
Reliable Distributed Real-time and Embedded Systems
Through Safe Middleware Adaptation

Akshay Dabholkar, Abhishek Dubey, Aniruddha Gokhale, Gabor Karsai, and Nagabhushan Mahadevan

Institute of Software Integrated Systems, Dept. of EECS, Vanderbilt University, Nashville, TN 37235, USA
Email: {aky,dabhishek,gokhale,gabor,nag}@isis.vanderbilt.edu

Abstract—Distributed real-time and embedded (DRE) sys-
tems are a class of real-time systems formed through a compo-
sition of predominantly legacy, closed and statically scheduled
real-time subsystems, which comprise over-provisioned re-
sources to deal with worst-case failure scenarios. The formation
of the system-of-systems leads to a new range of faults that
manifest at different granularities for which no statically
defined fault tolerance scheme applies. Thus, dynamic and
adaptive fault tolerance mechanisms are needed which must ex-
ecute within the available resources without compromising the
safety and timeliness of existing real-time tasks in the individual
subsystems. To address these requirements, this paper describes
a middleware solution called Safe Middleware Adaptation for
Real-Time Fault Tolerance (SafeMAT), which opportunistically
leverages the available slack in the over-provisioned resources
of individual subsystems. SafeMAT comprises three primary
artifacts: (1) a flexible and configurable distributed, runtime
resource monitoring framework that can pinpoint in real-time
the available slack in the system that is used in making dynamic
and adaptive fault tolerance decisions; (2) a safe and resource-
aware dynamic failure adaptation algorithm that enables ef-
ficient recovery from different granularities of failures within
the available slack in the execution schedule while ensuring
real-time constraints are not violated and resources are not
overloaded; and (3) a framework that empirically validates
the correctness of the dynamic mechanisms and the safety of
the DRE system. Experimental results evaluating SafeMAT on
an avionics application indicates that SafeMAT incurs only 9-
15% runtime failover and 2-6% processor utilization overheads
thereby providing safe and predictable failure adaptability in
real-time.

Keywords-Middleware, Adaptation, Fault Tolerance, Real-
time, Software Health Management, Profiling

I. INTRODUCTION

Applications that are deployed in safety-critical domains

such as avionics, automotive, industrial automation are often

over-provisioned in terms of the resources to handle failures

in the worst-case scenarios. Moreover, they are closed in

nature with precisely specified hard real-time Quality of

Service (QoS) requirements of schedulability, timeliness,

processor and memory allocation, and reliability. There is,

however, an increasing trend towards realizing larger sys-

tems of systems that are composed predominantly from these

deployed systems, which we collectively term as distributed

real-time and embedded (DRE) systems. The realization

of DRE systems gives rise to various interdependencies

between individual subsystems. Moreover, a new range of

faults arise in the context of the induced interdependencies,

which must be handled to maintain the mission-critical

nature of the overall DRE system.

The over-provisioning of resources in the individual sub-

systems is detrimental to realizing reliable DRE systems

because fault tolerance solutions need resources, however,

the individual subsystems do not have the flexibility to

add new resources or modify the real-time schedules of

their tasks. Redesigning and reimplementing the deployed

individual systems is not an option. Thus, designing fault-

tolerance mechanisms for DRE systems must utilize avail-

able resources without compromising the real-time proper-

ties of the individual subsystems. Consequently, there is a

need to identify unused resources at runtime that can be

used for fault tolerance. The key insight we leverage for our

work hinges on the existence of a significant slack in the

over-provisioned individual subsystems. The challenge lies

in identifying this slack and making effective use of it.

Our next question is identifying the right fault tolerance

mechanisms for DRE systems. Software Health Manage-

ment (SHM) [1] is a technique which applies principles from

system health management to software intensive systems that

are ubiquitous in human society, including several safety-

critical systems as shown in [2]. SHM is a promising

approach to providing fault-tolerance in real-time systems

because it not only provides for fault detection and re-

covery but also effective means for fault diagnostics and

reasoning, which can help make effective and predictable

fault mitigation and recovery decisions. However, these

earlier works focused primarily on diagnosis of the faulty

components and recovering the functionality of the system.

Moreover, they handled only those errors in a component

that are known a priori with predefined failover strategies

but did not account for system resource utilizations and

availability during failover. Thus, naively using SHM for

DRE systems fault tolerance is likely to result in suboptimal

runtime failure adaptations while also impacting resource

utilizations.

Adaptive Fault Tolerance (AFT) [3] has been known

to improve the overall reliability and resource utilizations.

However, the technique has been applied only for soft real-

time applications. Since these techniques require additional

resources to perform failure recovery, they can consume

2012 31st International Symposium on Reliable Distributed Systems

1060-9857/12 $26.00 © 2012 IEEE

DOI 10.1109/SRDS.2012.59

362

precious time from the hard real-time schedule of individual

subsystems. To overcome the limitations of individual SHM

and AFT approaches while still availing of their benefits

and maintaining the timeliness and safety of the real-time

applications, this paper presents a middleware-based fault-

tolerance solution called Safe Middleware Adaptation for

Real-Time Fault Tolerance (SafeMAT). Our research on

SafeMAT makes the following contributions:

• A Distributed Resource Monitoring (DRM) framework
that provides highly configurable, fine-grained, distributed

and hierarchical monitoring of system resources, such as

processor, process, component and thread utilizations, that

enables the selection of the best candidates to failover after

failures. The DRM framework not only aids in the profiling

and tuning of the system execution schedules but also pro-

vides a key component of the adaptive failure management

to handle failures at runtime.

• An Adaptive Failure Management (AFM) framework
that leverages the DRM framework to augment software

health management mechanisms to provide an adaptive

failure management capability. The AFM framework pro-

vides different cooperating runtime mechanisms, such as

safe failure isolation and hierarchical failover algorithms,

to enable the real-time applications to dynamically respond

and adapt to system failures while ensuring that the system

timeliness requirements are still adhered to.

Paper Organization - The rest of the paper is organized as

follows: Section II elicits the challenges for safe middleware

adaptation; Section III presents the SafeMAT architecture

and algorithms; Section IV empirically validates our ap-

proach in terms of minimal failover delays, and runtime

overhead in the context of a representative DRE avionics

case study; Section V compares our approach to related

work in the area of real-time and fault tolerance; and finally

Section VI provides concluding remarks identifying lessons

learned and scope for improvements.

II. DRE PLATFORM ASSUMPTIONS AND RESEARCH

CHALLENGES

This section brings out the challenges that motivate the

need for the primary vectors of the SafeMAT middleware

presented in this paper. Before delving into the challenges,

we present a model of the system and the underlying

platform we consider in this research.

A. System Model and Platform Assumptions

Our research focuses on a class of DRE systems where the

system workloads and the number of tasks in the individual

subsystems that make up the DRE system are known a pri-
ori. Examples of individual subsystems that make up DRE

systems include tracking and sensing applications found in

the avionics domain or the automobile system found in the

automotive domain (e.g., reacting to abnormalities sensed

by tires). These systems demonstrate stringent constraints

on the resources that are available to support the expected

workloads and tasks. For this paper we focus on the CPU

resource only.

Our research assume that the individual subsystems of the

DRE system use the ARINC-653 [4] model in their design

and implementation because of its support for temporal

and spatial isolation, which are key requirements for real-

time systems. ARINC-653 uses fixed-priority preemptive

scheduling where the platform is specified in terms of mod-

ules that are allocated per processor which in turn are com-

posed of one or more partitions that are allocated as tasks.

Each partition has its own dedicated memory space and time

quantum to execute at the highest priority such that it gets

preempted only when its allocated time quantum expires.

Multiple components or subtasks can execute through multi-

tasking within each quantum. For evaluating our design

of SafeMAT and experimentation, we have leveraged an

emulation [5] of the ARINC-653 specification described

next.1

B. ARINC-653 Component Model Middleware and Fault
Model

The emulation middleware and its fault model we use in

our research is called the ARINC-653 Component Model

(ACM) middleware [5], which essentially implements the

CORBA Component Model [6] abstraction over the ARINC-

653 emulation environment. ACM components interact with

each other via well-defined patterns, facilitated by ports:

asynchronous connections (event publishers & consumers)

and/or synchronous provided/required interfaces (facets/re-

ceptacles). ACM allows the developers to group a number

of ARINC-653 processes into a reusable component. Since

this framework is geared towards hard real-time systems, it is

required that each port be statically allocated to an ARINC-

653 process whereas every method of a facet interface be

allocated to a separate process.

ACM provides a design-time graphical modeling environ-

ment to enable a developer to assemble the components of

the application, deploy them into ARINC-653 partitions (es-

sentially OS processes) of ARINC-653 modules (essentially

the processors), and configure various real-time properties

of the components. A runtime middleware honors these

decisions. The ACM middleware comprises multiple differ-

ent functionalities. Of interest to us in this research is the

Module Manager (MM), which is a controller responsible for

providing temporal partitioning among partitions.2 For this

purpose, each module is bound to a single core of the host

processor. Using offline analysis, the MM is configured with

a fixed cyclic schedule computed from the specified partition

1We used the emulation environment since it was readily available to us,
and has been used previously to demonstrate key ideas of software health
management for avionics applications.

2Partitions are mapped to Linux processes.

363

periods and durations. It is specified as offsets from the start

of the hyper period, duration and the partition to run in that

window. Once configured and validated, the MM implements

the schedule using the SCHED_FIFO policy of the Linux

kernel and manages the execution and preemption of the

partitions. The MM is also responsible for transferring the

inter-partition messages across the configured channels. In

case of a distributed system, there can be multiple MMs each

bound to a processor core that are controlled hierarchically

by a system-level module manager.

1) Software Health Management in ACM: We have

extended and augmented the ACM software health man-

agement framework [2] with resource-aware adaptive fault

tolerance (AFT). ACM supports the notion of Software

Health Management (SHM), which provides incremental

fault mitigation strategies and operates at two levels. The

first and basic level of protection is provided by component-

level health management (CLHM), which is implemented in

all components. It provides a localized timed state machine

with state transitions triggered either by a local anomaly or

by timeouts, and actions that perform the local mitigation.

The second and global level is called system-level health

management (SLHM). The SLHM comprises an aggregator

of alarms that are received from individual CLHMs. The

Aggregator feeds these alarms to a diagnostics engine, which

is configured with a failure propagation graph to reason

about the root cause of failures. The decisions are then

fed to a fault mitigation capability called a Deliberative
Reasoner [7].

2) Fault Model and Fault Handling in ACM:
An ACM component can be in one of the following

three states: active (where all ports are operational),

inactive (where none of the ports are operational) and

semi-active (where only the consumer and receptacle

ports are operational, while the publisher and facet ports

are disabled). We focus on fail-stop failures within hard

DRE systems that prevent clients from accessing the services

provided by hosted applications. Failures can be masked

by recovering and failing over to redundant backup replica

components. Due to hard real-time constraints and to avoid

state synchronization overhead, we use semi-active repli-
cation [8] to recover from fail-stop processor failures. In

semi-active replication, one replica—called the primary—

handles all client requests in active state. Backup replicas

are in semi-active state where they process client’s requests

but do not produce any output.

ACM (and hence SafeMAT) considers two main sources

of failure for each component port (a) logical failure - inter-

nal software, concurrency (deadline violations due to lock

timeouts) and environmental faults, and latent error in the

developer code to implement the operation associated with

the port or (b) a critical failure, such as process/processor

failures, or undetected component failures. By convention,

to recover from logical failures, we fail over to similar

backup replicas with identical interfaces but alternate imple-

mentations (from different vendors/developers). In case of

critical failures, we fail over to identical backup replicas or

to alternate backup replicas if available. Also by convention,

alternate backup replicas can be deployed within the same

partition whereas identical backup replicas are always de-

ployed to different partitions in the same module or different

modules of ACM.

C. Research Challenges

Realizing the objectives of SafeMAT are fraught with

a number of challenges described below. Resolving these

challenges become the primary vectors of our SafeMAT

solution.

• Challenge 1: Identifying the Opportunities for Slack in
the DRE System As noted in Section I, DRE systems are

composed often from individual legacy subsystems. Many

of these subsystems comprise real-time tasks with strict

deadlines on their execution times. To ensure the safety- and

mission-criticality of these subsystems, they are configured

with predefined execution schedules computed offline that

are fixed for their execution lifetime once they are deployed

in the field. This ahead-of-time system planning ensures that

such subsystems will behave deterministically in terms of

their expected behavior and their provided services, and the

critical tasks with hard real-time requirements will always

satisfy their deadlines. To achieve this predictability, these

subsystems are over-provisioned in terms of the allocated

time and required capacity of resources. Naturally, for most

of the time many of these resources remain under-utilized

and hence provide an immediate opportunity to host the fault

tolerance mechanisms needed for DRE systems. However,

due to the dynamic nature of faults, the amount of slack

available in each subsystem may vary at runtime thereby

rendering any offline computation of slack for DRE fault

tolerance useless. Therefore, there is a need to obtain a

runtime snapshot of available slack in the system that

then will enable the runtime execution of fault tolerance

mechanisms for DRE systems. Such a monitoring capabil-

ity must provide real-time information while at the same

time not impose any significant overhead on the system.

Section III-B presents our solution to a scalable Dynamic

Resource Monitoring (DRM) capability in SafeMAT. In the

context of our ARINC653-based scheduling of the DRE

systems, DRM is not only able to obtain the actual CPU

utilizations of the partition tasks but also of the subtasks

(i.e., application components) that are allocated within the

partition.

• Challenge 2: Designing Safe and Predictable Dynamic
Failure Adaptation
Failures in DRE systems may manifest in different types and

granularities. For example, some component failures may

be logical or critical. The granularity of failures could be

364

a component, group of components (subsystem), processes

or processors. Moreover, the induced interdependencies in

DRE systems due to composition of individual subsystems

may lead to cascading failures of the dependent compo-

nents (domino effect). Such an effect has the potential to

increased deadline violations and over-utilization of system

resources. Statically defined fault tolerance schemes will not

work to completely handle these kinds of failures. Dynamic

failure adaptation techniques can provide better capabilities

to tolerate different kinds and granularities of failures, and

can achieve better resource utilizations. However, given the

criticality of hard real-time system execution, the failure

adaptations that can be performed need to be safe and

predictable. By utilizing the slack (which is obtained using

the DRM capabilities), we can provision dynamic fault

adaptation, however, we must ensure that the execution

deadlines are not violated while achieving such runtime

adaptations. Consequently, it is necessary to reduce the

amount of recovery, which calls for failure detection and

mitigation mechanisms that are fast and lightweight in terms

of their space and runtime overhead as well are adaptive

to the failure type and granularity, and component replica

placements. Section III-C describes the adaptive fault toler-

ance mechanism supported by SafeMAT.

The rest of this paper presents our SafeMAT middleware

that resolves these challenges.

III. DESIGN AND IMPLEMENTATION OF SAFEMAT

We have designed the Safe Middleware Adaptation for

Real-Time Fault Tolerance (SafeMAT) middleware to safely

provision adaptive failure mitigation and recovery mecha-

nisms in DRE systems that is resource-aware and leverages

the benefits of software health management.

A. SafeMAT Architecture

The design of SafeMAT is driven by a holistic approach

to addressing the challenges described in Section II. Figure 1

illustrates the architectural components of SafeMAT and

their interactions. It depicts the underlying ARINC-653

Component Middleware solution upon which SafeMAT is

designed and implemented.

SafeMAT extensions to ACM have been architected in

the form of a hierarchy of cooperating components. As

shown in Figure 1, at the topmost level SafeMAT extends

ACM’s System Module Manager with a System Resource

Monitor (sRM) and failure handlers. Moreover, it intro-

duces the Resource-Aware Deliberative Reasoner (RADaR)

to ACM’s SHLM. At the second level are the different

Module Managers supplied by the original ACM that are

deployed on each computing processor core or machine,

each hosting a Module Resource Monitor (mRM), which are

newly introduced in SafeMAT. At the third level, SafeMAT

introduces new architectural elements to ACM in the form

of different Partition Managers that are responsible for

Module N

Partitions

CLHM Components
Partition
Resource
Monitor
(pRMn)

Partition Managers

Failure
Handler

Partition
Resource
Monitor
(pRMc)

Partition
Launcher

System-Level Health Manager

Alarm
Aggregator

Resource Aware
Deliberative

Reasoner
(RADaR)Diagnoser

HFA DR

System Module Manager

Module
Scheduler

Failure
Handler

System
Resource
Monitor

(sRM)

Module 1

eedda

Module Manager 1

Partition
Scheduler

Failure
Handler

Module
Resource
Monitor
(mRM)

Partitions

CLHM Components
Partition
Resource
Monitor
(pRMn)

Partition Managers

Failure
Handler

Partition
Resource
Monitor
(pRMc)

Partition
Launcher

Module Manager N

Partition
Scheduler

Failure
Handler

Module
Resource
Monitor
(mRM)

MM
ii
uu
tt

MM

MM
tt
rr
oo

M

MM

lthh MM aa

MM

Ma

dd
uu

aaaaaa

Figure 1. SafeMAT Architecture

managing each partition, each hosting a Partition Resource

Monitor (pRM).

Each of the managers include Failure Handlers to de-

tect the failures in their respective partitions or modules

and notifying them to the RADaR. The logical failures in

components are notified by the respective CLHMs (from

the original ACM framework) residing in each application

component. The different monitors developed for SafeMAT

form the core of the DRM framework whereas the RADaR

along with the various Failure Handlers form the core of the

AFM framework in SafeMAT. SafeMAT extends ACM by

providing an additional level of lower-level fault mitigation

in the form of a partition manager and its resource monitor

(pRM). Doing so helps to isolate failures in partitions and

mitigate partition faults by taking actions at the partition-

level itself instead of involving the module manager.

B. Distributed Resource Monitoring

The Distributed Resource Monitoring (DRM) framework

resolves Challenge 1 of Section II by providing a highly con-

figurable and flexible distributed, hierarchical framework for

monitoring the health and utilizations of system resources at

various granularities, such as processor, process, component

and thread. The framework comprises a distributed hierar-

chical network of a single System Resource Monitor (sRM)

controlling multiple distributed Module Resource Monitors

(mRM) that in turn control multiple Partition Resource Mon-

itors (pRM) local to them in client-server configurations.

The sRM resides in the system module whereas the mRMs

are always deployed within the Module Managers and the

pRMs are deployed within the individual partitions and their

Partition Managers. The pRMs are of two types depending

on their configured modes (a) pMRc in the COMPUTE mode

365

and (b) pMRn in the NOTIFY mode.

1) Configurability in DRM: It is possible to configure

the DRM framework using different strategies, depending

on the overall system configuration and amount of system

resources available. These strategies include reactive
and periodic monitoring strategies that can be used in

conjunction with different granularities of monitoring system

resources ranging from processes to threads. The reactive

monitoring strategy is the least resource consuming since

the CPU utilizations are computed only when instructed by

the RADaR (in case of a failure). The periodic monitoring

strategy is the most resource consuming since the monitors

compute utilizations periodically and keep the historic record

of the utilizations to provide a better prediction regarding the

utility of the resources. In the periodic strategy, the mRM

periodically sends utilizations of all components to the sRM

so that the information is readily available but may not be

the most current one. Finally, it is also possible to configure

the DRM framework to supply only the utilizations of the

specific entities that RADaR is interested in.

2) Discovering Resource Allocations: The DRM frame-

work is also capable of discovering the deployment and

allocations of components to specific partitions and modules

at runtime thereby obviating the need to configure the

framework manually and enabling fast monitoring. It infers

the assignments of the different subtasks to their components

as well as allocations of components to their partitions

when the monitors initialize their state. The pRMn runs

within the partition in the NOTIFY mode where it sends the

mappings of the deployed components and their subtasks but

does not compute the resource utilizations. These mappings

are collated by the mRM and sent to the sRM which

maintains the global allocations of subtasks to components,

deployment of components to partitions, and the assignments

of partitions to their modules. The pRMc computes the

resource utilizations and is configured within the partition

in the COMPUTE mode. This capability enables the ap-

plication of the DRM framework more generally to other

types of systems where the allocations and deployments

can change at runtime. Once the component deployment

and allocations are learned by the sRM, it updates them

with the primary-backup information about the components,

component groups, and modules.

3) Resource Liveness Monitoring: The DRM framework

has been additionally entrusted with monitoring the health

of its own monitors by periodically making the monitors in

the lower level send their health status to the upper level

monitors. This monitoring capability is auxiliary to the ex-

isting signal handlers that also detect partition and partition

manager failures thereby creating a more robust dual health

monitoring capability. Thus, if the health status beacon is

not received from the pRMn and pRMc by the Module

Manager and Partition Manager, then it is assumed that the

Partition (process), and the Partition Manager (process) have

crashed, respectively. Similarly, it is assumed the module

(processor/core) has crashed if the mRM has not reported

its health status beacon. Every time a failure is detected by

the parent entity, the failure status is sent to the RADaR.

Thus, the major advantage of SafeMAT over ACM is that

while the SHM framework in ACM can only detect logical

component failures, the DRM framework in SafeMAT can

detect critical module, partition and component failures also.

C. Resource-Aware Adaptive Failure Mitigation

To perform resource-aware failure adaptation and address

Challenge 2 of Section II, we have developed the Adap-

tive Failure Mitigation (AFM) engine that leverages the

DRM framework and augments the ACM-SHM framework

through different cooperating runtime mechanisms, such as

hierarchical failover and safe failure isolation. The AFM is

designed as a collection of different components including

the Failure Handlers and RADaR that integrate the Hier-
archical Failure Adaptation (HFA) algorithm we developed

with the Deliberative Reasoner (DR) [7] of the SLHM. The

Failure Handlers are responsible for detecting process and

processor failures and the simultaneous logical and critical

component failures that have occurred but not reported to the

HFA. The Failure Handlers along with the DRM framework

and the HFA algorithm work together to provide quick and

efficient failure adaptation at runtime.

1) Failover Strategies: The type of failover strategy

employed by the runtime failure adaptation mechanism is

highly dependent on the failure type (i.e., logical or critical),
the failure granularity (e.g., component, subsystem, partition

or module), and the primary-backup deployment topol-

ogy. The primaries can constitute individual components

or groups of components (also called subsystems) and also

the modules themselves. The graphical modeling capability

provided by the original ACM can be used to model the

deployment of primaries and backups. For logical failures,

backups of application components with alternate implemen-

tations can be deployed in the same partition. However, for

critical failures, backups with identical implementations are

deployed in separate partitions within the same or remote

modules (processors).

Due to the different primary-backup deployment pos-

sibilities, it is necessary to implement adaptive failover

mechanisms that take into account the failure type, gran-

ularity and deployment topology that can enable the ability

to fail over and recover the application component(s) at

the component, subsystem, process and processor levels.

Moreover, to remain resource-aware, our algorithm chooses

the best candidates at each level for failover by ranking

the backups dynamically in increasing order of either their

processor or partition or component utilizations for which

we leverage the DRM framework.

2) Enabling Hierarchical Failure Adaptation (HFA):
We have developed a Hierarchical Failure Adaptation (HFA)

366

algorithm that adapts its failover targets depending upon

the failure type, granularity and the primary-backup de-

ployments. The algorithm is invoked whenever any of the

DRM or the ACM-SHM frameworks detect a failure. In

order to provide quick and efficient failover once the ACM

Alarm Aggregator and the Failure Handlers detect a failed

primary (component/partition/module), the sRM proactively

pre-computes the sorted list of least utilized backups and

the message is sent to the RADaR with the listing of failed

primaries piggybacked with the sorted list of failover target

backups. The least utilized resource indicates maximum

available slack. It then hands over the control to the SLHM.

It is the responsibility of the SLHM to determine as to

when to activate the failure recovery mechanisms which

is dependent upon the number of failures the system can

withstand that have been programmed in advance within

the ACM-SHM framework. It is also dependent upon the

time taken by the system to stabilize till all alarms/errors

are collected, which is usually a hyperperiod long in dura-

tion. Additionally, the AFM failure handlers and the DRM

liveness monitoring is capable of detecting simultaneous

module, partition, logical and critical component failures

and are intelligently mitigated by the HFA algorithm in an

hierarchical fashion.

RADaR

Partition Manager

BEGIN

MT = HEAD (MI)

FORALL CT in MT

PF?
NO

MF? YES

DRWrapper
(Component C)

CI not empty?

NO

CT = HEAD (CA)

YES

CT = HEAD (CI)

YES

Restart
(Partition P)

IF P has
Facets?

YES

FORALL PD

REREAD P’s
references

GF?
YES

FORALL C in P

YES

FORALL CT in GT

RESTART (P)

DetermineFailover
(Component C)

PF?

NO

FORALL c in CA

YES

IF c not in P?

CT = c

YES

NO

NO

NO

REWIRE (CT)

LEGEND
MF, PF, GF, LF, CF :- Module, Partition, Group, Logical,
Critical Component Failure Flags

MT, GT, CT :- Module, Group, Component Failover Targets
CF, CA :- Sorted Set of Identical, Alternate Backup Replicas

GF = DeliberativeReasoner (C)

GT = DeliberativeReasoner (C)

GT = CreateBackups (GT)

CF? NO

CA not empty?

LF?

YES

YES
NO

Figure 2. The HFA Algorithm

At the core of the HFA algorithm (Figure 2) are three

functions: DetermineFailover, DRWrapper, and

Restart. DetermineFailover is a function that determines

how best to choose a failover target component and rewire

it with the rest of the application. On a failure, HFA

first detects the failure type (module/partition/component

group/critical/logical). If it is a module failure (MF), the

algorithm fails over to the least utilized identical module and

calls REWIRE on all the components in that module. If it is a

partition failure (PF), the algorithm invokes the DRWrapper

function for each component deployed in that partition.

Otherwise a component failure (LF /(CF)) is assumed and

the DRWrapper function is called for that component. DR-

Wrapper then calls the DeliberativeReasoner function to

determine group failure (GF) i.e., if the component has any

dependent components that will also require failover and

selects the least utilized backup target group of components

and finally calls DetermineFailover on each component in

the failed group.

In case of logical failure (LF), DetermineFailover func-

tion checks if alternate backup replica is available. Other-

wise, it checks for critical failure (CF), and if true selects

the least utilized identical backup replica if available. If not

available, it checks if alternate backup replica is available.

If not available, it restarts that partition to provide degraded

QoS. If available, it checks for a simultaneous partition

failure (PF), in which case it selects the least utilized

identical replica in a different partition. If not a critical or

logical failure, it restarts the partition. DetermineFailover

handles the simultaneous partition failure as a special case

where it has occurred simultaneous with a logical component

failure. In case of a simultaneous critical component failure,

it does not need to handle this special case as identical

backup replicas are always deployed on a different partition

as primary. If the restarted partition contained facets, the

Restart function ensures that the dependent partitions reread

the restarted partition’s new component references.

D. SafeMAT Implementation

SafeMAT has been implemented atop the ACM real-time

emulation middleware. It is implemented in approximately

5,000 lines of C/C++ source code excluding the ACM code.

The Partition Manager is implemented as a separate process

that gets spawned by the Module Manager for each partition

that needs to be spawned. The Module Manager sends

the necessary partition information through environment

variables and command line parameters to the Partition
Manager which in turn spawns the partition with the right

parameters and the same environment variables set.

The DRM uses the client-server paradigm and can

be configured with two different monitoring strategies

– reactive and periodic. The communication be-

tween the mRM and the pRMs is established through

plain UDP sockets for performance. We did not em-

ploy TCP sockets as we assume the closed network

that the avionics systems operate on have high reli-

ability and high bandwidth performance with a small

and bounded network propagation delay. The DRM com-

putes processor, process and thread utilizations from the

corresponding /proc/stat, /proc/<PID>/stat and

/proc/<PID>/task/<TID>/stat Linux data struc-

tures.

367

IV. EMPIRICAL EVALUATION OF SAFEMAT

To measure the performance of the various SafeMAT

adaptive mechanisms, we used a representative DRE system

called the Inertial Measuring Unit (IMU) [9] from the

avionics domain. IMU is rich and large enough to provide

a large number of components and redundancy possibilities

that stem from the composition of its subsystems comprising

the Global Positioning System (GPS), the Air Data Inertial

Reference Unit (ADIRU) [10], the flight control (PFC)

subsystem, and the Display subsystem. Figure 3 shows the

IMU system assembly comprising primary subsystems of

GPS and ADIRU, and their two secondary semi-actively

replicated backup replica subsystems connected to redun-

dant actively replicated PFC and Display subsystems. The

ADIRU subsystem is designed to withstand 2 failures of

its 6 Accelerometers. The GPS and the ADIRU subsystems

feed the 3D location coordinates and acceleration values,

respectively, to each of the PFC subsystems that integrate the

acceleration values over the 3D coordinates computing the

next coordinate position and outputting them to the Display

subsystem. The GPS subsystems and ADIRU subsystems

run at a frequency of 0.1 Hz and 1 Hz respectively. The

PFC fetches the GPS data at a slower but accurate rate of

0.1 Hz whereas the Display subsystem fetches the data from

the PFC subsystem at a rate of 1 Hz. Thus, the hyperperiod

of the IMU is 10 seconds (LCM of 1 and 10).

Figure 3. IMU System Assembly.

A. Evaluating SafeMAT’s Utilization Overhead

We use SafeMAT’s PME framework to determine the

overhead imposed by the SafeMAT’s fast failure adaptation

capability by measuring the CPU utilizations of its compo-

nents. Measuring the actual utilizations at the end of each

execution hyperperiod is an indicator of the slack available

for accommodating failure adaptation mechanisms. Since

SafeMAT builds over ACM, we executed 100 iterations of

the IMU system each for the plain vanilla ACM-SHM and

the SafeMAT adaptation failure recovery mechanisms. We

artificially introduced failures at 15, 20, 30, 35 iterations in

the GPS Processor, Accelerometers 6, 5 and 4, respectively

such that the values output by them are exceedingly high (i.e.
deviate from the expected trend). Once Accelerometer 4 fails

at iteration 35, the system begins to malfunction and the Dis-

play starts receiving erroneously high acceleration values. At

this moment the SafeMAT failure adaptation starts executing

and makes the ADIRU and GPS primary subsystems failover

to one of their semi-active secondary subsystems depend-

ing upon their overall least average utilizations. In this

execution scenario the Primary_ADIRU_Subsystem
fails over to the Secondary_ADIRU_Subsystem2
whereas the Primary_GPS_Subsystem fails over to the

Secondary_GPS_Subsystem1. Figure 4 shows that the

SafeMAT does not add significant utilization overhead (2-

6%) over the existing ACM-SHM imposed utilizations (26-

73.26%).

Figure 4. SafeMAT Utilization Overhead

B. Evaluating SafeMAT-induced Failover Overhead Times

To qualitatively measure SafeMAT’s runtime failover

overhead times we measure the worst-case execution times

(WCETs) of the SafeMAT’s components based on two main

parameters: (1) the impact of component replica placements

relative to their primaries and (2) the number of nested

components within the component group that need failover.

We measure the failover overhead (TFO) as:

TFO = TDiag + TDR +

m∑
i=1

(
TmRM +

p∑
j=1

TpRM

)
+ TsRM + THFA

where

m - number of modules

p - number of partitions within each module

TDiag - WCET for Failure Diagnosis

TDR - WCET for Deliberative Reasoning

TsRM - WCET for the sRM to collect utilizations

TmRM - WCET for each mRM to collect utilizations

TpRM - WCET for each pRM to collect utilizations

THFA - WCET for Hierarchical Failover Algorithm

368

1) Impact of Component Replica Deployments: To mea-

sure the impact of component replica deployments, we

focused on the GPS subsystem from the IMU case study.

We created different deployment scenarios by altering the

placements of the component replica by either placing them

either within the same partition as primary, or a different

partition in the same module or a different partition within

a different module. We executed the GPS subsystem with the

existing vanilla ACM-SHM recovery mechanisms in place

and with the new SafeMAT failure adaptations enabled.

We have considered the WCETs of both ACM-SHM and

SafeMAT in this case. As shown in Table 5, SafeMAT incurs

comparable execution times to the existing ACM-SHM

execution times as this scenario has been evaluated on a per

component basis. The times go up as the replica partitions

move further away from the primaries. The high recovery

overhead per component are due mainly to the unavoidable

network latency to collect the utilizations. However, the

minuscule overhead on the order of a few milliseconds are

very insignificant in this case and will not cause deadline

violations when there is a large amount of slack available,

which is usually the case. Therefore, this is not a cause

of concern as shown in the next evaluation where we

progressively increase the number of components that need

failover – a scenario that is more common in real systems.

Figure 5. SafeMAT Mitigation Overhead for Different Replica Deploy-
ments

2) Impact of Component Group Size: To measure the

impact of size of the group of components that require

failover, we measure the overhead incurred by SafeMAT

for the GPS and ADIRU subsystems where the number

of components increase from just 2 to 13. As shown in

the evaluation Table 6, when the number of components

increase, the SafeMAT overhead costs gets amortized over

larger number of components. The effective additional run-

time overhead incurred by SafeMAT’s adaptive mechanisms

becomes significantly less (9-15%) compared to the ACM-

SHM’s diagnostic and reasoning overhead. SafeMAT’s over-

head is largely dependent on the size of the recovery

group, deployment complexity of the components within the

recovery group, and the amount of network communication

required within the DRM as shown in the TFO equation.

However, it does not grow exponentially, as recovery group

size increases. The more the number of components that

need failover, the more the amount of utilization data that

can be bundled together in the network messages that are

sent by the DRM monitors to RADaR. Conversely, the

smaller the number of components affected, the greater

the overhead incurred by SafeMAT due to the network

communication that is mandatory even for relatively small

number of messages exchanged.

Figure 6. SafeMAT Mitigation Overhead for Component Group Recovery

C. Discussion: System Safety and Predictability

Compared to the vanilla ACM-SHM mechanisms, Safe-

MAT adds negligible runtime utilization overhead with-

out overloading the system while performing better failure

recovery within the available utilization slack. Moreover,

by selecting the least-utilized failover targets, SafeMAT

maintains more available post recovery slack within the

system compared to ACM-SHM, while potentially improv-

ing the task response times as well. Figure 7 shows that

there was no noticeable impact on the Display jitter values

using SafeMAT over vanilla ACM-SHM and therefore the

response times remained largely unaffected while at the

same time failure recovery was superior. Moreover, there

were no missed real-time deadlines for the application

tasks. Moreover, SafeMAT adds negligible runtime failover

overhead thereby maintaining the predictability of the overall

system Thus, these results illustrate that SafeMAT maintains

the safety of the system and also the predictability.

Figure 7. Application Display Jitter (Hyperperiod = 1 sec)

369

V. RELATED WORK

In this section we discuss existing body of research in

the area of adaptive fault tolerance in distributed real-time

and embedded systems, and compare and relate our work

on SafeMAT. We categorize prior work along the following

dimensions:

1. Resource-aware Adaptations: The DARX frame-

work [11] provides fault-tolerance for multi-agent software

platforms by focusing on dynamic adaptations of replication

schemes as well as replication degree in response to chang-

ing resource availabilities and application performance.

In [12], an adaptive fault tolerance mechanism is proposed

to choose a suitable redundancy strategy for dynamically ar-

riving aperiodic tasks based on system resource availability.

Research performed in AQUA [13] dynamically adapts the

number of replicas receiving a client request in an ACTIVE

replication scheme so that slower replicas do not affect the

response times received by clients. Eternal [14] dynamically

changes the locations of active replicas by migrating soft

real-time objects from heavily loaded processors to lightly

loaded processors, thereby providing better response times

for clients. FLARe [3] proactively adjusts failover targets at

runtime in response to system load fluctuations and resource

availability. It also performs automated overload manage-

ment by proactively redirecting clients from overloaded

processors to maintain the desired processor utilization at

runtime. In [15], an adaptive dependability approach is

presented which mediates interactions between middleware

and applications to resolve constraint consistencies while

improving availability of distributed systems.

2. Real-time fault-tolerant systems: Our SafeMAT work is

influenced by the Time-aware fault Tolerance (TAFT) [16]

work in that we leverage the architectural patterns in

SafeMAT. While TAFT was applied to CORBA/C++-based

systems, we extended the work to systems that follow-

ing the ARINC-653 model with partition scheduling, and

also provide comprehensive software health management.

IFLOW [17] and MEAD [18] use fault-prediction techniques

to reduce fault detection and client failover time to change

the frequency of backup replica state synchronization to min-

imize state synchronization during failure recovery, and by

determining the possibility of a primary replica failure and

redirecting clients to alternate servers before failures occur,

respectively. The Time-triggered Message-triggered Objects

(TMO) project [19] considers replication schemes such

as the primary-shadow TMO replication (PSTR) scheme,

for which recovery time bounds can be quantitatively es-

tablished, and real-time fault tolerance guarantees can be

provided to applications. FC-ORB [20] is a real-time Object

Request Broker (ORB) middleware that employs end-to-

end utilization control to handle fluctuations in application

workload and system resources by enforcing desired CPU

utilization bounds on multiple processors by adapting the

rates of end-to-end tasks within user-specified ranges. Delta-

4/XPA [21] provided real-time fault-tolerant solutions to

distributed systems by using the semi-active replication

model. Other research [22] uses simulation models to an-

alyze multiple checkpointing intervals and their effects on

fault recovery in fault-tolerant distributed systems.

3. Dynamic Scheduling: Common methodologies to lever-

age the slack in execution schedule have focused on dynamic

scheduling depending upon the runtime conditions. The

Realize middleware [23] provides dynamic scheduling tech-

niques that observes the execution times, slack, and resource

requirements of applications to dynamically schedule tasks

that are recovering from failure, and make sure that non-

faulty tasks do not get affected by the recovering tasks.

Limitations in prior work and need for safe fault
tolerance: For the hard real-time DRE systems, apply-

ing dynamic load balancing, dynamic rate and scheduling

adjustments, adaptive replication and redundancy schemes

add extraneous dynamism and therefore potential unpre-

dictability to the system behavior. Altering the redundancy

strategies require altering the real-time schedules which is

not acceptable for hard real-time systems that are strictly

specified. Constantly redirecting clients upon overload and

promoting backups to primaries adds unnecessary resource

consumptions for fixed priority systems. Such approaches do

not attempt to minimize the number of resources used; their

goal is to maintain service availability and desired response

times for the given number of resources in passively repli-

cated systems. In SafeMAT we guarantee that the dynamic

failure adaptations will not violate the real-time deadlines of

DRE systems and overload the resources. Moreover, as the

system resources are over-provisioned we use semi-active

replication which subsumes the need for expensive state-

synchronization and load balancing mechanisms.

VI. CONCLUSION

Mission-critical hard real-time applications that are in

service for many years, have too rigid execution schedules

to incorporate additional evolving domain requirements in

the form of new functionalities and better failure adaptation

techniques even if their resources are over-provisioned to

ensure their safety and predictability. While, existing soft-

ware health management (SHM) techniques are predictable,

they are too static and do not offer the best case failure

adaptation in real-time. In order to evolve these systems

and improve their predictability, reliability and resource

utilizations, it is necessary to discover the existing slack

within their execution schedules and utilize it to safely

provision additional and efficient dynamic failure adaptation

mechanisms.

In this paper, we presented a dynamic, safe middleware

adaptation technique and a performance metric evaluation

framework that provided a fast and adaptive failover through

flexible and configurable fine-grained resource monitoring

370

and an hierarchical failure adaptation algorithm that is not

only resource-aware but also took into account the fail-

ure type, failure granularity, the relative component replica

placements. Our approach is manifested in the form of the

SafeMAT middleware. We also rigorously evaluated our

adaptive middleware by measuring the runtime utilization

and the execution overhead for different replica deployments

as well as an increasing number of components.

The underlying task model for DRE systems in SafeMAT

and its performance evaluation are conducted assuming the

ARINC-653 task model. ARINC-653 is a standard to support

hard real-time avionics applications. Since DRE systems are

often represented by a mix of different criticality levels,

there is a need to segregate these applications and ease

verification. This is achieved through the partitioning scheme

supported by ARINC-653 that provides both temporal and

spatial isolation among the applications.

ACKNOWLEDGMENT

This work was supported in part by NSF CAREER Award

CNS 0845789. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of the

National Science Foundation.

REFERENCES

[1] A. Srivastava and J. Schumann, “The case for software health
management,” in Space Mission Challenges for Information
Technology (SMC-IT), 2011 IEEE Fourth International Con-
ference on. IEEE, 2011, pp. 3–9.

[2] A. Dubey, G. Karsai, and N. Mahadevan, “Model-based soft-
ware health management for real-time systems,” in Aerospace
Conference, 2011 IEEE, Mar. 2011, pp. 1–18.

[3] J. Balasubramanian, S. Tambe, C. Lu, A. Gokhale, C. Gill,
and D. C. Schmidt, “Adaptive Failover for Real-time Middle-
ware with Passive Replication,” in Proceedings of the 15th
Real-time and Embedded Applications Symposium (RTAS
’09), San Francisco, CA, Apr. 2009, pp. 118–127.

[4] ARINC, “ARINC specification 653-2: Avionics application
software standard interface part 1 - required services,” ARINC
Incorporated, Annapolis, Maryland, USA, Tech. Rep., May
2010.

[5] A. Dubey, G. Karsai, and N. Mahadevan, “A Component
Model for Hard Real-time Systems: CCM with ARINC-
653,” Software: Practice and Experience, vol. 41, no. 12,
pp. 1517–1550, 2011. [Online]. Available: http://dx.doi.org/
10.1002/spe.1083

[6] The Common Object Request Broker: Architecture and Spec-
ification Version 3.1, Part 3: CORBA Component Model,
OMG Document formal/2008-01-08 ed., Object Management
Group, Jan. 2008.

[7] A. Dubey, N. Mahadevan, and G. Karsai, “A deliberative
reasoner for model-based software health management,” in
The Eighth International Conference on Autonomic and Au-
tonomous Systems. St. Maarten, The Netherlands Antilles:
IARIA, Mar. 2012, pp. 86–92.

[8] A. M. Déplanche, P. Y. Théaudière, and Y. Trinquet, “Imple-
menting a semi-active replication strategy in chorus/classix, a
distributed real-time executive,” in SRDS ’99: Proceedings of
the 18th IEEE Symposium on Reliable Distributed Systems.
Washington, DC, USA: IEEE Computer Society, 1999, p. 90.

[9] A. Dubey, N. Mahadevan, and G. Karsai, “The inertial mea-
surement unit example: A software health management case
study,” Institute for Software Integrated Systems, Vanderbilt
University, Tech. Rep., 02/2012 2012.

[10] M. McIntyre and C. Gossett, “The boeing 777 fault tolerant
air data and inertial reference system-a new venture in work-
ing together,” in Digital Avionics Systems Conference, 1995.,
14th DASC, Nov. 1995, pp. 178 –183.

[11] O. Marin, M. Bertier, and P. Sens, “Darx: A framework
for the fault-tolerant support of agent software,” in ISSRE
’03: Proceedings of the 14th International Symposium on
Software Reliability Engineering. Washington, DC, USA:
IEEE Computer Society, 2003, p. 406.

[12] O. Gonzalez, H. Shrikumar, J. A. Stankovic, and K. Ramam-
ritham, “Adaptive fault tolerance and graceful degradation
under dynamic hard real-time scheduling,” in RTSS ’97, San
Francisco, CA, USA, 1997, p. 79.

[13] S. Krishnamurthy, W. H. Sanders, and M. Cukier, “An Adap-
tive Quality of Service Aware Middleware for Replicated
Services,” IEEE Transactions on Parallel and Distributed
Systems, vol. 14, no. 11, pp. 1112–1125, 2003.

[14] V. Kalogeraki, P. M. Melliar-Smith, L. E. Moser, and
Y. Drougas, “Resource Management Using Multiple Feed-
back Loops in Soft Real-time Distributed Systems,” Journal
of Systems and Software, 2007.

[15] L. Froihofer, K. M. Goeschka, and J. Osrael, “Middleware
support for adaptive dependability,” in Middleware, 2007, pp.
308–327.

[16] E. Nett, M. Gergeleit, and M. Mock, “An Adaptive Approach
to Object-Oriented Real-Time Computing,” in IEEE Interna-
tional Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC). Kyoto, Japan: IEEE Computer Society,
1998, p. 342.

[17] Z. Cai, V. Kumar, B. F. Cooper, G. Eisenhauer, K. Schwan,
and R. E. Strom, “Utility-Driven Proactive Management of
Availability in Enterprise-Scale Information Flows.” in Pro-
ceedings of ACM/Usenix/IFIP Middleware, 2006, pp. 382–
403.

[18] S. Pertet and P. Narasimhan, “Proactive recovery in dis-
tributed corba applications,” in DSN ’04: Proceedings of the
2004 International Conference on Dependable Systems and
Networks. Washington, DC, USA: IEEE Computer Society,
2004, p. 357.

[19] K. H. K. Kim and C. Subbaraman, “The pstr/sns scheme
for real-time fault tolerance via active object replication and
network surveillance,” IEEE Trans. on Know. and Data Engg.,
vol. 12, no. 2, 2000.

[20] X. Wang, Y. Chen, C. Lu, and X. Koutsoukos, “FC-ORB: A
robust distributed real-time embedded middleware with end-
to-end utilization controlstar, open,” Journal of Systems and
Software, vol. 80, no. 7, pp. 938–950, 2007.

[21] D. Powell, “Distributed Fault Tolerance: Lessons from Delta-
4,” IEEE Micro, vol. 14, no. 1, pp. 36–47, 1994.

[22] P. Katsaros and C. Lazos, “Optimal object state transfer -
recovery policies for fault tolerant distributed systems,” in
Proc. of DSN. (2004).

[23] V. Kalogeraki, P. M. Melliar-Smith, and L. E. Moser, “Dy-
namic Scheduling of Distributed Method Invocations,” in 21st
IEEE Real-time Systems Symposium. Orlando, FL: IEEE,
Nov. 2000.

371

