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Abstract

In large scale real-time systems many problems associ-
ated with self-management are exacerbated by the addition
of time deadlines. In these systems any autonomic behavior
must not only be functionally correct but they must also not
violate properties of liveness, safety and bounded time re-
sponsiveness. In this paper we present and analyze a real-
time Reflex Engine for providing fault mitigation capabil-
ity to large scale real time systems. We also present a se-
mantic domain for analyzing and verifying the properties of
such systems along with the framework of real-time reflex
engines.

1. Introduction

Advancements in computing technology coupled with

increased integration between information and the physical

world has enabled the use of computing devices for control-

ling modern systems. At the same time, the proliferation in

communication bandwidth and ability to construct complex

systems from simpler components is abetting the increase in

capability and complexity of these computer based systems

(CBS). The impact of this technological progress can be felt

from small systems such as pacemakers to large systems

used in military, high performance computing and avionics.

A side-effect of an increase in system complexity is an

increase in chances of system failure. On the other hand,

an interesting contradiction is the rise in demand of relia-

bility of complex CBS used in critical areas such as nuclear

plants. The demand of system reliability even in the wake of

increasing complexity has ensured that fault-tolerance be-

comes a sine qua non of the design cycle.

Fault tolerance can be implemented by employing hu-

mans to make fault mitigation decisions. However, usually

the involvement of humans leads to latency in a fault miti-

gation decision which (a) might not be acceptable in critical

systems, and (b) usually results in pecuniary losses. More-

over, in certain situations human decision making might be

unavailable due to a lack of plant accessibility such as in

high energy physics applications and space systems.

This drives the need for an alternate paradigm for au-

tonomic computing systems that are self aware, self con-

figuring, self healing, and self protecting [1, 2, 3]. Such

systems employ fault managers for making the necessary

changes in the wake of failures. A motivation for this al-

ternate paradigm comes from the biological world and the

ways in which biological systems handle similar challenges

of fault tolerance and self management.

Challenges associated with self-management are exacer-

bated by the addition of time deadlines. In real-time sys-

tems, it is not enough to compute correct results, but to

compute correct results within the given time deadline [4].

In such systems, a correct but “late” fault mitigation action

is an incorrect system behavior. Even in systems which are

not real-time by themselves it may be required that the sys-

tem is repaired within strict time bounds. The autonomic

behaviors for such systems must not only be functionally

correct but they must also not violate the following proper-

ties:

1. Liveness: Assuming that the original system was dead-

lock free, the addition of autonomic behaviors will not

lead to a deadlock in the system.

2. Safety: The system will meet all of its deadlines and

never operate in unsafe modes.

3. Bounded time responsiveness: In the case of faults,

the designed fault mitigation action will be executed

within a specified time bound.

Our previous work in large scale autonomic computing

yielded a Reflex and Healing (RH) framework presented in
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[5, 6, 7]. This framework employs a hierarchical network

of fault management entities, called reflex engines, whose

sole purpose is to implement fast reflexive actions when a

fault is detected.

An initial investigation toward applying real-time analy-

sis techniques to this framework showed the modeling for-

malism for RH systems to be inadequate for timed analysis.

In this paper, we augment our existing RH framework based

on our earlier work to provide timed analysis capability, and

present an approach to transform the augmented RH system

into a semantically equivalent network of timed automa-

ton models [8, 9]. Once transformed, the timed automaton

models can be checked for the properties that ought to be

satisfied by autonomic computing systems by using model

checking tools such as UPPAAL [10], and KRONOS [11].

The outline for the remainder of this paper is as follows:

In the next section we review the background of timed au-

tomaton which is essential to our solution approach. We

then describe the definition of a timed RH framework. We

will then present the transformation of the RH framework

into network of timed automatons. The paper will conclude

with a case study in which we will check a simple applica-

tion system with two reflex strategies.

2. Background

For the benefit of our readers, we provide in this section

a brief overview of the RH framework as well as a review

of the definitions and semantics of a timed automaton and

networks of timed automatons. However, readers who are

familiar with these concepts may wish to proceed to Section

3.

2.1. Reflex and Healing Framework

A reflex and healing architecture is a tree-like hierarchi-

cal deployment of fault managers, also known as reflex en-

gines. The justification for a hierarchical deployment vs. a

single layered approach is beyond the scope of this review.

However, readers are referred to [5, 6] for a more compre-

hensive study of the subject.

Fig. 1 shows an example deployment of this framework.

Each reflex engine has a management domain which con-

straints its zone of influence in order to manage the diffi-

culty of implementing a scalable, high performance central-

ized fault diagnosis and mitigation for a large system.

User applications, such as those shown in the Fig. 1,

are managed by the lowest level reflex engines, termed lo-

cal managers. A number of local managers themselves are

grouped together under the zone of influence of a higher

level manager termed as regional managers. At the top lies

the global manager which supervises the health of regional

managers. There can be other mid-tier managers over the

Figure 1. Hierarchical fault management enti-
ties in Reflex and Healing architecture.

regional managers. The communication between managers

is restricted to communication between parent and children,

i.e. direct communication between two managers at the

same level is forbidden. This is necessary to prevent leak-

age of faults between peer zones.

2.2. Timed Automaton

Classically, for systems with continuous timed variables,

the timed automaton (TA) model [8, 9] is used for prov-

ing the correctness of system designs. This approach has

also been applied to solve scheduling problems by model-

ing real-time tasks and scheduling algorithms as variants of

timed automaton and performing reachability analysis on

the model [12, 13]. In this paper we have followed a similar

approach to analyze an RH framework.

A timed automaton consists of a finite set of states called

locations and a finite set of real-valued clocks. It is as-

sumed that time passes at a uniform rate for each clock in

the automaton. Transitions between locations are triggered

by the satisfaction of associated clock constraints known as

guards. During a transition, a clock is allowed to be reset

to zero value. These transitions are assumed to be instanta-

neous. At any time the value of each clock is equal to the

time passed since the last reset of that clock. In order to

make the timed automaton urgent, locations are also asso-

ciated with clock constraints called invariants which must

be satisfied for a timed automaton to remain inside a loca-

tion. If there is no enabled transition out of a location whose

invariant has been violated, the timed automaton is said to

be blocked. Formally, a timed automaton can be defined as

follows:

Definition 1 (Timed Automaton) A timed automaton is a
6-tuple TA=< Σ, S, S0, X, I, T > such that
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• Σ is a finite set of alphabets which TA can accept.

• S is a finite set of locations.

• S0 ⊆ S is a set of initial locations.

• X is a finite set of clocks.

• I : S → C (X) is a mapping called location invariant.
C (X) is the set of clock constraints over X defined in
BNF grammar by α ::= x ≺ c|¬α|α∧α, where x ∈ X
is a clock, α ∈ C (X), ≺∈ {<,≤}, and c is a rational
number.

• T ⊆ S × Σ × C (X) × 2X × S is a set of transitions.
The 5-tuple < s, σ, ψ, λ, s′ > corresponds to a tran-
sition from location s to s′ via an alphabet σ, a clock
constraint ψ specifies when the transition will be en-
abled and λ ⊆ X is the set of clocks whose value will
be reset to 0.

Figure 2. A Timed automaton model of a be-
havior of traffic light.

It is customary to draw a timed automaton model as a di-

rected graph with its nodes, drawn as circles or ellipses, to

represent the locations and the edges to represent the transi-

tions. Initial locations are marked using concentric ellipses

or circles. Fig. 2 shows a timed automaton model of a traf-

fic light. This automaton has three locations and one clock

variable. The model periodically circulates between red,

yellow, and green location at a time gap of 5 units, 1 unit,

and 5 units respectively.

The semantics of timed automaton models are described

as an infinite state transition graph A =< Σ, Q, Q0, R >.

Each state in Q is a pair (s, v), where s ∈ S and v : X →
R+ is clock value map, assigning each clock a positive real

value. It is assumed that at any time all clocks increase with

a uniform unit rate i.e. ∀x ∈ X(ẋ = 1) is true. The initial

state of A, Q0 is given by {(q, v)|q ∈ S0 ∧∀x ∈ X(v(x) =
0)}. Before defining the transition relations we must give

some notations. For any d ∈ R+, let us define v + d a clock

assignment map which increases the value of each clock

x ∈ X to v(x) + d. For λ ⊆ X introduce v[λ := 0] to be

the clock assignment that maps each clock y ∈ λ to 0, but

keep the value of all clocks x ∈ X − λ same.

The transition relation R is composed of two types of

transitions:

• Delay Transitions refer to passage of time while stay-

ing in the same location. They are written as (s, v) d→
(s, v + d). The necessary condition is v ∈ I(s) and

v + d ∈ I(s)

• Action Transitions refer to occurrence of a transi-

tion from the set T . Therefore for any transition <
s, σ, ψ, λ, s′ >, we can write (s, v) σ→ (s′, v[λ := 0]),
given that v[λ := 0] ∈ I(s′) and v ∈ ψ.

Usually, a system is composed of several sub-systems,

each of which can be modeled as a timed automaton. There-

fore, for modeling of the complete system we will have to

consider the parallel composition of a network of timed au-

tomatons [10, 14, 11].

2.3. Networks of Timed Automatons

We consider a network of timed automatons as the syn-

chronous parallel composition of TA1||TA2||.....||TAn of

n timed automatons. Each timed automaton can synchro-

nize with any other timed automaton by hand shake syn-

chronization using input events and output actions. For this

purpose we assume the alphabet set Σ to consist of symbols

for input events denoted by σ? and output actions σ! and

internal events τ . Apart from these synchronizing events,

we also use the concept of a shared variable of integer type

and arrays of integers. This concept is motivated from the

concepts in timed automaton based tools such as UPPAAL

and KRONOS. Effectively, guard conditions can also be set

on the values of shared variables. During a reset, the values

of these shared variables can be changed to some integral

quantity.

For example, Fig. 3 shows model of a scheduler exe-

cuting in parallel to a task. The scheduler enables the task 6

time units after it finishes. The two automatons synchronize

using start and finish event/action pair. For sake of simplic-

ity we assume that there are no shared clocks in the system.

Figure 3. A network of two timed automatons.

The semantics of network timed automatons are also

given in terms of transition graphs. A state of a network

is defined as a pair (�s, v), where �s denotes a vector of all
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the current locations of the network, one for each timed

automaton, and v is the clock assignment map for all the

clocks of the network. The rules for delay transitions are

same as those for a single timed automaton. However, the

action transitions are composed of internal actions and syn-

chronizing actions. These actions can be described as fol-

lows:

1. Delay transitions are described as (�s, v) d→ (�s, v + d),
if v, v + d ∈ ∩i=n

i=1 I(si), where ∀i si ∈ �s and n is the

total number of timed automaton in the network.

2. Internal action transitions are described as (�s, v) τ→
(�s[s′i|si], v′) if an action transition si

τ→ s′i is possible

for ith timed automaton in the network . All the timed

automatons in the network are allowed to have internal

action transition at the same time.

3. External action transitions are associated with change

in state of transitions of at least two timed automaton

of the network in parallel. Suppose ith timed automa-

ton produces an output action a! which is consumed by

jth timed automaton as a?. Then the external action

transition is written as (�s, v) a→ (�s[s′i ∧ s′j |si ∧ sj ], v′).
This transition is composed of two actions transitions

of i, j single timed automaton given as si
a!→ s′i and

sj
a?→ s′j . The final clock value v′ = v[λi := 0][λj :=

0].

2.4. Timed Automaton Based Verification

In real-time systems, Timed Computation Tree Logic

(TCTL) [15, 14, 16] is usually used in order to specify the

system properties that need to be verified. A number of

model checking tools are then used to check the veracity

of these properties against the system model. These tools

use well developed algorithms described in [8, 9, 10, 11]

and other similar works. The TCTL properties that can be

checked in these tools can be summarized as:

• Reachability: These set of properties deal with the pos-

sible satisfaction of a given state-based predicate logic

formula in a possible future state of the system. For ex-

ample, the TCTL formula E�φ is true if the predicate

logic formula φ is eventually satisfied on any execution

path of the system.

• Invariance: These set of properties are also termed

as safety properties. As the name suggests, invari-

ance properties are supposed to be either true or false

throughout the execution lifetime of the system. For

example, the TCTL formula A�φ is true if the system

always satisfies the predicate logic formula φ. A re-

strictive form of invariance property is sometimes used

to check if some logical formula is always true on some

execution path of the system. An example of such a

TCTL property is E�φ.

• Liveness: Liveness of a system means that it will never

deadlock, i.e. in all the states of the system either

there will be an enabled action transition and/or time

will be allowed to pass without violating any loca-

tion invariants. Liveness is also related to the sys-

tem responsiveness. For example, the TCTL formula

A�(ψ → A�φ) is true if a state of the system sat-

isfying ψ always eventually leads to a state satisfying

φ.

3. Remodeling the Reflex and Healing Frame-
work

Our earlier definition of the Reflex and Healing (RH)

framework provided in [5, 6] was inadequate to formally de-

fine the timed behavior of a Reflex Engine (RE). This was

because the modeling formalism didn’t provide for faults

that can be signaled not only by the presence of an event, but

also by the absence of a certain event in a given time inter-

val. Moreover, in the earlier definition the notion of sched-

ulers on a Reflex Engine was lacking. A scheduler is impor-

tant in scenarios where a Reflex Engine has to choose be-

tween various triggered events and process them in a timely

fashion. What follows in the next section is the new defini-

tion for a Reflex Engine which adds to our earlier design of

RH framework in order to bridge the gaps described earlier.

This new definition will allow us to model the RH frame-

work as an equivalent network of timed automaton for anal-

ysis.

3.1. Real-Time Reflex Engines

Figure 4. An overview of a real-time Reflex
Engine

A real-time Reflex Engine, as shown in Fig. 4, comprises

of multiple fault-mitigation strategies that takes action in

the presence of certain input events which signify a fault
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condition. New strategies can be added online to a real time

reflex engine by an upper level external reflex engine or by

direct human intervention. Moreover, a supervisory higher

level reflex engine can enable or disable a strategy.

The difference from our earlier design for RE is the pres-

ence of a scheduler and ability of fault-mitigation strategy

to measure time progress. A formalized notion of a sched-

uler is required because availability of multiple events in

the buffer could enable multiple strategies. A scheduler ar-

bitrates the dispatch of strategies onto the available threads

based on the priority of the notification event that triggered

the strategy. Formally, a real-time Reflex Engine can be de-

fined as:

Definition 2 (Real-Time Reflex Engine) A real time reflex
engine Er is a tuple < S, B,S , S ′, Zi, Zo >, where S is
the scheduler , B is a buffer, S is a parallel composition
of all the enabled strategies and S ′ is the set of disabled
strategies, Zi is the set of all the possible inputs to a reflex
engine and Zo is the set of all the possible outputs gener-
ated by the reflex engine.

All possible communication in and out of a real-time Re-

flex Engine1 is carried out through event sets Zi, Zo. These

event sets are a union of corresponding input and output

event sets of all strategies implemented by that engine. In

a multi-level hierarchy as the one motivated in [6], some

events are reserved for communication between reflex en-

gines that have a parent and child relationship.

We will now present the definition of the components of

a real-time Reflex Engine.

Definition 3 (Fault Mitigation Strategy) A fault mitiga-
tion strategy used in a real time reflex engine is state ma-
chine based failure management logic. It can be defined as
a tuple S =< Q, q, Enable, Zi, Zτ+ , T , R, Zo >, where

• Q is the set of all possible states.

• q is the initial state.

• Enable ∈ {True, False} is a Boolean flag used to
enable or disable a strategy.

• Zi is the set of all possible external events (input) to
which the strategy is subscribed. Every strategy has
two special events start ∈ Zi and finish ∈ Zo which
are used to communicate with the scheduler.

• Zτ+ is the set of all events generated due to passage of
time.

• T ∈ Q × (Zi ∪ Zτ+) × Q is the set of all possible
transitions that can change the state of the strategy due
to passage of time or arrival of an input event.

1In the rest of this paper we will use the term reflex engine and real-time

Reflex Engine interchangeably without ambiguity.

• Zo is the set of all possible output events and miti-
gation actions generated by the strategy. For sake of
brevity one can abstract the mitigation action as an
event.

• R : T → Zo is the reflex action map which generates
an output event every time a transition is taken.

In order to make the communication between the reflex

engines and the plant unambiguous it is required that there

is no overlap between subscribed events of two different

strategies.

The time-based events associated with any strategy can

be divided into two groups, internal time-based events and

external time-based events. Internal time-based events are

generated and used to measure time while the strategy is

executing on a thread. However, if the strategy needs to

measure time across two instances of execution, it can start

a timer task, which shall generate the time-based event after

the required passage of time. This timer is a high priority

task and it should be allowed to execute non-preemptively

until completion. We call the execution time duration of

the timer as the lifetime of the timer. For the purposes of

analysis we restrict the lifetime of the timer to the set of

dense but countable positive rational numbers.

The execution of timers and strategies is governed by the

scheduler. This scheduler picks up the input events from

the buffer and then executes a number of strategies which

in turn will perform the required mitigation action and gen-

erate some output events. We say that a strategy is triggered

when the event to which it is subscribed is present in the

buffer. We can describe the scheduler as follows:

Definition 4 (Scheduler) A scheduler S, maps the input
events in the buffer to the corresponding strategies. It then
uses an arbitration scheme to select and execute a maximum
m triggered strategies based on the priority of the notifica-
tion event that triggered the strategy. Here m signifies the
number of available threads.

A primitive scheduler may employ First in First out

(FIFO) scheme to dispatch triggered strategies on the avail-

able thread.

3.2. Problem Formalization

Consider a large scale real time system supported by a

framework of hierarchical reflex engines for fault mitiga-

tion purposes. In order to guarantee the correctness of the

system we need to be able to verify that the system pos-

sesses the properties of liveliness, safety, and bounded time
responsiveness.

Property 1 (Safety) The system shall always be schedula-
ble i.e. it will not miss any deadline. Moreover, buffers of
reflex engines shall never overflow.
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Property 2 (Liveness) The system shall always be void of
deadlocks.

Property 3 (Bounded Time Responsiveness) The mitiga-
tion response from a strategy shall be produced within cer-
tain time period off the generation of fault event.

4. Analyzing the RH Framework

In this paper, we show that the real-time reflex and heal-

ing architecture can be treated as a network of timed au-

tomaton. With this semantic representation, we can pose

questions of safety, liveness and bounded time response as

corresponding model checking questions on the timed au-

tomaton models. Though, we have done this transformation

manually, one can use the transformation rules to automati-

cally synthesize the analysis model from a given specifica-

tion of an RH framework.

4.1. Reflex Engines as a Network of Timed
Automatons

In this section we will map all the components of a reflex

engine (refer to section 3.1) namely its strategies, buffer,

and the scheduler to timed automaton models.

4.1.1 Timer timed automaton

Figure 5. Timer timed automaton.

A timer timed automaton has two locations, idle, busy
and a single clock variable x. The transition from idle to

busy is guarded by a synchronized event measure? which

allows the timer to start working. The invariant associated

with busy is given by x ≤ γ, where γ ∈ Q+ is the time in-

terval which has to be measured for the requesting strategy.

The transition from busy to idle is guarded by constraint

x = γ. Upon this transition from busy to idle, the timer

generates an output action timeout! which is an input event

for the requesting strategy. Fig. 5 shows this model.

4.1.2 Strategy Timed Automaton Model

Consider any strategy of a reflex engine modeled as de-

scribed in Section 3. We can formulate an equivalent timed

automaton model TA=< Σ, S, S0, X, I, T > in the follow-

ing way:

Figure 6. An example strategy and its corre-
sponding timed automaton.

• States of the strategy Q are transformed as loca-

tions of the timed automaton model. Furthermore,

two new locations {Enabled, Disabled} are added

to model the cases when strategy is enabled or dis-

abled. Only when the strategy is enabled can it be

triggered by the presence of events in the buffer and

dispatched to a thread by the scheduler. Thus S =
Q ∪ {Enabled, Disabled}.

• Initial locations of the timed automaton, S0 are de-

rived from the initial states of the strategy plus the

new locations {Enabled, Disabled}. Thus S0 = q ∪
{Enabled, Disabled}.

• In order to measure the time spent by the strategy

in each of its locations we use a clock variable x ∈
X . This clock is used to generate internal time-based

events while the strategy is executing.

• All invariants and guards to TA are specified by a time

specification used for the generation of internal time-

based events that can trigger a transition.

• Output actions of the timed automaton are the same

as the set Zo and are all written with a suffix of ‘!’.
The input events are same as the set Zi ∪ Zτ+ and are

written with a suffix of ‘?’. Therefore, Σ = Zi∪Zτ+ ∪
Zo.

• Transitions T of the timed automaton are a union of

transitions of the strategy i.e. T and transitions due to

Disabled and Enabled locations. To model the abil-

ity of disabling the strategy from any of its states, we

specify transitions from all locations of the timed au-

tomaton to the Disabled location. Moreover, one tran-

sition from Disabled to Enabled location is specified

to model the enabling of the strategy. Lastly, a transi-

tion is added from Enabled location to the initial state

q of the strategy.
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• The reflex action map R of the strategy is created by

mapping the output events Zo to the corresponding

transition of the timed automaton as output actions.

Fig. 6 shows an example of a strategy which has two

states nominal and faulty and its corresponding timed au-

tomaton model. Note the extra states and transitions added

in the timed automaton model. The events d, e are used by

the supervisory reflex engine to disable or enable the strat-

egy.

4.1.3 Buffer Timed Automaton Model

Figure 7. Buffer timed automaton listening
to two different events. More events can be
added to the model by creating new self tran-
sitions.

Buffer timed automatons have an associated shared array

of integers, called a queue. In order to uniquely identify

events in the model, we map them to the domain of positive

integers. The Buffer TA (see Fig. 7) has only one location

and no clocks. It uses an internal integer variable, Top, to

keep track of the queue size. An event is added to the queue

by using a self transition that also increments Top. If more

than one event is available for addition to the queue at the

same time, only one gets added while the others might be

dropped. Moreover, a maximum queue size is set to drop

events if the queue becomes full.

The possible dropping of events in a buffer is a safety

concern for the RH framework. Therefore, a property that

must be checked is to ensuring that no events are dropped.

4.1.4 Scheduler Timed Automaton Model

To express the mapping implemented by the scheduler

of a reflex engine, we introduce the scheduler timed au-

tomaton construct as shown in Fig.8. This automaton

shares the variable queue with the buffer timed automaton

model. The possible locations for a scheduler model are

{idle, select, Strategy 1, · · · , Strategy n}, where there

are n strategies in the reflex engine.

There are no clocks in the scheduler automaton. All tran-

sitions are synchronized via the start and finished events

of the strategies. The select state implements the schedul-

ing policy by sorting the queue with a given priority asso-

ciated with the incoming events. In the simplest case, all

events have equal priority and the select algorithm picks up

the event from the front of the queue without sorting the

queue and starts the strategy which is subscribed to this in-

put event. Upon processing the event from the top of the

queue, the scheduler decrements the queue by deleting its

front element and updating all the indices. A number of

scheduler TA models can be executed as concurrent pro-

cesses when more than one thread is available to the reflex

engine.

Figure 8. A scheduler timed automaton. The
select state is the one in which the schedul-
ing decision is made.

We have not delved into the modeling of main appli-

cation and diagnosers as timed automatons in this paper.

However, one can argue that the concerned model can be

deduced from the abstraction of main application’s behav-

ior used for designing the fault-mitigation strategy.

5. Timed Automaton Based Verification

Once we transform the reflex engine architecture into

a network of timed automatons we can utilize the model

checking algorithms built in UPPAAL and KRONOS. How-

ever, first we have to translate the safety, liveness, and

bounded time responsiveness questions for the reflex and

healing architecture as a TCTL formula for the network of

timed automatons:

• Liveness of the reflex and healing architecture will

amount to checking if the system has any deadlocks. In

UPPAAL this property is preprogrammed as a macro

A� not deadlock.

• Safety of the reflex and healing architecture can be

checked by introducing an error location in all time au-

tomatons and forcing a transition to error if any dead-

line is missed. Then the checking of the safety prop-

erty will amount to checking the reachability property

not E� error.

Proceedings of the Third IEEE International Workshop on Engineering of Autonomic & Autonomous Systems (EASE’06) 
0-7695-2544-X/06 $20.00 © 2006 IEEE 



• Bounded Response Properties can be formalized using

the reachability property and liveness property. Sup-

pose we have to check if state = state1 happens then

state = state2 will happen within 5 time units. In

order to formulate this property, we augment the time

automaton with an additional clock called a formula

clock, say z, whereby we reset its value to 0 on all

the transitions leading to state1 and check if the live-

ness property A�(state = state1 → A�state =
state1 ∧ z <= 5) is true or not.

6. Case Study

In this case study we consider a real-time experimental

physics data processing system [17, 18], which employ a

software task commonly referred to as a filter application.

This application is responsible for filtering and marking the

data generated from high-energy particle interactions inside

a particle accelerator. Interactions are classified as scientif-

ically significant or not, causing only interesting data to be

stored.

In order to specify the real-time properties of the filter,

we assume that it has a deadline of 25 milliseconds for pro-

cessing one data element. It is known that the worst case

execution time of the filter lies between 20 to 25 millisec-

onds. Fig. 9 shows the correct working filter modeled as a

timed automaton. For this study we consider two types of

faults:

Figure 9. In the request mode the filter col-
lects the next data within 1 millisecond. It
must complete processing within 25 millisec-
onds.

• CRC faults (Fault 0) are caused if a number of data

errors occur consecutively without giving enough time

for the filter application to apply correction algorithms.

For this study, we assume a fault if the filter witnesses

consecutive occurrences of 5 CRC faults, with the time

of arrival between all consecutive pairs of faults being

less than 10 milliseconds. The mitigation action recon-

figures the error detection and correction scheme to a

more robust code such as Convolutional code [19].

• Timeout faults (Fault 1) are caused if a filter violates

the 25 millisecond deadline for processing any data el-

ement assigned to it. The mitigation action (mitigation

1) for this fault is to reconfigure the filter, changing its

precision, and to forward the data element to the next-

level filters.

6.1. Description of Designed Strategies

For this system, we used one reflex engine, which has a

single available thread executing two possible behaviors:

• Strategy 0 uses a timer for measuring the time between

two consecutive occurrences of a CRC error detection.

This behavior produces a mitigation action if the inter-

arrival time was less than 10 milliseconds for 5 con-

secutive pairs. Fig. 10 shows the state-based logic of

this behavior along with its timer.

Figure 10. Logic of the first strategy.

• Strategy 1 simply tracks the incoming event, Timeout

fault. Its corresponding mitigation action (mitigation

1) causes a change of state to a reconfiguration state,

shown in Fig. 9. It has two possible locations, idle and

busy. Fig. 11 shows the logic of this state machine

based behavior.

Figure 11. Logic of second the strategy. Start
and finished events are used to communicate
with the scheduler.

6.2. Analysis

We used the timed automaton model checking tool UP-

PAAL for this case study. Using the mapping procedure
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Figure 12. Network of timed automatons for the case study

outlined in Section 4.1, we transformed the reflex engine

into a network of timed automatons. We used the integers

0,1, and 2 to represent fault 0, CRC error event, and timeout

event of the timer in the buffer TA. The complete network

of timed automatons for this configuration is shown in Fig.

12. Overall, the network has 10 synchronized input/output

event/action pairs and 5 clocks. One clock is for the sched-

uler, one measures the execution time of behavior 1, one

measures the filter time, one is for the timer, the last clock

measures the bounded response time for fault 0.

In order to formalize a bounded response for faults

(communicated through events) using state-based predi-

cates we had to use special locations called Committed lo-

cations [16]. By definition, time is not allowed to pass

in a Committed location. Therefore, one can identify

the generation of a fault or mitigation event as an en-

try/exit to/from these locations. For example, we used

the Committed locations Filter1.Fault1 ExecV iol and

Filter1.reconfiguration to represent the occurrence of

fault 1 and the corresponding mitigation action. Finally,

the TCTL formula A�(Filter1.Fault1 ExecV iol → A

�Filter1.reconfiguration ∧ Filter1.z <= 3) was used

to check if mitigation 1 causes filter 1 to reconfigure within

3 milliseconds of any occurrence of fault 1.

Table 1 shows the various properties that were verified

for this case study. The computer used to perform the

UPPAAL analysis was a Pentium IV 3.0 GHz dual core

machine with 512 MB memory. Of the 4 properties we

checked, we discovered that the mitigation action for fault

1 (execution time violation fault) cannot happen within 2
milliseconds. Therefore, we can safely conclude that for

this model we will need at least 2 milliseconds to recover

from fault 1.

7. Conclusion and Future Work

In this paper, we presented a method for representing and

analyzing real-time autonomic systems based on our exist-

ing RH framework. The real-time behavior of the system

can be analyzed by mapping the engine components to a

semantic domain of networked timed automatons.

We demonstrated our approach with a case study of a
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Table 1. Results
Property TCTL formula Results
Liveness A�not deadlock True

Safety: Queue will never overflow A�not Queue.QueueOverflow True

Bounded Response: Mitigation 1 will A�(Filter1.Fault1 ExecV iol
happen within 3 milliseconds of fault 1 → A�Filter1.reconfiguration ∧ Filter1.z <= 3) True

Bounded Response: Mitigation 1 will A�(Filter1.Fault1 ExecV iol
happen within 1 milliseconds of fault 1 → A�Filter1.reconfiguration ∧ Filter1.z <= 1) False

simple filter application with two kinds of faults. Even

though the timing data used for this case study was simu-

lated, we have constructed similar autonomic systems with

real embedded hardware processing real data. These tools

and methods can be used to analyze the time-correctness

of autonomous fault tolerant strategies before they are de-

ployed in a real system.

It is noteworthy to point out that computer memory re-

quired for timed automaton model checking algorithms in-

creases exponentially with the number of clocks. Therefore,

as the size of system increases, the verification algorithm

will require an infeasible amount of memory/time in order

to execute to completion. Thus, it is not a straightforward

task to scale this approach of model checking large systems

as a network of timed automatons.

In order to address the scalability issues we will either

have to reduce the total number of clocks in the system

model or will have to investigate ways of finding symmetri-

cal patterns in the hierarchical fault architectures so that we

only need to verify the basic patterns of operation, instead

of the complete system model. We are currently exploring

both of these possibilities in order to make our approach

effective.
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