input and
output parameters, and pre and post run scripts.

When a new participant is added the associated precondi-
tions, invariant conditions and postconditions are specified.
For example, the executing node must be available through-
out the execution: A2H(n, t) > 0. The default mitigation
action is the restart of a participant. Execution of a Par-
ticipant is recorded as a ParticipantInstance (e.g. Gauss
algorithm version 2 ran successfully on node A producing
file X).

Similarly, for managing workflows the WorkflowType
defines a class of workflow (e.g. two point analysis). The
ParameterizedWorkflow class contains the definition of
parameterized workflows, which after being expanded into
a concrete workflow is kept as ConcreteWorkflow. During
execution, a ConcreteWorkflowInstance is generated with
references to ParticipantInstances.

Figure 4. Transformation from parameterized
to concrete workflow

The analysis of the process execution space in conjunc-
tion with the data provenance space allows the recreation
of complete execution traces of workflows. The concrete
workflows are executed by a simple workflow engine as de-
scribed in the following sections.

4.2. Generation of Concrete Workflows

A parameterized workflow is a template that defines a
range of values for each parameter to be processed in the
workflow. For a given input, parameter set, a parameterized
workflow generates multiple concrete workflows.

Each participant within the generated concrete work-
flows contains the set of pre, post and invariant conditions as
specified in the data model. Conditions must be and remain
true during the execution of the participant. These condi-
tions induce a failure propagation graph, which is a tree with
failure conditions as roots and the participant that fails as
the leaf. They are causal models that capture the temporal
aspects of failure propagation in dynamic systems [2].

Conditions in the abstract workflow are specified using
templates that are replaced in the concrete workflows. For
example, the any property that needs to be checked over
heartbeat must be specified in the data model without know-
ing the exact nodes used to execute the participant. We use
special function ALL(H(θ(Pt)), t) > 0 to symbolize the
conjunction of heartbeat conditions for all nodes that are
included in the task allocation map.

Generic Modeling Environment [1] is used to create a
modeling language for specifying the parameterized work-
flow. A concrete workflow is generated by replicating a
given participant and reevaluating the dependency condi-
tion for all valuations of input parameters.

Fig. 4 illustrates generation of a concrete workflow for a
two-point analysis campaign. A simple configuration for a
single gauge file and the following arrays of physics param-
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eters: kappa== [1 · ·4], wsrc= [1 · ·3], mass= [1 · ·2],and
d1= [1 · ·2].

In the example, the HQ participant is expanded into 12
instances according to the number of kappa and wsrc pa-
rameters (instances are grouped by kappa values). The con-
crete workflow contains a single LQ participant that gener-
ates files, which are then combined with HQ outputs by 24
instances of HL. Finally the HH participant combines HQ
outputs for a given kappa value. Outputs of HH and HL are
the final product. A production level concrete workflow for
1000 gauge configurations and default physics parameters
yields approximately 40K participants.

4.3. Workflow Engine

Concrete workflows generated by the Generic Model-
ing Environment derived from parameterized workflows in
conjunction with input parameter sets are submitted to the
execution engine. The concrete workflows are represented
as Direct Acyclic Graphs (DAGs) G = (V,E), where the
set of vertices V represents the set of participants gener-
ated based on the input physics parameters and the set of
directed edges E represents the data dependencies between
participants.

This simple graph representation allows an execution en-
gine to extract full parallelism from LQCD analysis cam-
paign workflows, which is a shortcoming encountered when
modeling the same workflow using Askalon [7]. An execu-
tion engine such as DAGMan [11] with modifications suf-
fice for running concrete workflows.

While traversing the graph G the workflow engine in-
teracts with the workflow database (created from the data
model previously described), to retrieve participant infor-
mation, record execution participant and workflow execu-
tion information, and save data provenance.

5. Runtime Framework

The run time framework, composed by the integration of
the workflow, monitoring and mitigation frameworks is de-
picted in Fig. 5. On the left side, the workflow execution
engine schedules participants as dependencies are met. The
remaining components on the right side are the monitoring
and mitigation framework. The workflow execution engine
and the global controller run on the cluster head node, re-
gional managers are assigned to each rack head node, while
local managers run on remaining worker nodes.

The workflow execution engine provides an interface for
submitting concrete workflows. Multiple concrete work-
flows can be handled by multiple execution engine threads.

As participants are declared ready to run based on the de-
pendencies, the workflow engine contacts the global man-
ager. Events are exchanged asynchronously between the

global manager and the workflow engine. The centralized
controller processes the events (associated actions are spec-
ified in the configuration database) and then sends required
commands using events to the local managers and regional
managers. Information regarding the participant conditions
along with a unique participant and the concrete workflow
identifier are used to start participant specific monitors in
the worker nodes.

At participant start up, the preconditions are checked at
the global manager level. Any violation on the precondi-
tions results into a message back to the workflow engine
informing the violation. This message back to workflow
engine is a mitigation strategy and is specified in the miti-
gation reflex engine module at the global controller level.

When participants are submitted for execution, all invari-
ant conditions result in the activation of participant specific
monitors, if required. An example of invariant condition is
the availability of the dCache pool manager: H(pm, t) > 0.
When a condition is violated, an event is sent to the work-
flow execution engine. Action to avoid fault propagation is
then taken, for example, by restarting the same participant
on a different set of nodes.

Similarly when a participant completes, any postcondi-
tions are evaluated. Usually postconditions are workflow
related, for example to make sure expected output files have
been created. Specific examples of these conditions are dis-
cussed in the following section.

5.1. Example of a 2-point Analysis Work-
flow

One of the common LQCD workflows is the analysis
campaign. These are coordinated set of calculations aimed
at determining a set of specific physics quantities. For ex-
ample, predicting the mass and decay constant of a spe-
cific particle determined by computing ensemble averaged
2-point functions. A typical campaign consists of taking an
ensemble of vacuum gauge configurations and using them
to create intermediate data products (e.g. quark propaga-
tors) and computing meson n-point functions for every con-
figuration in the ensemble. An important feature of such a
campaign is that the intermediate calculations done for each
configuration are independent of those done for other con-
figurations.

The sample workflow depicted in Fig. 4 is the represen-
tation of an analysis campaign for a single configuration file
of an ensemble. The complete workflow consists of N in-
dependent instances of the concrete workflow in the figure.
The N outputs form the final campaign output are later an-
alyzed. An implicit behavior of analysis campaign is that
the number of participants and outputs depend on the input
parameters. For example, the number of participants HQ
generating heavy quark propagators is derived from the val-
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Figure 5. Complete runtime framework with integrated workflow, monitoring and mitigation integra-
tion

Figure 6. Sequence diagram depicting a pre-
condition violation.

ues of physics parameters (kappa and wsrc).
dCache failure scenario: The first participant on the 2-

point concrete workflow is getFile. This participant is re-
sponsible for fetching the gauge configuration used as input
for the LQ and HQ participants. A precondition of getFile
is that the dCache pool manager (pm) must be available,
therefore H(pm, t) > 0 should be true. In the case of con-
dition violation, as shown in Fig. 6, the workflow engine is
informed about the unavailability of dCache and an action
must be taken. Currently, our strategy is to reschedule the
getFile participant after a ∆time, which is an administra-
tor decided parameter. It is computed based on historical
knowledge about recovery rate of pool manager. Other ac-
tions may be available for the same failure and could be
taken by the mitigation framework, if a reflex engine is
present on the pm node.

Disk space failure scenario: The second level of par-
ticipants on the 2-point concrete workflow is composed by

HQ and LQ instances. It is known that HQ produces a large
output file whose size is in the order of a few GB. A pre-
condition is to check if the disk space available meets the
requirements: D(n,′ DISK′) > 10000.

Before the participant starts running, the local disk sen-
sor is checked to make sure enough space is available, ac-
cording to the first step in Fig. 7. If the condition is violated
an event is created. In this case the mitigation action can be
provided by the local reflex engine, for example by deleting
files from the temporary disk area. In case the action does
not succeed, an action by the workflow engine is requested.

Allocated node failure scenario: By definition, heart-
beat monitors are used as invariant conditions on all nodes
that execute a participant. If a node fails, the default action
is to report the failure to workflow execution engine, which
instructs other nodes involved in the job to perform clean
up and terminate the job. This saves us time in scenarios
where without any notification the other nodes running the
job would have been blocked from executing any other par-
ticipant for the stipulated contractual wall time7.

Infiniband failure scenario: Most LQCD participants
are parallel jobs that heavily use a dedicated infiniband net-
work for exchanging data during iterations. It is essential
that the network remains available throughout the partici-
pant execution time. This need can be expressed as an in-
variant condition of the type: I(n, t) > 0, with possible
values of {0, 1}.

If the invariant condition is violated, the local fault mit-
igation is enabled, as in Fig. 7. After the mitigation, the
preconditions are evaluated again. If the violation persists,
an event is sent to the workflow execution engine. Similarly
to Fig. 6, the action resulting from the infiniband failure is

7Every job specified a WCET. It is terminated, if it is still executing
after passage of that time.
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Figure 7. Sequence diagram depicting a pre-
condition violation triggering local fault miti-
gation.

to have the whole participant rescheduled.

6. Conclusions and Future Work

In this paper we presented a framework to execute sci-
entific workflows reliably. Essential run time information
is constantly verified by the monitoring framework, while
conditions pertinent to the running workflow are enabled
only during execution time. Additionally, the conditions are
specified at the participant granularity, avoiding overzealous
monitoring and consequent use of computing resources that
would otherwise be available for the scientific applications.
We have developed a prototype of the proposed architec-
ture used to demonstrate feasibility for fault-tolerant LQCD
workflows. Many workflow systems currently lack fault tol-
erant features, which is one of the top priorities for large
scale long time running workflows. Hardware and software
faults are common and need to be addressed at both work-
flow and node levels. This work fills the gap between mon-
itoring and workflow systems, allowing proactive behavior
on the presence of failures. We plan to add missing features
to the prototype, such as completing the set of conditions,
distinction between reliability and workflow related condi-
tions, and replacement of the current workflow engine. Fur-
ther tests are planned on a virtual environment where failure
scenarios can be simulated and repeated.
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