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Abstract— Large scientific computing clusters require a dis-
tributed dependability subsystem that can provide fault isola-
tion and recovery and is capable of learning and predicting
failures, to improve the reliability of scientific workflows. In
this paper, we outline the key ideas in the design of a Scientific
Computing Autonomic Reliability Framework (SCARF) for
large computing clusters used in the Lattice Quantum Chromo
Dynamics project at Fermi Lab.

[. PROBLEM MOTIVATION

Data processing within the Large Quantum Chromo Dy-
namics (LQCD) project at Fermi Lab is carried as analysis
campaigns (scientific workflows), which consist of an input
dataset and a set of interdependent processing steps (called
jobs) executed over large commodity computer clusters.
These large clusters built with commodity computers yield
the highest performance per dollar but exhibit intermittent
faults, which can result in systemic failures when operated
over a long continuous period for executing analysis cam-
paigns.

Typical running time of a campaign may span several
months and execute several hundreds of data and computa-
tion intensive, parallel, MPI Jobs, requiring several process-
ing nodes over its lifetime. Typically, several users analyze
different workflows on the clusters concurrently. Diagnosing
job problems and failures in this complex environment is
an arduous task, specifically when the success of whole
campaign might be affected by even one job failure. Table
I summarizes some common faults leading to failure of the
workflow as experienced in the LQCD clusters.

Manual administration though essential is slow to respond
to the intermittent faults. Therefore we need to supplement
it by an autonomic management subsystem that can provide:
(a) Fault Prediction: Identify the trends that might lead
towards faults, (b) Fault Isolation: Identify the source of
fault, (c) Fault Mitigation: Ensure that the resources of the
cluster are used to the best possible extent and achieve the
best possible start to completion ratio of jobs, even in the
presence of hardware/software failures.

Generalized frameworks have been used in the past to
monitor the health and status of cluster resources. Early tools
such as ClusterProbe concentrated on per node monitoring
and visualization without considering the health of the cluster
as a whole. Other tools such as NetLogger, Monitoring
and Managing Multiple Clusters (M3C), and Java Agents
for Monitoring and Management (JAMM) were tailored for
centralized, human-in-the-loop management of clusters but
little investigation was done to provide autonomic monitoring
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TABLE I
COMMON FAULTS — RESULTING FAILURES

Fault

Failure

Communication Link Errors

Job Termination

Storage Full

Job Termination, Job Hang

CPU Temperature High

Node Shutdown, Job Termina-
tion

Out of Memory

Job Termination

Unexplained Node Restart

Job Termination

and control of cluster computing environments. Other recent
frameworks such as Ganglia and Nagios have been developed
in last five years. These frameworks are extensible and even
provide for simple centralized control. However, all of these
frameworks lack a formal design methodology behind it.

Model-based design, is one such formal system design
methodology that has gained momentum in recent years as a
sound methodology of applying computer-based modeling
and synthesis methods to a variety of problem domains,
including distributed systems. A benefit of using formal
models is that they can be queried or transformed to produce
a variety of domain specific artifacts, which are critical to
deployment and execution of the system, but are tedious and
error-prone to produce manually.

II. OVERVIEW OF SCARF

Fig. 1 describes the architecture of Scientific Computing
Autonomic Reliability Framework (SCARF), being developed
by our research group for the LQCD computing clusters.
The basic components of this framework are distributed
monitoring units, fault-mitigation units and a system wide
planner for dealing with resource reallocation in case of
severe failures. It is a Reflex and Healing (RH) architecture
[1] (and references therein), which consist of hierarchical
network of decentralized fault management entities, called
reflex engines that are instantiated as state machines or
timed automatons that change state and initiate fast reflexive
mitigation actions upon occurrence of certain faults.

Centralized Control: The centralized controller (Healing)
consists of a design and modeling environment, an inference
engine to infer the current system health and a planner
portion that can be used to alter the allocation of system
resources to jobs in order to mitigate failures.

The design and modeling environment provides for spec-
ification of different resources in the system (computation
nodes). These resources are annotated with the parameters
such as CPU utilization that uniquely identify the state of that
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Fig. 1. Architecture: Annotations identify the centralized and de-centralized
components

machine. These state variables are dynamically updated to
reflect the current state of the cluster. A central visual inter-
face can be constructed to provide a compact representation
of system state to an administrator. SCARF also provides a
modeling language for specification of workflows as directed
acyclic graphs by using “jobs” that are specified in a library.
A job can be reused between workflows and also the historic
performance of a job can be monitored centrally. Lastly, the
modeling environment consists of various constraints that can
be used to allocate jobs in workflows to computation nodes,
reallocate resources in case of failure and retire workflows
that cannot be completed in a timely manner.

Statistical Analysis: We are working towards developing
a light-weight, first-order diagnoser that can predict some
of the more frequent faults. The diagnoser would be flexibly
composed of a set of analyzers that reason with system health
parameters. For example, the following analyzers can predict
imminent job failures:

« We are developing a correlation model between CPU

utilization and temperature for a class of machines. CPU
temperature that is 2 standard deviations away from
the predicted mean for the current CPU utilization is
a reliable predictor of imminent node and job failure.
We are developing Disk utilization profiles for a class
of jobs. This profile can predict how much space is
going to be needed as the job progresses, and in case
of insufficient space, it can be used to proactively alert
the administrator.
We are developing correlation model between important
predictor variables such as CPU fan speed and CPU
temperature. Out of range observations for these vari-
ables over a significant period of time, are also reliable
predictor of imminent node and job failure, and can be
used to proactively alert the administrator.

Distributed Runtime: The run-time portion of the frame-
work is distributed across the system. Each cluster computing
node runs an agent called “manager” (fig. 2). These managers
are an instance of a reflex engine [1] and oversee the
sensors and actuators scripts needed to monitor and actuate
that particular machine. These scripts are downloaded on
the particular node based on the specification provided in
the modeling environment. The actuator scripts present in
a manager are executed based on various fault mitigation
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strategies downloaded on that node. The execution sequence
of sensor and actuator scripts is governed by the manager’s
scheduler, which enables synchronized execution and reduces
jitter between several periodic executions of sensors on a
given node [2].
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Fig. 2. A Reflex engine

To reduce complexity, the managers are divided into
regions based on their racks (fig 3). Each region is managed
by a head node that is identified as the regional manager.
This manager relays the sensor information for the comput-
ing nodes under its supervision to the database. It is also
responsible for the general health of nodes running under
its supervision. For that purpose, it keeps a running moving
average of critical parameters such as CPU utilization, and
CPU temperature, for the nodes under its supervision.
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Fig. 3. Hierarchical reflex engines

III. CONCLUSION

We have described a model-based reliability framework
for computing clusters in this poster. This framework enables
the specification of workflows, mitigation strategies and the
state variables to monitor in the system. Currently, we have
deployed the runtime framework on three LQCD clusters.
The sensor data that we have collected so far provides us the
ability to perform analysis in response to a failure, as well as
develop the correlation models and nominal behavior models
that can be used in the analyzer. We are currently working
towards design and deployment of mitigation strategies that
can actuate changes in a computing node from the respec-
tive local manager. We have developed and presented the
workflow modeling language and a fault recovery algorithm
earlier in [3].
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