Chapter 8 ®
Diagnosis in Cyber-Physical Systems with e
Fault Protection Assemblies

Ajay Chhokra, Abhishek Dubey, Nagabhushan Mahadevan, Saqib Hasan,
and Gabor Karsai

8.1 Introduction

The Smart Electric Grid is a CPS: it consists of networks of physical components
(including generation and transmission subsystems) interacting with cyber compo-
nents (e.g., intelligent sensors, communication networks, computational and control
software). Reliable operation of such CPS is critical. Therefore, these systems are
equipped with specialized protection devices that remove the faulty component
from the system. However, if there are failures in the fault protection units, this
leads to a situation where an incorrect local mitigation in a subsystem results in a
larger fault cascade, leading to a blackout. This phenomenon was observed in the
recent blackouts [1], where tripping of some lines by the relays (protection devices)
overloaded some other parts of the system. These secondary overloaded components
were again isolated by pre-defined protection schemes, leading to tertiary effects
and so on. This domino effect got disseminated into the whole system, pushing it
towards total collapse.

The ultimate challenge in doing fault diagnosis in these cyber-physical systems
is to handle the complexity: the sheer size, large number of components, anomalies,
and failure modes. Furthermore, the subsystems are often heterogenous and the
typical approach is to try and understand the interactions among them, even if the
subsystems are from different domains. In the past, we have used the high-level con-
cept to model the interaction between the subsystems—(1) observable degradations,
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anomalies, discrepancies caused by failure modes, (2) their propagation, and (3)
their temporal evolution towards system-level fault (effects). This approach called
Timed Fault Propagation Graphs (TFPG) has been applied to avionics systems, fuel
assemblies, and software component assemblies [2, 3] and is based on a discrete-
event model that captures the causal and temporal relationships between failure
modes (causes) and discrepancies (effects) in a system, thereby modeling the failure
cascades while taking into account propagation constraints imposed by operating
modes and timing delays. In this graphical model, nodes represent failure modes
and discrepancies, edges represent the direction of causality, and attributes of edges
capture the conditions (mode and temporal delays) under which the edge is active.
The model-based fault diagnostics reasoner receives observations in the form of
time-stamped alarms that indicate whether a discrepancy is present and, using
abductive reasoning, generates a set of hypotheses about the failure modes that could
explain the observed fault signature, i.e. the fault effects.

However, the approach of failure diagnosis with timed fault propagation graphs
does not deal with the built-in automatic fault-protection mechanisms of the
system. Such local fault protection components are designed to mask the effect of
failures and thereby arrest the fault cascades. Additionally, these fault protection
components introduce failure modes that are specific to the operation or lack
of operation of the protection components. A classical TFPG model is not well
suited for capturing the specializations that are introduced by the inherent fault
protection mechanisms built into the system. For example, in power systems, there is
already a fault-detection/protection system (relays and breakers) that autonomously
protects elements of the network. Any protection operation performed by these
systems can fall into one of these categories: (a) correct and thereby isolate the
area where the fault occurred, (b) incorrect: fires incorrectly when it is not supposed
to, (c) backup: accounting for lack of firing of another protection system, or (d)
consequence of a previous firing which was incorrect when considering its effect on
the global or regional system stability. In effect, the failure can be introduced by the
physical components of the power system (e.g. cables) as well as components of the
fault-protection system (e.g., breakers/sensors). Furthermore, the autonomous fault
protection mechanism changes the network topology automatically (i.e., changes
the mode of the system).

To solve this problem, we have developed an extension of TFPG called Temporal
Causal Diagrams (TCDs). A TCD model is a behavioral augmentation of Temporal
Fault Propagation Graphs (TFPGs) that can efficiently model fault propagation
in various domains. The TCD-based diagnosis system is hierarchical. The lower
level uses local discrete event diagnosers, called Observers, which are generated
from the behavior specification of fault management controllers. A higher level
reasoner produces system level hypotheses based upon the output of local observers.
The approach does not involve complex real-time computations with high-fidelity
models, but reasons using efficient graph algorithms to explain the observed
anomalies. This approach is applicable to CPS that include supervisory controllers
that arrest fault propagation based upon local information without considering
system-wide effects. To explain TCD we use examples from power system domain.
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The paper is organized as follows, Sect.8.2 describes the background and
literature review followed by brief explanation of cascade phenomenon caused
by misoperation of fault management assemblies in power systems (Sect. 8.2.3).
Section 8.3 gives an overview of our approach and describes the TCD modeling
formalism and diagnosis methodology in detail. The fault diagnosis approach is
described in the context of a power system example in Sect. 8.4, followed by
concluding remarks in Sect. 8.5.

8.2 Background

8.2.1 Diagnosisin CPS

Diagnostic reasoning techniques share a common process in which the system is
continuously monitored and the observed behavior is compared with the expected
one to detect abnormal conditions. In many industrial systems, diagnosis is limited
to signal monitoring and fault identification via threshold logic, e.g., detecting if
a sensor reading deviates from its nominal value. Failure propagation is modeled
by capturing the qualitative association between sensor signals in the system for
a number of different fault scenarios. Typically, such associations correspond to
relations used by human experts in detecting and isolating faults. This approach has
been effectively used for many complex engineering systems. Common industrial
diagnosis methods include fault trees [4-7], cause-consequence diagrams [8, 9],
diagnosis dictionaries [10], and expert systems [11, 12].

Model-based diagnosis (see [13—15] and the references therein), on the other
hand, compares observations from the real system with the predictions from a
model. Analytical models such as state equations [16], finite state machines [17],
hidden Markov models [18], and predicate/temporal logic [19] are used to describe
the nominal system behavior. In the presence of a fault, the observed behavior of the
system deviates from the nominal behavior expected by the model. The associated
discrepancies can then be used to detect, isolate, and identify the fault depending on
the type of model and methods used. In consistency-based diagnosis the behavior
of the system is predicted using a nominal system model and then compared with
observations of the actual behavior of the system to obtain the minimal set of
faulty component that is consistent with the observations and the nominal model.
Consistency-based diagnosis was introduced in a logical framework in [19] and
was later extended in [20]. The approach has been applied to develop diagnosis
algorithms for causal systems [21, 22] and temporal causal systems [23, 24].

The diagnosis approach presented here is conceptually related to the temporal
causal network approach presented in [24]. However, we focus on incremental
reasoning and diagnosis robustness with respect to sensor failures. The causal
model presented in this paper is based on the timed failure propagation graph
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(TFPG) introduced in [25, 26]. The TFPG model is closely related to fault models
presented in [27-29] and used for an integrated fault diagnosis and process control
system [30]. The TFPG model was extended in [31] to include mode dependency
constraints on the propagation links, which can then be used to handle failure
scenarios in hybrid and switching systems. TFPG modeling and reasoning tool has
been developed and used successfully in an integrated fault diagnoses and process
control system [30].

Additionally, the temporal aspects of the TFPG model are closely related to the
domain theoretic notion of temporal dependency proposed in [32]. However, there
are several major differences between the two approaches. In particular, TFPG-
based diagnosis implements a real-time incremental reasoning approach that can
handle multiple failures including sensor/alarm faults. In addition, the underlying
TFPG model can represent a general form of temporal and logical dependency that
directly incorporates the dynamics of multi-mode systems.

8.2.2 Diagnosis in Power Systems

Since power systems is our example domain, we now present a brief review of
fault diagnosis approaches in that domain, which can be categorized into three main
branches based on their underlying technique: expert systems [33-36], artificial neu-
ral networks [37-40], and analytical model based optimization [41-44]. In addition,
approaches based on Petri nets [45] and cause-effect Bayesian networks [46-50]
have also been proposed. Expert systems are one of the earliest techniques proposed
to address the failure diagnosis problem in power systems. A comprehensive survey
of such knowledge-based approaches is available in [51]. The expert systems, in
general, suffer from limitation imposed due to the maintenance of the knowledge
database and slow response time. Moreover, expert system based approaches are
known to produce wrong hypothesis in presence of missing and/or spurious alarms.
Artificial neural networks (ANNSs) are adaptive systems inspired by biological
systems. These approaches, in general, suffer from convergence problems. Further,
the ANNS s have to be retrained whenever there is a change in network topology as
the weights are dependent upon the structure of the power system. A number of
model-based analytical methods have been devised over the years for diagnosing
failures by generating optimal failure hypotheses that best explain all the events and
anomalies. However, these techniques rely heavily on critical and computationally
expensive tasks such as the selection of an objective function, development of exact
mathematical models for system actions and protective schemes, which greatly
influence the accuracy of the failure diagnosis.
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Fig. 8.1 Typical blackout progression in power systems

8.2.3 Cascade Phenomenon: When Fault Management
Controllers Misoperate

Cascading failures in networked systems are defined as the set of independent
events that trigger a sequence of dependent events. Such cascading failures in power
grids successively weaken the system by increasing stress on other components
and sometimes lead to major blackouts. According to North American Reliability
Corporation (NERC), a cascading outage is defined as an uncontrolled loss of any
system facilities or load, whether because of thermal overload, voltage collapse, or
loss of synchronism, as a result of fault isolation.

Figure 8.1 shows a typical blackout scenario in power systems. The nominal
system is subjected to failures from physical and cyber components. These failure
modes change the voltage and current at different buses. Fast acting protection
devices (relays) react to these changes based on predefined strategies. While these
actions are intended to isolate the faulty components and arrest fault propagation,
they could have unintended secondary effects such as branch overloads, voltage
and/or frequency collapse that can cause instability in the system. A new set of
protection elements react to arrest these secondary effects. These secondary actions
may cause different tertiary effects and the cycle continues until the system reaches
a blackout or there are no more consequences of protective actions.

A simple example of cascading phenomenon using a standard IEEE 14 bus
system is shown in Fig. 8.2. It is a simple approximation of American electric power
system as of 1960s [52, 53]. The system consists of 14 buses, 5 generators, 11 loads,
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Fig. 8.2 Cascade progression in IEEE 14 Bus system with initial outage in L4_5 leading to outages
in L3_4, L2_4, and L2_3 followed by outages in L6_11, L13_14, L9_10, L4_9, and ultimately
leading to blackout

and 20 branches (transmission lines and transformers). Reference [52] provides bus
and branch data in IEEE common data format [54] for creating OpenDSS [55]
simulation models. A three phase to ground phase fault is injected in line, L4_5.
The fault is isolated by tripping the line. This control actions of protection devices
lead to overloading of lines L3_4, L2_4, and L2_3. These overloads are removed
by tripping these lines. The removal of these secondary effects leads to overloads in
lines L6_11, L13_14, L9_10, L4_9. The removal of these overloaded branches de-
energizes more than 40% of the total system load and is considered as catastrophic
event or blackout.
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8.3 Temporal Causal Diagrams (TCD)

TCDs are discrete models that appropriately model failure modes, anomalies,
and their propagation in both physical and cyber systems. TCD is a combination
of Temporal Fault Propagation Graphs (TFPGs) and Time Triggered Automata
(TTAs). TFPG based models and reasoning schemes have been used in the past
to diagnose faults in physical systems including industrial plants [56, 57], aerospace
systems [3], and software systems [58].

However, in cyber-physical systems, there are discrete controllers that try to
arrest the failure effect if detected. These protection devices can cause system
reconfiguration by instructing actuators to change their state. These devices can also
have faults that alter their response to the detection of failure effects and control
commands. TFPG based reasoning schemes are not very effective in accounting
for faults in both physical system and their corresponding protection assembly
(i.e., anomaly detectors, mode detectors, actuators). Failure diagnosis of protection
devices is critical for cyber-physical systems, where realistic assessment of fault
propagation is not possible without accounting for the behavior of the deployed
sensors, controllers, and actuators. The second component of the TCD model, TTA
is responsible for modeling the behavior of discrete components in both faulty and
non-faulty modes.

TCD framework consists of hierarchical event-driven reasoning engines as
shown in Fig. 8.3. The diagnosis system consists of multiple local diagnosers, called
Observers that track the behavior of protection devices and estimate the presence of
failures in both physical and cyber infrastructure (fault management controllers are
often implemented in software). These estimates are then passed to a system level
reasoner that creates system level hypotheses temporally consistent with the fault
propagation graph. The observable events in the case of power transmission system
are commands sent by relays to breakers, messages sent by relays to each other,
state change of breakers, physical fault detection alarms, etc. The following sections
describe the modeling formalism of TCD, which includes an extension to TFPG.

8.3.1 Extending TFPG with Non-deterministic Semantics

A temporal fault propagation graph is a labeled directed graph where nodes are
either failure modes or discrepancies. Discrepancies are the failure effects, some
of which may be observable. Edges in TFPG represent the causality of the fault
propagation and edge labels capture operating modes in which the failure effect can
propagate over the edge, as well as a time-interval by which the failure effect could
be delayed (see Fig. 8.4). Classically, the diagnostic reasoner of TFPG assumed the
correct knowledge of the system modes is always available. However, in the context
of self-correcting cyber-physical systems such as power grids, the system mode or



208 A. Chhokra et al.

l),
<«@> TCD Reasoner
— 1
A g
System Observer Reports (Hypothetical state of E
T . . ]
Failure Physical system, protection relays and 0
Propagation é’
Graph .?_'P
: Observers (Actuator + Protection Relays) e
Observable events (Alarms, Actuator
state change messages, Actuator
commands)
Protection Actuator Dranla

Relays Command . i E
&
V-l Actuator ©
Signals State @
>
Physical System I
LR (Generators + g
TL+ Load +Bus) o)

- Diagnoser - Observer

Protection - Plant Layer
Layer Layer

System Layer

Fig. 8.3 The block-diagram of the Temporal Causal Diagram Diagnosis Framework in the Context
of Power Systems

operating conditions depend upon the state of sources, sinks, and the topology of
the system. Identification of all operating conditions, i.e. unique system modes is
computationally very expensive. In this paper, we use the system topology dictated
by the state of the actuators to map an operating condition (i.e., mode) to the fault
propagation. However, while such a constraint imposed due to topology of the
system is deemed necessary to identify when a fault will not propagate, it is not
sufficient to state that the failures will propagate. So we need to extend the TFPG
language with an additional map that associates uncertainty to failure edges.

Formally, the extended TFPG is represented as a tuple {Fppuysicat, Dphysical, Ev M,
ET, EM, ND}, where

Fohysical 18 @ nonempty set of fault nodes in physical system. A fault node can be
in two states either present denoted by ON state or absent represented by OFF
state. A fault node represents a failure mode of the system or a component, and
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Fig. 8.4 TFPG Model with Failure Modes (FM), Discrepancies (D), and fault propagation links
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its state represents whether the failure mode is present or not. In the subsequent
discussion we will use the terms fault node and failure mode interchangeably.

*  Dppysicar 1s a nonempty set of discrepancy nodes related to fault effects of physical
faults.

* E C VxVisasetof edges connecting the set of all nodes V = Fynysicat U Dphysicai-

e M is a nonempty set of system modes. At each time instance ¢ the system can be
in only one mode.

e ET : E — Iisamap that associates every edge in E a time interval [fin, fmax] € 1
that represents the minimum and maximum time for fault propagation over the
edge.

* EM : E — M is a map that associates every edge in E with a set of modes in
M when the edge is active. For any edge e € E that is not mode-dependent (i.e.,
active in all modes), EM(e) = .

e ND : E — {True, False} is a map that associates an edge, e € E to True or False,
where True implies the propagation along the edge, e Will happen, whereas
False implies the propagation is uncertain and Can happen. The destination
node of any uncertain edge is referred to as secondary discrepancy while primary
discrepancy implies a certain edge. These labels are defined with respect to edges
as same discrepancy can act as a destination node of both uncertain and certain
edge.
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8.3.2 Modeling the Behavior of Fault Management Controllers

The TCD framework relies on the use of an extended time triggered automaton [59]
to model the interaction between the fault management controllers and the plant
model (TFPG model). Then, given these behaviors we can synthesize the observers
that are used in diagnosis step.

Mathematically, the extended time triggered automaton is represented as tuple

(E’ Q: q0, va Fcybery Dc‘yberr Mr Oé(F), CD, T)l

Event Set: X is a finite set of events that consists of observable and unobservable
events partitioned as ¥ = X, U X0 sSuch that Xope N Zypops = .
Observable events are alarms, commands, and messages exchanged between
discrete components, whereas unobservable events are related to introduction of
faults in system components.

Locations: Q is a finite set of locations. gg € Q is the initial location of the
automaton and Q,, C Q is a finite set of marked locations.

Discrepancy Set: D, is a finite set of discrepancies associated with the
component behavior, partitioned into the sets of observable and unobservable
discrepancies.

Failure Mode Set: F ., is a finite set of unobservable failure modes associated
with the component. Similar to a fault node in TFPG, failure mode also has ON
and OFF states. §; is a function defined over F oy, X Ry that maps a failure mode
f € Feyper at time ¢t € R to True if the state of failure mode is ON and to False
if the state is OFF.

Failure Mode Constraints: o (Fy.,) represents the set of all constraints defined
over members of set Fype,-. An individual failure mode constraint, ; € o(Feyper),
is a Boolean expression defined inductively as

o =8 | —&¢f) | o A wiy 8.1

where f € Fyp, is a failure mode and w,, w, are failure mode constraints. A
failure mode constraint is True if the Boolean expression is evaluated to be True
and False otherwise.

Timing Constraints: ® is a set of timing constraints defined as & =
[1], (n)|n € N4, where [n] denotes instantaneous constraints and (n) represents
periodic constraints. The timing constraints specify a pattern of time points at
which the automaton checks for events and failure node constraints. For instance,
periodic constraint, (4), on any outgoing transition from the current state forces
the automaton to periodically look for events specified by the edge, every 4 units
of time whereas in the case of instantaneous constraint, [4], automaton checks
only once.

Mode Map: M : Q — 2™ is a function that maps location ¢ € Q to mode m € M
defined in the fault propagation graph.

'The extension includes sets of failure modes and failure mode guards.
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o Edge: T C Oxp(X) X P xa(Feper) X p(X) x Q is a finite set of edges. An edge
represents a transition between any two locations. The activation conditions of an
edge depend upon the timing, failure mode constraints, and an input event. For
example, an edge < qi, a1, [n], 8(f;) A —8(f>), 02, g2 > represents a transition
from location g; to g, with an instantaneous time constraint of n units of time and
failure mode constraint §(f;) A =6(f2) € o (Feyper) defined over the failure modes
f1.f2 € Feyper. 01 € X is the required input event for this transition to be valid.
0, € X represents the event generated when the transition is taken. Syntactically,
a transition is represented as Event(timing constraint){failure constraint}/Event.
If no event is mentioned, then the transition is valid only if the failure mode
constraint evaluates to true as per the timing constraints.

8.3.3 Observers for Postulating the Failures of Controllers

Observers are discrete, finite state machines that consume events produced by their
respective tracked devices in order to diagnose faults in their behaviors. There exist a
number of approaches for generating discrete diagnosers for dynamic systems based
on [60] and [61]. However, the observers presented here are created manually. The
events produced by the various observers fall into two categories; an estimation of
a state change in discrete components, and a discrepancy detection. The detected
anomalies and the local estimate of the state of different components in the plant
and protection layer are passed by the observer to the next layer for system level
diagnosis.

8.3.4 Combined Diagnosis and Reasoning Approach

The TCD reasoner relies on the fault propagation graph and the output of various
observers to hypothesize about the anomalies observed in the system.? The reasoner
attempts to explain the observations in terms of consistency relationship between
the states of the nodes and edges in the fault propagation graph. The states of a node
in a fault propagation graph can be categorized as Physical (Actual), Observed, and
Hypothetical state [57].

* Physical state corresponds to the actual state of the nodes and edges.

e An Observed state is the same as the Physical state, but defined only for
observable nodes.

* A Hypothetical state is an estimate of the node’s physical state and the time since
the last state change happened by the TCD reasoner.

2In order to relate to the alarms generated by observers with the failure graph few modifications
are performed. The alarms signaled by relays are replaced by their corresponding observers.
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Every reasoner hypothesis iy € HSet; consists of a map, HNode, that associates
to every node in the failure graph an evaluation, (ON, OFF) and time estimate
(t1, ). The time estimate (1, t,) denotes the earliest and latest time estimates for
the state changes of node v, i.e. from ON to OFF or vice versa. The structure of a
hypothesis is described as follows: Hypothesis is a tuple, where elements are related
based on temporal consistency. Formally, hypothesis hs={f, terl, tlat, S, C, I, M, E,
U} where:

* f € Fypysicar 1s a physical failure mode projected by the hypothesis, hy and F is the
set of physical failure modes defined in Sect. 8.3.1. We are using single physical
fault hypothesis which lists only one fault per element of the physical system
along with multiple faults in protection system.

* SCFcyper is a set of faults active in the system. These faults are related to
components in the protection system layer as defined in Sect. 8.3.2.

e The interval [terl, tlat] is the estimated earliest and the latest time during which
the failure mode f could have been activated. The time estimate for protection
layer faults is not supported in the current implementation.

*  C C Dppysicar 18 the set of discrepancies that are consistent with the hypothesis hy,
where D,jysicar 18 the set of physical discrepancies described in Sect. 8.3.1. These
discrepancies are referred to as consistent discrepancies. We partition the set C
into two disjoint subsets, CI, C2 where CI consists of primary discrepancies
and C2 contains secondary discrepancies. A discrepancy d w.r.t hypotheses Ay
is called primary if the fault propagation linking the discrepancy, d, is certain
otherwise it’s termed secondary as defined in Sect. 8.3.1.

* E C Dypysicar 18 the set of discrepancies which are expected to be activated in the
future according to Ay. This set is also partitioned into £/ and E2 that contain
primary and secondary discrepancies, respectively.

* M C Dppysica 8 the set of discrepancies that are missing according to the hypoth-
esis hy, i.e. alarms related to these discrepancies should have been signaled. This
set is also composed of two disjoint sets M/ and M2 based on primary and
secondary discrepancies.

* 1 C Dypysicar 1s the set of discrepancies that are inconsistent with the hypothesis
hy. These are the discrepancies that are in the domain of f but cannot be explained
in the current mode.

* U C Dypysicar 1s the set of discrepancies which are not explained by this hypothesis
hy as there is no fault propagation link betweend € U and s € f US U C, i.e. the
discrepancy is not in the domain of f.

For every scenario, the reasoner creates one special hypothesis (conservative), HO
that associates a spurious detection fault with each of the triggered alarms.

The quality of the generated hypotheses is measured based on four metrics
defined as follows:

* Plausibility: 1t is a measure of the degree to which a given hypothesis explains
the current fault and its failure signature. Mathematically, it’s defined as
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|C1] + |C2|
|C1| + |C2| + |M1]| + |1]

Plausibility =
* Robustness: It is a measure of the degree to which a given hypothesis will remain

constant. Mathematically, it’s defined as

|C1] + |C2|
|C1| + |C2| + [M1| + |E1| + |E2| + |I|

Robustness =

* Rank: 1t is a measure that a given hypothesis (a single physical fault along
with multiple cyber faults) completely explains the system events observed.
Mathematically, it is defined as Rank = |C1| + |C2| — |[M1| — |U|

» Failure Mode Count: is a measure of how many failure modes are listed by the
hypothesis. The reasoner gives preference to hypotheses that explain the alarm
events with a limited number of failure modes (i.e., it follows the parsimony
principle). This metric plays an important role while pruning out HO from the
final hypothesis report.

There are three types of events that invoke the reasoner to update the hypotheses.
The first two are external physical events related to a change in the physical state
of a monitored discrepancy and system mode. The third event is an internal timeout
event that corresponds to the expectation of an alarm. A physical event is formally
defined as a tuple e = (da, r), where da € DyUM is either an observable discrepancy
or a system mode. The timeout event is described as a tuple e = < hy, da, t > which
implies as per hypotheses /7, any alarm related to discrepancy da should have been
signaled by time ¢. Figures 8.5 and 8.6 give an overview of the underlying algorithm
of reasoner response to three different type of events.

Timeout Event Whenever the observed state of a discrepancy does not change as
expected by the reasoner, an internal timeout event, (4, da, ) is generated, where h
denotes the set of hypotheses to be updated and da is the expected discrepancy and
t is the current time. This event causes reasoner to update the expected sets of all
hypotheses, A. If the expected sets, E1(E2), of any hypothesis in £, list da, then it is
moved to missing sets M1(M2).

Mode Change Event If any actuator component in the protection layer changes its
state, a mode change event is triggered by the corresponding observer. This event
causes reasoner to update the expected sets of all hypotheses as the new actuator
state might influence the operating modes and disable or enable failure propagation
edges.

Discrepancy Mode Change Event This event is triggered if any observer detects
appearance or disappearance of failure effects in both plants and protection devices.
The event is denoted by (da, f), where da is a discrepancy that activated or
deactivated at time ¢. If the observed state of this alarm is ON (activated), then
reasoner iterates over all the hypotheses at time, ¢, to find hypotheses that explain
this discrepancy (which lists da in expected sets). If found, expected and consist
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sets of those hypotheses are updated. In case, no hypothesis is discovered, a new
hypothesis is generated and added to the hypothesis set. On the other hand, if the
observed state of the discrepancy is OFF (deactivated), reasoner iterates over all
hypotheses and update the consistent and expected sets of all hypotheses that list da

in their consistent sets.

8.4 Example System: Electric Transmission Network

8.4.1 System Under Test

An electric power system can be considered as a tripartite graph with sources at one
end and loads at the other with a complex transmission and distribution system in
the middle. Figure 8.7 shows a segment of a transmission network where a load, L1
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L1
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O

Fig. 8.7 A simple two transmission line system

is being fed by two generators G1, G2 through transmission lines TL1, TL2. The
transmission lines are connected by buses B1, B2, B3. All these components are
protected by specialized relays and breaker assemblies. In this work, we are focusing
on transmission lines only, each transmission line is protected by a set of distance
relays and breaker assemblies, installed at each end, collectively represented as a
protection assembly labeled as PA1, PA2, PA3, PA4 in Fig. 8.7.

Distance relays are used for detecting two types of faults in transmission lines:
(1) phase to phase faults, and (2) phase to ground faults. Both phase to phase and
phase to ground faults cause an increase in current flowing through the conductor
and decrease in voltage at the buses connected on both ends of the transmission
line. This decrease in impedance (V/I) is detected as physical fault and typically
categorized by the relay into the following three categories depending upon the
calculated impedance:

¢ Zone 1 Fault: If the measured impedance is less than (0.7 — 0.8) * Z7;, and the
phase angle is between 0 and 7/2, where Z7; is the impedance of the line. The
distance relay acts as a primary protection device and instructs the corresponding
breaker to open immediately.

e Zone 2 Fault: If the measured impedance is greater than (0.7 — 0.8) x Z7;, but
less than 1.25 x Z7; with phase angle being in first quadrant. After detecting a
zone 2 fault, distance relay waits for 0.05-0.1 s before sending trip signal to the
breaker. This wait time ensures the distance relay to act as a secondary or back-
up protection element. If the fault is in any neighboring transmission line, then
the wait time ensures the primary protection associated with that line to engage
first. In case, the primary distance relays fail, then secondary protection kicks in
after the waiting period expires.

¢ Zone 3 Fault: If the measured impedance is in the range (1.25 — 2) x Zy; with
phase angle between 0 and 7/2, then the fault considered as zone 3 fault. Similar
to zone 2, the protection device acts as a back-up element in case primary device
fails to engage. The wait time is of the orderof 1...1.5s.

The time to detect fault depends upon the sampling period of the relay and is of the
range 16-30 ms.
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Fig. 8.8 Fault propagation graph for faults in two different transmission lines

Table 8.1
Discrepancy—Alarm
Association Map

Discrepancy | Alarms

d_TL1_PA1 |PA1_DR_Z1,PA1_DR_Z2
d_TL1_PA2 |PA2_DR_Z1,PA2 DR_72
d_TL1_PA3 |PA3_DR_Z2,PA3_DR_73
d_TL2_PA3 |PA3_DR_Z1,PA3_DR_72
d_TL2_PA4 |PA4_DR_Z1,PA4_DR_Z2
d_TL2_PA2 |PA2_DR_72,PA2 DR_Z3

8.4.2 TCD: Fault Propagation Graph

The fault detection events are recorded by Sequence Event Recorders installed at
substations. Using these events as alarms fault propagation graph can be created.
Figure 8.8 shows such a graph for the segment of transmission network. The set
of nodes labeled as F_TLn represents physical fault in transmission line, TLn.
The discrepancy d_TLn_PAk represents the effect of failure F_TLn and the node
represents the decrease in impedance as detected by relay in PAk. The edge between
nodes represents the fault propagation and is constrained by the timing and operating
conditions. The operating conditions are modeled in terms of the physical state of
the breakers. The distance relay in PA4 will detect the failure mode F_TL1 as long as
all the breakers in the path between G2 and TL1 are in close state. Table 8.1 lists the
alarms that can signal discrepancies shown in Fig. 8.8, where the columns identify
discrepancies, alarms, and the uncertainty associated to it. The failure edges that
link failure source and discrepancy related to secondary protection relay are marked
uncertain, i.e. ND(e) = false, depicted as dotted lines in Fig. 8.8.

A primary protection element will always signal Zone 1 or Zone 2 alarm for fault
injected at any point in the transmission line. The secondary protection devices will
always signal either Zone 2 or Zone 3 alarm depending upon the location of the
fault.
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Fig. 8.9 Protection System Behavior Components (Left: Distance Relay; Right: Breaker),
where f is a failure mode constraint defined as f:—3(F_del) A—8(F_de2_z1) A—§(F_de2_z2)
A—6(F_de2_z3)

The failure graph captures the propagation of failures under different conditions
(breaker states) but does not contain any information to diagnose faults related with
the behaviors of breakers and relays. Figure 8.9 shows the TTA model of a protection
assembly (distance relay and breaker).

8.4.3 TCD: Distance Relay Behavioral Model

Modern relays are reactive devices that monitor the health of the physical devices
at a fixed rate, R secs. Figure 8.9 shows a time triggered model of a distance relay
configured to detect Zone 1, 2, 3 faults. The time triggered automaton appropriately
models the behavior of a relay under both faulty and non-faulty conditions. The
model considers two types of faults, F = f1 U f2, where f1 = {Fdel} is a set
of missed detection faults and f2 = {Fde2z1, Fde2z2, Fde2z3} is the collection
of spurious detection faults related to three zones. As the name implies, a missed
detection fault forces the relay to skip the detection of any fault conditions and
a spurious detection fault, Fde2zk, ensues incorrect inference of zone k fault by
the relay. Figure 8.9 lists five different failure mode constraints, namely, §(Fdel),
8(Fde2z1), §(Fde272), §(Fde2z3), —6(Fdel) N —8(Fde2z1) N —§(Fde2z2) A
—§(Fde273), where the first four imply the presence of a failure mode, i.e. its state
is ON while the last means none of the failure modes in F are present.

There are a total of nine events used to model the behavior of the relay. Out
of nine events, three are unobservable, labeled as E1, E2, and E3. These events
represent the presence of zone 1, 2, 3 fault conditions. The state machine consists
of nine locations, with idle being the initial location. In the idle location, automaton
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check for events—E1, E2, E3, and the status of failure modes every R seconds.
If the distance relay detects zone 1 fault (modeled by the presence of the event
El), then the distance relay moves to the tripped location and issues a Z1 alarm
and commands the breaker to open by emitting event, cmd_open. For zone 2
and zone 3 faults conditions (E2, E3), the protection relay does not issue an open
command after moving to the chkZ2 or chkZ3 locations. The state machine waits
for predefined time, zn2wt, zn3wt € R4 and confirms again the presence of the fault
conditions, once the time expires. If the fault is still present, the relay commands
the breaker to open and transitions to tripped location, otherwise moves back to
idle location. Additionally, distance relays may be configured with overreach trip
transfer protocols. In this case, the primary relays associated with a transmission
line send permissive trip signals to each other, TripSen, in order to avoid zone 2
wait time.

The deviation in the normal behavior of the relay is caused if any of the failure
mode constraints evaluates to true. For instance, if the current location of the
automaton is idle and failure mode Fdel is present then automaton jumps to detErrl
location and stays there until the fault is persistent. Similarly if any of the spurious
detection faults are present, then irrespective of the presence of E1, E2, and E3, the
state machine jumps to detErr2 or detErr3 and finally transitions to tripped
state. In this model, the faults (F_del, F de2 z1,F de2 z2,F de2 z3)are
assumed to be mutually exclusive, i.e. one of the cyber faults can be present at a
given time.

8.4.4 TCD: Breaker Behavioral Model

Figure 8.9 also shows TTA model of a breaker with two failure modes, F' =
{F_stuck_close, F_stuck_openj. The breaker automaton has four states labeled as
open, opening, close, and closing, with close being the initial state.
All the events used in the state machine are observable. The events cmd_open,
cmd_close represent the commands received by the breaker assembly and st_open,
st_close signify change in the physical state of the breaker. The transition from
open to close and vice verse is not instantaneous. The lag is caused due to
mechanical nature of the breaker and zero crossing detection, which is modeled by
parameter t3. Automaton consists of two failure mode constraints, =8 (F stuckclose),
—§(Fstuckopen), which evaluates to true when respective failure modes are not
present.

The breaker is also modeled as reactive component which is periodically
checking for commands. While in the close location, the automaton looks for
event cmd_open and evaluates the failure constraint every R secs. If the event is
present and F_stuck_close fault is absent, the state machine transitions to opening
state. After t3 secs, the automaton moves to open state if failure mode constraint still
evaluates to false. Similarly in open location, the presence of the event cmd_close
and validity of failure constraint is checked.
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8.4.5 TCD Diagnosis System: Observers

The TCD based diagnosis system employs a hierarchical framework as shown
in Fig.8.3. The lower layer includes observers that track the operation of cyber
components (distance relays and circuit breakers) to detect and locally diagnose
faults in physical and protection systems. The observers feed their results to the
reasoning engine as explained in previous section. The TCD reasoning engine
produces a set of hypotheses that explain the current system states as per the output
of various observers by traversing the fault propagation graph. The traversal is
constrained by the state of the protection system as predicted by observers tracking
it. The following sections provide a detailed description of the model and operation
of the observers related with power system protection devices.

8.4.5.1 Observer: Distance Relay

The TTA model of a distance relay observer can be seen in Fig. 8.10. The state
machine has eight locations with 1d1e being the initial state. The observer machine
consumes the observable zone alarms (Z1, Z2, Z3), commands sent to breaker
(cmd_open) and reset events and produce h_Z1, h_Z2, h_Z73 to indicate or confirm
the presence of zone 1, 2, 3 faults. The observer also produces h_Z1/, h_Z2/ and
h_Z3/ to indicate absence of zone 1, 2, 3 fault conditions. The observer remains
in the id1le position until zone fault conditions are reported by the corresponding
distance relay. Once the distance relay fires a Z/ event, the observer machine jumps
to the chkZ1 location while emitting h_Z1 event. The observer machine waits for
12 seconds for open command (cmd_open event). If received, the observer moves

st_close (R)/
c_reset(R)/h_z1', h_z2', h_z3' h_close

h_stuck_open’ cmd_open (R)/
cmd_open(R)
21 R)/h_21 @ -/
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Gslng ope@
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cmd_open(R)

[t31/
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Fig. 8.10 Protection System Observer Models, Distance Observer Model (Left); Breaker
Observer Model (Right)
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to the tripped state, otherwise transitions back to idle state. £2 is a parameter
of the distance relay observer machine that models propagation delay and relay
frequency. Please note that the transition from chkZ1 state to the idle state implies
a communication channel fault, but in this paper we are not considering such faults.

Similarly, the observer machine moves to the chkZ2 state when the distance
relay reports a Z2 event after detecting zone 2 fault conditions. Upon the confirma-
tion of zone 2 fault, the observer waits ¢3 seconds for the arrival of the cmd_open
command. 73 is a parameter which is equal to the sum of zone 2 wait time and t2.
If the cmd_open event is not observed within 73 seconds the automaton moves back
to the idle state and concludes that the zone 2 fault condition has disappeared
by generating h_Z2/ event. The observer machine moves from chkZ2 state to
chkZ2 Z1 state if the event TripRec occurs and waits for the cmd_open event and
concludes the presence of fault by producing h_Z2 event. In a similar fashion, the
distance relay observer diagnoses zone 3 faults.

8.4.5.2 Observer: Circuit Breaker

The breaker observer model is shown in the right side of Fig. 8.10. It consists of four
states labeled as open, close, opening, and closing and correlate directly to
the four states of the breaker automaton. Initially the state machine is in the close
state and jumps to the opening state after observing cmd_open event. The breaker
observer transitions to the open state if it receives an st_open event from the breaker
assembly within 4 seconds. #4 is a model parameter that is equal to the sum of
propagation time and the maximum time required to open the breaker. If the event
is observed in the time limit, the observer concludes the physical state of breaker
is open and stuck close fault is not present by producing an event, h_stuck_closer.
Otherwise it hypothesizes that the breaker has the stuck close fault. The fault is
signaled by generating an event, h_stuck_close. Similarly, when the breaker is in the
open state it has the same timed behavior and an /_stuck_open event is generated
if an st_close event is not observed within #4 seconds of receiving the cmd_close
event.

8.4.6 Results

Figure 8.11 shows the sequence of events generated by protection devices,
observers, and reasoning engine when a three phase to ground fault is injected in
transmission line TL2 along with the presence of missed detection fault in PA4_DR
and stuck close fault in PA2_BR. At = 0.501, PA3_DR_OBS and PA2_DR_OBS
report h_Z1 and h_Z3 alarms. These alarms produce two hypotheses HO, H1. H1
lists faults in line TL2 with two consistent discrepancies and expects an alarm
from PA4_DR_OBS (h_Z1 or h_Z2). At ¢+ = 0.531, timeout forces the expected
discrepancy to shift to the missing set. H1 and HO both list two failure modes.
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Fig. 8.11 Diagnosis results for scenario 4

HI lists physical faults associated with line TL2 along with a missed detection
fault in PA4_DR whereas HO blames both the distance relays for having spurious
detection faults. At + = 1.552, PA2_BR_OBS concludes a stuck fault in breaker
PA2_BR after failing to receive a state change event (st_open). Both hypotheses are
updated to reflect the breaker fault. The hypothesis H1 is given preference over HO
as the probability of two cyber faults is less than a physical and a cyber fault [62].
Figure 8.11 shows the events sequence and hypotheses evolution.
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8.5 Conclusion

We have presented a new formalism: Temporal Causal Diagrams with the aim
of diagnosing failures in cyber-physical systems that include local fast-acting
protection devices. Specifically, we have demonstrated the capability of the TCD
model to capture the discrete fault propagation and behavioral model of a segment
of a power transmission system protected by distance relays and breakers. The paper
also presented hierarchical TCD-based reasoner to diagnose faults in the physical
system and its protection elements.
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