
Algorithms for Synthesizing Safe Sets of Operation For Embedded Systems

Abhishek Dubey

Institute for Software Integrated Systems
Department of Electrical Engineering and Computer Science

Vanderbilt University, Nashville, TN 37203, USA

Abstract

A large number of embedded computing systems are
modeled as hybrid system with both discrete and continu-
ous dynamics. In this paper, we present algorithms for ana-
lyzing nonlinear time-invariant continuous-time systems by
employing reachability algorithms. We propose synthesis
algorithms for finding sets of initial states for the contin-
uous dynamical systems so that temporal properties, such
as safety and liveness properties, are satisfied. The initial
sets produced by the algorithms are related to some clas-
sical concepts for continuous dynamical systems, such as
invariant sets and domains of attraction.

1. Introduction

The information and digital revolution is changing the

scope where traditional dynamical system theory was ap-

plied. Integration of information processing with physical

processes in embedded systems necessitate the use of hy-

brid system theory [14], which is a study of systems that

contain both physical and computation processes, for pur-

poses of analyses. It is a bridge between traditional control

systems theory, which is inadequate for capturing computa-

tional aspects of embedded system, and classical computer

science theory, which is inadequate for capturing the physi-

cal processes related to embedded systems.

Formalizing methodologies for development of embed-

ded systems is one of the most formidable challenges faced

by industry and academia today. Embedded systems are

required to meet multiple design objectives, while satisfy-

ing the requirements for system performance and system

reliability. Due to limitation of physical resources such as

power sources, traditional approach of maintaining exag-

gerated safety-margins in order to meet the requirements is

not acceptable in embedded systems design.

In the last decade, there has been a lot of progress in this

field. Algorithmic approach for the analysis of hybrid sys-

tems are based on state exploration principle. These meth-

ods are used for both verification [1, 5, 10, 4] and controller

synthesis [21, 8, 2]. These approaches can be grouped into

two classes, reductionist and symbolic.

Reductionist methods[11] reduce a hybrid system to an

equivalent finite transition system using bisimulation and

explore the reduced finite state space. Since the quotient

space is finite, algorithmic analysis method applied to the

quotient space is guaranteed to terminate in finite steps.

Symbolic algorithms analyze the hybrid system by di-

rectly exploring the infinite continuous state space using

approximations. These algorithms use the concept of reach-

able sets and set operations such as union, intersection, dif-

ference and complement for analysis. They borrow heavily

from the field of real analysis and algebraic topology. Main

concern with symbolic methods is termination. Methods

that may or may not terminate are called semi-algorithms.

Problems in analyzing Hybrid systems emanate from the

difficulty of representation and manipulation of higher di-

mensional continuous sets, (a) because they require more

memory for storage, (b) only certain restricted classes of

continuous sets can be exactly represented and manipulated

symbolically [1, 13]. For most cases, approximate repre-

sentation methods have to be used for representing and ma-

nipulating continuous state sets. Due to finite precision in

representation and computation, only approximate results

can be obtained.

A number of approach for approximate representation of

continuous sets exist. For example, polygonal projections

[10], flow-pipes [7, 19], ellipsoids [6, 12], griddy polyhedra

[4], level sets [17].

In this paper, we are concerned with developing generic

algorithms that can be used for determining sets of initial

states for nonlinear time-invariant continuous-time systems

so that some temporal properties, such as safety and live-

ness properties, are satisfied, by directly exploring the in-

finite state space using any of the symbolic hybrid system

tool. With these algorithms we can use structures like multi-

dimension lists to extend these algorithms in future and use

in hybrid systems.

The initial sets produced by these algorithms are re-

2009 16th Annual IEEE International Conference and Workshop on the Engineering of Computer Based Systems

978-0-7695-3602-6/09 $25.00 © 2009 IEEE

DOI 10.1109/ECBS.2009.43

149

2009 16th Annual IEEE International Conference and Workshop on the Engineering of Computer Based Systems

978-0-7695-3602-6/09 $25.00 © 2009 IEEE

DOI 10.1109/ECBS.2009.43

149

lated to classical concepts for continuous dynamical sys-

tems, such as invariant sets and domains of attraction. Later

we show some implementation results by using the sym-

bolic methods in [17, 4]. These methods divide a region

of Cartesian space in to grids, which result into finite rep-

resentation of infinite state space. This framework makes

set operations and more advanced constructive solid geom-

etry operations straightforward to apply. Since the repre-

sentations and operations of state sets cannot be exact, only

approximate results can be produced.

2. Continuous Dynamics

In this paper, we consider a continuous dynamical sys-

tem Σc = (X ,Xs, f) where the state space is X(= ℜn), the

state vector is x ∈ X , the initial set is Xs ⊆ X and the vector

field is f : X →ℜn.

The evolution of the state is specified by an ordinary dif-

ferential equation (ODE):

ẋ(t) = f (x(t)), x(0) = xs, t ≥ 0 (1)

with the initial state xs ∈ Xs.

We assume that the vector field of (1) is Lipschitz contin-

uous over the state space X . By a solution of (1) we mean a

continuously differentiable function of time x(t) satisfying

x(t) = xs +
∫ t

0
f (x(τ))dτ. (2)

Since the vector field is Lipschitz continuous over X ,

there is exactly one solution for (1) of the form of (2) in

X (see [18]) for t ≥ 0.

The state of the system (1) at time t starting from xs at t =
0 is called the flow and is denoted by φ(t,xs). We assume

that the flow is globally well-defined, i.e. φ(t, ·) is well-

defined for all t.
The flow satisfies the following conditions: ∀xs ∈ Xs

∀t, t ′ ≥ 0 such that

a. initial condition, φ(0,xs) = xs
b. dynamics, φ̇(t,xs) = f (φ(t,xs))
c. continuity, φ(t ′,φ(t,xs)) = φ(t ′+ t,xs)
d. invertible, φ−1(−t,xs) = φ(t,xs)

(3)

Lemma 1 Lipschitz continuity of f (·) implies that the flow
φ(t, ·) will always preserve the topological properties such
as connectedness, compactness, openness or closeness of
the initial condition. In other words, φ(t, ·) is a homeomor-
phism for each t.

3. Reachable Sets and Their Properties

3.1. Forward Reachable Set

The forward reachable set, denoted PostcI(P), is a collec-

tion of states in X and each state can be reached by a state

of a set P⊆ X in some time specified by a time set I ⊆ℜ+.

Hence, the successor of P can be expressed as:

PostcI(P) = {x′ ∈ X |∃x ∃t : x ∈ P∧ t ∈ I
∧ x′ = φ(t,x)} (4)

where PostcI : 2X → 2X , in which 2X denotes the power set

of X .

3.2. Backward Reachable Set

Similarly, one can define the backward reachable set, de-

noted PrecI(P), as a collection of states in X and each can

reach some states of a set P ⊆ D in some time specified by

I ⊆ℜ+. The predecessor of P can be expressed as:

PrecI(P) = {x′ ∈ X |∃x ∃t : x ∈ P∧ t ∈ I
∧ x′ = φ−1(t,x)} (5)

where PrecI : 2X → 2X .

Both definitions can be rewritten as

PostcI(P) =
⋃
x∈P

⋃
t∈I

φ(t,x) and (6)

PrecI(P) =
⋃
x∈P

⋃
t∈I

φ−1(t,x) (7)

3.3. Constrained Forward and Reachable
Set

For a continuous dynamical systems, there may exist

some state constraints that the state variables have to sat-

isfy. These constraints specify the domain, D⊆ X , in which

the system should operate for all the time. This domain is

also known as invariant or safe set. We assume that the

domain is connected and compact. Furthermore, once any

constraint is violated, the (continuous) evolution of the state

variables should be prohibited.

The constrained forward (backward) reachable set, de-

noted cPostcI(P) (cPrecI(P)), is a collection of states in X
and each state can be reached by a state of P ⊆ X in some

future (past) time in I ⊆ ℜ+ while in any of those time in-

stants no constraint is violated.

Definition 1 (Constrained Continuous Forward and Back-
ward Reachable Sets) Consider a continuous dynamical
system Σc = (X ,Xs, f). Given a set P ⊆ X, a time inter-
val I ⊆ℜ+ and a domain D ⊆ X, the constrained continu-
ous forward reachable set, cPostcI : 2X → 2X , and backward
reachable set, cPrecI : 2X → 2X , are defined as:

cPostcI(P) = {x′ ∈ X |∃x ∃t :

x ∈ P ∧ t ∈ I ∧ x′ = φ(t,x) ∧
∀τ : 0≤ τ ≤ t ⇒ φi(τ,x) ∈ D}

(8)

150150

cPrecI(P) = {x ∈ X |∃y ∃t :

x′ ∈ P ∧ t ∈ I ∧ x = φ−1(t,x′) ∧
∀τ : 0≤ τ ≤ t ⇒ φ−1

i (τ,x′) ∈ D}
(9)

Notice that cPostcI(P) contains the states of PostcI(P)
except those states which have any points in their trajec-

tories ever going outside the domain D. When no do-

main constraint is violated, cPostcI(P) = PostcI(P). We can

make a similar argument for cPrecI(P). Hence, one can

show that cPostcI(P)⊆PostcI(P) and cPrecI(P)⊆PrecI(P),
where P ⊆ X , I ⊆ ℜ+ and D ⊆ X . However, given that

P is connected and t ′ ≥ 0, the forward constrained set,

cPostc{t ′}(P) at the time instant t ′ can be disconnected.

4. Computation of Reachable Sets

In the following, we will show an algorithm for com-

puting the bounded-time constrained backward reachable

sets. The algorithm is modified from the algorithms for the

exact computation of unbounded-time backward reachable

sets[4, 15].

The algorithm is symbolic and is not specific to any par-

ticular way of computation. If the representations and op-

erations of state sets used in the algorithm are exact, the

algorithm can give exact solutions.

Note: We assume that there exists a maximal time step

Δt(> 0) for computing the reachable sets for a specific com-

putation method, which could be used for performing exact

or approximate computation. However, for some computa-

tion methods, if a required time step is larger than Δt, the

solution quality at each step could deteriorate. Moreover,

the time required for computing reachable sets increase if

the time step is larger. For example refer to the paper on

d/dt[9], a tool that computes reachable sets for affine sys-

tems. In this tool, at each time step an over(under) approx-

imation of set is computed. The error of approximation de-

pends upon the chosen time step.

Recall by Lemma 1, the reachable set from an initial con-

nected set is also connected. Therefore, we can compute

the bounded time reachable sets by using union of reach-

able sets over small discrete time steps. We denote the

bounded-time constrained reachable set computed by us-

ing the time step Δt as cPostcΔt(P)(= cPostc[0,Δt](P)) and

cPrecΔt(P)(= cPrec[0,Δt](P)).
Given a bounded time interval I = [0,T] with 0 < Δt ≤

T < ∞, we denote the bounded time constrained reach-

able sets as cPostcT (P)(= cPostc[0,T](P)) and cPrecT (P)(=
cPrec[0,T](P)).

Algorithm 1 shows how to compute cPrecT (·) by using

cPrecΔt(·).
There are two termination conditions. Firstly, the algo-

rithm terminates if the bounded time limit has been reached

or exceeded. Secondly, the termination condition occurs if

Algorithm 1 Algorithm for Computing cPrecT (·)
Input: Σc = (X ,Xs, f), D, P, T
Output: cPrecT (P)
Start

R0 = P
Repeat k = 0,1,2, · · ·

Rk+1 = Rk ∪ cPrecΔt(Rk)
Until (kΔt ≥ T)∨ (Rk+1 ⊆ Rk)
cPrecT (P) = Rk+1

End

the reachable set does not grow any more. If the time step

can be further reduced without affecting the solution qual-

ity, one can have the solution close to the fixed point solu-

tion, i.e. R∗ = Rk+1 = Rk, by adjusting the final step size.

The termination condition of this algorithm is guaranteed

since both Δt and T are bounded.

Algorithm for computing constrained forward reachable

set is similar to the algorithm for computing backward

reachable set.

5. Algorithms for Analyzing Continuous Dy-
namical Systems

In this section, synthesis algorithms for safety and live-

ness properties are presented. Connections between the re-

sults generated by the algorithms and some concepts for dy-

namical systems are presented.

5.1. Synthesis Algorithms for Continuous
Systems

let us consider a continuous dynamical system, Σc =
(X ,Xs, f), which is nonlinear and time-invariant. We

present symbolic algorithms for analyzing the continuous

dynamical systems Σc by directly exploring the infinite

state space subject to state constraints specified by the do-

main D ⊆ X . Inspired by the algorithms developed for

the controller synthesis problems for timed and hybrid

systems[16, 4, 15], we propose synthesis algorithms for

finding sets of initial states for the continuous dynamical

systems so that safety property or liveness property is satis-

fied.

Consider two kinds of temporal properties defined over

the trajectory space of Σc: �F and it’s dual �F with F ⊆
X as defined in [20]. Given a set F ⊆ X and a trajectory

generated by Σc, �F and �F give True or False whether

the trajectory always stays inside F or eventually reaches F ,

respectively.

�F is referred to safety property while �F is referred to

151151

liveness property. They are formally defined as:

�F =
{

True i f ∀t ≥ 0 x(t) ∈ F
False otherwise (10)

�F =
{

True i f ∃t ≥ 0 x(t) ∈ F
False otherwise. (11)

�F can be derived by using �F = ¬�Fc where Fc =
X \F .

These temporal properties are used in specifying verifi-

cation and synthesis problem for transition systems, which

are generalizations of discrete systems, continuous systems

as well as hybrid systems.

In a synthesis problem for Σc, we are interested in find-

ing a collection of states, denoted Fs, such that ∀xs ∈ Xs
a temporal property Ω is True. The collection of states

that satisfies the temporary property is called the winning
states[16, 15, 20]. In the following, synthesis problems for

Σc with respect to �F and �F are presented.

Problem 1 (�F Synthesis Problem for Σc) Given a con-
tinuous dynamical system Σc = (X ,Xs, f) and a set F ⊆ X,
we are interested in finding a set of initial conditions, Fs ⊆
X, such that if a state starts from any where in Fs, it can
always stay inside F.

Problem 2 (�F Synthesis Problem for Σc) Given a con-
tinuous dynamical system Σc = (X ,Xs, f) and a set F ⊆ D,
we are interested in finding a set of initial conditions, Fs ⊆
X, such that if a state starts from any where in Fs, it can
eventually reach F.

In order to have nontrivial solutions for both problems, we

need to further assume that for the �F property Fs ⊆ F and

for the �F property Fs ⊇ F .

We seek to solve the Problems 1 and 2 in a generic way

so that the algorithms can be extended to the problems for

hybrid systems. Therefore, we must find a set of concepts

related to set representation and operations that is general

enough for continuous, timed and hybrid systems. Moti-

vated by the algorithms developed by [16, 15], we are inter-

ested in solving the problems by developing symbolic algo-

rithms for Σc with respect to �F and �F .

In [16, 15], the concept of the “immediate” predecessor

for discrete system is used in the algorithms. However, this

concept can hardly be generalized for continuous dynamical

systems due to the fact that the notion of time is different.

For continuous systems, time is dense in nature. Therefore,

instead of immediate predecessor we use the whole con-

tinuous predecessor set that can lead to the current set i.e.

we replace the “immediate” predecessor for discrete system

with the constrained bounded-time predecessor for Σc.

The reason why we can do this is that in the algorithm we

keep taking the union of these reachable sets. Even though

the notion of “immediate” predecessor is not applicable for

continuous systems, the algorithm can still be applied with

slight modification.

We first present the a �-algorithm for Σc. We also

derive a �-algorithm for Σc by utilizing the �-algorithm,

since we know that the � and � properties are related by

�F = ¬�Fc where Fc = X \F . The algorithms for solving

Problem 1 and 2 are shown below.

Algorithm 2 �-Algorithm for Σc

Input: Σc = (X ,Xs, f), D, F , T
Output: Fs
Start

P = F
R0 = /0

Repeat k = 0,1,2, · · ·
Rk+1 = P∪ cPrecT (Rk)

Until Rk+1 ⊆ Rk
Fs = Rk+1

End

Algorithm 3 �-Algorithm for Σc

Input: Σc = (X ,Xs, f), D, F , T
Output: Fs
Start

P = X \F
R0 = /0

Repeat k = 0,1,2, · · ·
Rk+1 = P∪ cPrecT (Rk)

Until Rk+1 ⊆ Rk
Fs = X \Rk+1

End

In each algorithm, there is a termination condition. The

termination condition occurs if a fixed point solution R∗ =
Rk+1 = Rk is reached i.e. the reachable set does not grow

any more. Again, if the time interval T can be further re-

duced without affecting the solution quality, one can have

the solution close to the fixed point solution, i.e. R∗ =
Rk+1 = Rk, by adjusting the value of T .

In general, these algorithms do not necessary terminate

since they are semi-algorithms. However, if we represent

the state space using finite representative elements such as

grids, the algorithms are guaranteed to terminate. However,

the solution using grids is approximate but the termination

of algorithm is guaranteed.

5.2. Properties of the Sets Produced by the
Synthesis Algorithms for Σc

The solutions produced by the algorithms 2 and 3 are re-

lated to some classical concepts for continuous dynamical

152152

systems, which are domain of attraction, which is associ-

ated to an equilibrium point, and invariant set. Let us first

state the definitions for equilibrium point and domain of at-

traction.

Definition 2 (Equilibrium Point) Consider a continuous
dynamical system Σc = (X ,Xs, f). A point x∗ is said to be
an equilibrium point of (1) if f (x∗)≡ 0 for all t ≥ 0.

Each equilibrium is the fixed point of the flow and is also

referred as stationary solution.

Definition 3 (Domain of Attraction) Consider a continuous
dynamical system Σc = (X ,Xs, f) with equilibrium point x∗.
A set N ⊆ X is said to be the domain of attraction of x∗ if the
set of initial condition xs ∈ N satisfies limt→0 φ(t,xs) = x∗

It has been shown in literature that if x∗ is an asymptoti-

cally stable equilibrium point, then the domain of attraction

is an open, invariant set [18]. Moreover, the boundary is

invariant as well.

Consider a stable equilibrium point x∗ is inside F . By

applying the �-algorithm, if the algorithm terminates, we

should be able to obtain an approximation of a domain of at-

traction specified by Fs provided that F ⊂ Fs. For the actual

Fs which may not be computable, the set should contains all

the states which can eventually reach F subject to state con-

straints specified by the domain D. However, since only the

approximation of Fs is computed, the topological properties

of the reachable sets are not necessarily preserved. Further-

more, if we need to have some guarantees on the results, we

need to specify what type of approximation should be used.

6. Computation Results

We used two contemporary computation kernels, d/dt [3]

and the Level Set toolbox [17] for hybrid systems to imple-

ment these algorithms.

Fig. 1 shows the first example which uses the Vanderpol

Equation [18] to demonstrate how cPostcT is computed with

the Level Set toolbox. The constraint D = X \S, where S is

indicated as the black box in the figure, blocks the evolution

of the reachable set. The reachable set is split into two parts

but remains connected. The system dynamics are defined

by the ODE ẋ1 = x2, and ẋ2 = x2(1− x2
1)− x1.

Fig. 2 shows the second example which uses a lin-

ear system with a stable focus [18] to demonstrate the �-

algorithm by using d/dt. The equilibrium point is inside

the set F . Each figure in the series shows the intermedi-

ate result of each Rk. The algorithm terminates after the

reachable set stops growing within the analysis set. This

example demonstrates how the domain of attraction can be

estimated. The discovered stable focus in this case is a do-

main of attraction. The system dynamics are defined by the

ODE ẋ1 =−x1−1.9x2, and ẋ2 = 1.9x1− x2.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
Constrained Forward Reachable Set of the Vanderpol Equation

x
1

x 2

Figure 1. Constrained bounded-time Forward
reachable set of the Vanderpol Equation,
computed by the Level Set toolbox. The light
gray box is the initial set F , the dark region
is the forward reachable set, and the black
box is the complement of the constraint set
D. Computation time taken = 200 min.

−1 0 1
−1

−0.5

0

0.5

1
T=0.5

−1 0 1
−1

−0.5

0

0.5

1
T=1.0

−1 0 1
−1

−0.5

0

0.5

1
T=1.5

−1 0 1
−1

−0.5

0

0.5

1
T=2.0

−1 0 1
−1

−0.5

0

0.5

1
T=2.5

−1 0 1
−1

−0.5

0

0.5

1
T=3.0

−1 0 1
−1

−0.5

0

0.5

1
T=3.5

−1 0 1
−1

−0.5

0

0.5

1
T=4.0

−1 0 1
−1

−0.5

0

0.5

1
T=4.5

Figure 2. �-algorithm applied to a linear sys-
tem with a stable focus, computed by d/dt.
For each figure in the series, the light gray
box in the center is F , and the dark region is
the set that can be reached from F within time
T . The solid curves are the trajectories from
the four corners of F . Computation time take
= 1 min.

153153

−2 0 2 4 6 8
−4

−3

−2

−1

0

1

2

3

4
Undamped Pendulum

x
1

x 2

(a)

−5 0 5
−5

0

5
Vanderpol Equation

x
1

x 2

(b)

Figure 3. �-algorithm applied to an un-
damped pendulum (a), and the Vanderpol
Equation (b), computed by the Level Set tool-
box. The light gray box is F , and the dark
region is true for �F . The solid trajectory of
the equation is always staying in F because
it is starting from the dark region that is �F .
The dashed trajectory is not always inside
because it does not originate in the safe set
�F (it is in the lighter region). Computation
time =70 min for both a and b.

Fig. 3 shows the results of the �-algorithm applied to an

undamped pendulum system [18] and the Vanderpol Equa-

tion. In each sub-figure, the sets F , Fs are indicated by the

light gray region and the dark region, respectively. Trajec-

tories starting from any point inside the dark regions will

always stay inside, which shows that the safety property of

both systems are satisfied. These examples show how the

positively invariant sets can be approximated. The dynam-

ics of the Vanderpol Equation are given in the first example

and the dynamics of the undamped pendulum are defined

by the ODE ẋ1 = x2, and ẋ2 = sin(x1).
Previous examples have demonstrated how some useful

system properties, such as �F , �F , can be computed. In

addition, we can also use these algorithms to estimate the

shape of the limit cycle. A limit cycle [18] is defined as

the region of space where at least one other trajectory of

the system spirals into it as time approaches infinity. If all

trajectories of the behavior of system spiral into the limit

cycle, then the limit cycle is called attractive and is also

known as domain of attraction. One can similarly define a

repulsive limit cycle.

Take the Vanderpol Equation as an example, it can be

shown that there exist an attractive limit cycle and an equi-

librium point inside the limit cycle. As shown in Fig. 4,

by negating the vector field of the Vanderpol Equation, the

−5 0 5
−5

0

5

x
1

x 2

Vanderpol Equation

Figure 4. �-algorithm applied to the ODE, by
negating the vector field of the Vanderpol
Equation. The light gray box is F , and the
dark region is true for �F , which gives an es-
timate of the shape of the limit cycle. Com-
putation time taken=60 min.

limit cycle becomes repulsive instead of attractive. Then,

by having the set F surrounding the equilibrium point we

can use our �-algorithm to estimate the shape of the limit

cycle, as the dark region shown in the figure. The dynamics

in this example is defined by the ODE ẋ1 = −x2, and ẋ2 =
−(x2(1− x2

1)− x1).
For the examples in this section, the Level Set toolbox

examples are computed on a Pentium IV 2.59GHz Win-

dows machine with 512 MB memory, and the d/dt example

is computed on a Pentium IV 2.59GHz Linux machine with

2 GB memory.

7. Conclusion

Embedded systems are modeled as hybrid systems that

have both discrete and continuous dynamics. Designing

safe and reliable embedded system require the analysis of

various rich continuous dynamics observed for a given sys-

tem. In this paper, we presented two basic synthesis algo-

rithms that can be used to develop further more complicated

algorithms to synthesize safe sets that satisfy a given tem-

poral property. The initial sets produced by the algorithms

are related to some classical concepts for continuous dy-

namical systems, such as invariant sets and domains of at-

traction. To guarantee termination of these algorithms one

must use a state representation with finite representative el-

ements. An example is using grids that divide the infinite

state space into a finite number of elements.

154154

8. Acknowledgment

The author acknowledges Prof. John Koo for his help in

this work.

References

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger,

P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine.

The algorithmic analysis of hybrid systems. Theoretical
Computer Science, 138(1):3–34, 1995.

[2] E. Asarin, O. Bournez, T. Dang, O. Maler, and A. Pnueli. Ef-

fective synthesis of switching controllers for linear systems.

Proceedings of the IEEE, 88(7):1011–1025, July 2000.
[3] E. Asarin, T. Dang, and O. Maler. The d/dt tool for veri-

fication of hybrid systems. In Computer Aided Verification
,LNCS 2404, pages 365–370. Springer-Verlag, July 2002.

[4] E. Asarin, T. Dang, O. Maler, and O. Bournez. Approximate

reachability analysis of piecewise-linear dynamical systems.

In N. A. Lynch and B. H. Krogh, editors, Hybrid Systems:
Computation and Control, volume 1790 of Lecture Notes in
Computer Science, pages 20–31, Pittsburgh, PA, USA, April

2000. Springer Verlag.
[5] A. Bemporad and M. Morari. Verification of hybrid systems

via mathematical programming. In F. W. Vaandrager and

J. H. van Schuppen, editors, Hybrid Systems: Computation
and Control, volume 1569 of Lecture Notes in Computer
Science, pages 31–45, Berg en Dal, The Netherlands, March

1999. Springer Verlag.
[6] O. Botchkarev and S. Tripakis. Verification of hybrid sys-

tems with linear differential inclusions using ellipsoidal ap-

proximations. In N. A. Lynch and B. H. Krogh, editors,

Hybrid Systems: Computation and Control, volume 1790

of Lecture Notes in Computer Science, pages 73–88, Pitts-

burgh, PA, USA, April 2000. Springer Verlag.
[7] A. Chutinan and B. H. Krogh. Verification of infinite-

state dynamic systems using approximate quotient transi-

tion systems. IEEE Transactions on Automatic Control,
46(9):1401–1410, September 2001.

[8] J. E. R. Cury, B. H. Krogh, and T. Niinomi. Synthesis of

supervisory controllers for hybrid systems based on approx-

imating automata. IEEE Transactions on Automatic Control,
43(4):564–568, April 1998.

[9] T. Dang. Verification Et Synthesis Des Systemes Hybrides.

PhD thesis, Institut National Polytechnique De Grenoble,

October 2000.
[10] M. R. Greenstreet and I. Mitchell. Reachability analysis us-

ing polygonal projections. In F. W. Vaandrager and J. H. van

Schuppen, editors, Hybrid Systems: Computation and Con-
trol, volume 1569 of Lecture Notes in Computer Science,

pages 103–116, Berg en Dal, The Netherlands, March 1999.

Springer Verlag.
[11] T. A. Henzinger and R. Majumdar. A classification of sym-

bolic transition systems. In H. Reichel and S. Tison, editors,

Proceedings of the 17th International Conference on Theo-
retical Aspects of Computer Science (STACS 2000), Lectures

Notes in Computer Science, pages 13–34. Springer Verlag,

February 2000.

[12] A. B. Kurzhanski and P. Varaiya. Ellipsoidal techniques for

reachability analysis. In N. A. Lynch and B. H. Krogh, ed-

itors, Hybrid Systems: Computation and Control, volume

1790 of Lecture Notes in Computer Science, pages 202–214,

Pittsburgh, PA, USA, April 2000. Springer Verlag.
[13] G. Lafferriere, G. J. Pappas, and S. Yovine. Symbolic reach-

ability computation for families of linear vector fields. Jour-
nal of Symbolic Computation, 32(3):231–253, September

2001.
[14] E. A. Lee and H. Zheng. Operational semantics of hybrid

systems. In M. Morari and L. Thiele, editors, Hybrid Sys-
tems: Computation and Control, volume 3414 of Lecture
Notes in Computer Science, pages 25–53, Zurich, Switzer-

land, March 2005. Springer Verlag.
[15] O. Maler. Control from computer science. Annual Reviews

in Control, 26(1):175–297, 2002.
[16] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of

discrete controllers for timed systems. In E. W. Mayr and

C. Puech, editors, STACS, volume 900 of Lecture Notes in
Computer Science, pages 229–242. Springer Verlag, March

1995.
[17] I. Mitchell and C. Tomlin. Level set methods for compu-

tation in hybrid systems. In HSCC ’00: Proceedings of
the Third International Workshop on Hybrid Systems: Com-
putation and Control, pages 310–323, London, UK, 2000.

Springer-Verlag.
[18] S. Sastry. Nonlinear Systems: Analysis, Stability and Con-

trol. Springer Verlag, New York, USA, 1999.
[19] O. Stursberg and B. H. Krogh. Efficient representation

and computation of reachable sets for hybrid systems. In

O. Maler and A. Pnueli, editors, Hybrid Systems: Com-
putation and Control, volume 2623 of Lecture Notes in
Computer Science, pages 482–497, Prague, Czech Repub-

lic, April 2003. Springer Verlag.
[20] C. Tomlin, J. Lygeros, and S. Sastry. A game theoretic ap-

proach to controller design for hybrid systems. Proceedings
of the IEEE, 88(7):949–970, July 2000.

[21] H. Wong-Toi. The synthesis of controllers for linear hybrid

automata. In IEEE Conference of Decision and Control, vol-

ume 5, pages 4607–4612, San Diego, CA, USA, December

1997.

155155

