From System Modeling To Formal Verification

Ajay Chhokra, Sherif Abdelwahed, Abhishek Dubey, Sandeep Neema, Gabor Karsai*
* Institute for Software-Integrated Systems, Vanderbilt University,
Nashville, TN 37235, USA
Email:{chhokraad, sherif, dabhishe, sandeep, gabor} @isis.vanderbilt.edu

Abstract—Due to increasing design complexity, modern sys-
tems are modeled at a high level of abstraction. SystemC is
widely accepted as a system level language for modeling complex
embedded systems. Verification of these SystemC designs nullifies
the chances of error propagation down to the hardware. Due to
lack of formal semantics of SystemC, the verification of such
designs is done mostly in an unsystematic manner. This paper
provides a new modeling environment that enables the designer to
simulate and formally verify the designs by generating SystemC
code. The generated SystemC code is automatically translated to
timed automata for formal analysis.

Keywords—Generic Modeling Environment, SystemC, UPPAAL,
Formal Verification, Cyber Physical Systems

I. INTRODUCTION

A cyber physical system is a heterogeneous composition of
a number of components which have continuous or discrete dy-
namics. Due to the increasing complexity of the system design,
modern systems are modeled at a high level of abstraction.
Thus a language that fills the gaps between hardware descrip-
tive languages and software modeling languages is required.
Moreover, it should support design space exploration and
assure correctness throughout the designing process. SystemC
[1] is such a system level language that allows user to model
and simulate hardware and software on various abstraction
levels. The complexity in the designs has shifted the focus to
software modeling languages like UML for providing initial
specification of the system at high levels of abstraction on top
of SystemC. Generating SystemC code out of these abstract
UML diagrams has become common practice. There are few
tools [2],[3],[4]which generate SystemC code for a given UML
specification.

Safety critical systems, that are found in the automotive
industry or in power systems, are a subclass of cyber physical
systems where a small glitch may prove to be fatal or lead to
huge financial loses. Therefore, functional verification of these
designs becomes an important part of the development cycle.
Simulation alone cannot ensure the correctness of a design.
For non-deterministic or non-terminating systems, covering
all possible executions cannot be guaranteed by simulations.
Moreover, hardware and software designs are refined to re-
quired specification starting from an abstract model. Thus, it
becomes very hard to ensure consistency between different
stages by reusing simulation results of earlier stages. So,
formal verification becomes a necessity to ensure correct
behavior.

Automatic verification of the SystemC designs is con-
strained by the lack of formal semantics of SystemC. There

Copyright ©2015 ECSI

are a number of approaches that address this problem by
translating SystemC to a well defined language. For in-
stance, Maraninchi [5] discusses about translating SystemC
to PROMELA. But this approach lacks support for primitive
channels and does not model SystemC scheduler. The approach
described by Habibi and Tahar [6] translates the SystemC
designs into an intermediate representation using AsmL [7].
It is an abstract state machine [8] descriptive language that
models designs at a high level of abstraction. This makes
verification and validation easier but underlying structure of
SystemC design is lost. Zhang [9] coins a formalism called
waiting state automata. This approach allows verifying Sys-
temC designs up to delta cycles. But this technique also does
not model the scheduler and complex interactions between
processes. Man [10] discusses a formal language SystemC*
based on process algebras. This language considers only static
sensitivity of processes and simple communications amongst
them. In [11], the SystemC designs are translated to petri
nets based representations. However, this translation leads to
huge overheads as extra subnets are required to model the
interactions between existing subnets. We are adopting an
approach presented in [12],[13] by Herber, which translates the
SystemC design to Uppaal timed automata [14]. This technique
handles all relevant SystemC language elements, including
process execution, interactions between processes, dynamic
sensitivity and timing behavior. The mapping produces neg-
ligible overhead and compact models.

The contribution of this paper is to provide a modeling
environment based on Generic Modeling Environment (GME)
[15] that allows the designer to graphically model the system
and generates simulation results in the form of vcd waveforms
at each step of development cycle. The tool also provides
automatic verification of the design against safety and liveness
properties by translating the SystemC code to Uppaal. In this
paper, we show the applicability of this tool by describing a
case study from power systems domain for formally analyzing
the behavior of different protection elements.

The rest of the paper is structured as follows: section II
describes the modeling formalism that captures the different
aspects of SystemC language. Section III discusses about the
generation of SystemC code. Section IV briefly describes the
STATE tool [13] and process of converting SystemC code
to timed automata. Section V explains the implementation
followed by a case study in section VI. Model checking and
simulation results for the case study are summarized in section
VII. Section VIII documents the conclusion and future work.

II. MODELING PARADIGM

The modeling paradigm is created using generic mod-
eling environment (GME) which is a configurable tool set

for creating domain specific modeling and program synthesis
environments. GME has all the generic modeling concepts like
hierarchy, aspects, constraints, associations, generalization etc.
The objects used in the modeling language are Atoms, Models,
Connection, References and Folder, for more information
see [15]. Fig. 1 captures the complete meta model of this
language. The following subsections discuss the core features
of SystemC and its implementation in this modeling paradigm.

A. Data Types

Apart form the standard data types which C++ provides,
SystemC supports dedicated hardware data types. In our mod-
eling language data types are represented by two atoms c_types
and systemc_types. Both these types inherits from an abstract
atom called keyword as shown in the Fig. 1.

B. Modules

From the structural aspect, a SystemC design is composed
of modules and channels. Modules are the building blocks
which represent the computation part of the design. Modules
in general, are composed of processes, ports, events, internal
channels and variables. These variables can also be instances
of other modules. However, in this current implementation we
do not consider hierarchical designs and hence channels and
objects implying instances of other modules are not visible
inside a module. As per Fig. 1, a model labeled as module rep-
resents SystemC module which encapsulates ports, variables,
events and a behavior model (GME). Ports and variables are
implemented as references to the keyword atom. Events are
represented with atoms labeled event. The behavior model is
a container for all the processes that provides functionality to
a module.

C. Processes

As mentioned earlier, processes are contained inside a
module. Processes can be classified into two categories 1)
Threads 2) Methods. Method processes are triggered by a
list of events statically bound to them. A method runs from
beginning to end when triggered and cannot be suspended. On
the other hand threads can be paused i.e. their sensitivity can
be dynamically altered by using wait function calls. Threads
are also of two types one is named as SC_THREAD and
other as SC_CTHREAD (clocked). But for this paper we only
consider SC_THREAD. As shown in the Fig. 1, model with
the name process, represents SystemC processes contained
inside behavior model. Event triggered extended state machine
is used as the model of computation to represent the actual
behavior of the process. As shown in the Fig. 1, process
contains an atom and a connection labeled as state, transition
respectively. One state object can be connected to another
through fransition connection object. transition has a boolean
attribute, Guard which enables or disables a transition. The
state and transition have a common attribute called Action
which are expressions involving ports, variables, events defined
in the module. The attribute sensitivity_list associated to a
process represents the list of events to which the process is
sensitive to. The type of the process is governed by another
attribute Process_type that has only two values SC_THREAD
or SC_METHOD.

D. Channels and Ports

A channel is a special c++ class which implements one or
more interfaces. Interfaces are abstract classes which declare
a set of methods for accessing a given channel. SystemC
supports two types of channels 1) primitive and 2) hierarchal.
In this paper we are only modeling one type of primitive
channel, signal ! but this can be easily extended to support
other primitive channels. Processes of a module communicate
with the help of ports. As shown in Fig. 1, ports and channels
are implemented as references with labels port and sc_signal
to keywords. port has an attribute type to identify the nature
of the port i.e. in, out or inout.

E. Binding

As shown in the Fig. 1, a GME model system is used
to show all the bindings between two different instances of
modules. Instances of modules are represented by a reference,
sc_module to modules. Apart from sc_module references,
system also consists of sc_signal which represents an instance
of a primitive channel. In order to connect a ports of the
instantiated modules and channels, a connection object labeled
as binding is used. Each design is contained inside a GME
folder to better manage different design files.

III. SYSTEMC CODE GENERATION

Each folder in the modeling paradigm represents a design
that contains two types of files. One, a header file correspond-
ing to each module used in the design. The header file gives
the definition of a module in terms of ports, variables and
processes. Second, is the source file which contains the main
function. It includes the declaration of signals, instances of
modules and bindings between ports of different instances
of modules followed by trace objects. The subsection below
briefly describes the steps taken to translate the GME model
into c++ code.

A. Generation of Module Definitions

e For each port reference in the module, a port is declared in
the header file by getting the value of attribute Porz_type,
source and the label of the port reference.

e The variables declared inside a module can be of two
types, one being accessible to all processes and other
being local to a specific process. For each variable
reference, a variable is declared whose type and name
are defined by the source and the label associated to the
reference object. As behavior of the processes is described
using state machines, a variable is required to store the
state of the automata. We use an enumerated type variable
whose elements are the labels of different states in the
automata.

e Since modules are c++ classes so we need to define a
constructor which initializes the data member and also
describes the static sensitivity of the processes. Two dif-
ferent Macros are used for defining a constructor depend-
ing on the number of input arguments of the constructor.
If there is no input argument except the name/label of
the module then we use SC_MODULE macro otherwise

ISince signal channel is considered, we restrict our discussion only to
specialized ports (sc_in, sc_out and sc_inout) only.

Folder
<<Folder>>

!

property FCO
<<Atom>> |, . <<FCO>>

Definition : field
status : field

module
<<Model>>

keyword
<<Atom>> system

<<Model>>

binding [0. 0.*
ort

variable behavior event

<<Reference>> |0

sc_module L <<Connection>>
0.0

<<Reference>> <<Reference>> —— <<Model>> <<Atom>>

c_types systemc_types parameter : field sc_signal 0.
<<Atom>> <<Atom>> <<Reference>> [dst
parameter : field
module
keyword
<<MadelProxy>> <<AtomProxy>>
»
L
Fig. 1. Meta model

SC_HAS_A_PROCESS macro serves the purpose. Every
process has an attribute called the sensitivity_list which
lists the ports that can trigger a process. The list may
contain more than one ports.

B. Source File Generation

e For each sc_signal reference in the system model, a
sc_signal is declared as sc_signal <source of reference>
reference label ;

e For each sc_module reference in the system model, a
module is instantiated. The type of the module is the
source of reference and the attribute parameter provides
the list of input arguments that are needed.

e Every binding connection is translated to a port binding
statement. The source link of the connection provides
the specific port of the module and the destination link
provides the channel to which the port is bound to.

e In the end a pointer to a sc_trace is created. This pointer
is responsible for storing all the traces. By default all the
signals will be automatically recorded.

IV. SYSTEMC To UPPAAL TRANSLATION

The important prerequisite to verify a design expressed in
any language is the formal semantics of that language. As
stated earlier, SystemC in not a well defined language, i.e.
it lacks formal semantics. In this section, we briefly explain
the STATE tool which maps the informally defined SystemC
code into well defined semantics of Uppaal timed automata.
STATE tool takes as input a SystemC design and generates
a corresponding Uppaal model. This whole translation takes
place in two steps:

1) A SystemC design is parsed by Karlsruhe Parser [16] to
generate an Abstract Syntax Tree (AST) in XML.

2) This file serves as an input to the STATE tool to generate
Uppaal model in another XML file. Within the STATE

sre| parameter : field parameter : field -

port_type : enum IslpArg : bool T
0
process transition
« <<Model>> | 0| <<Connection>>
keyword

<<AtomProxy>>

W I

. i

» o]
state 0."

<<Atom>> {s]rc.

Uppaal D)
Model
(XML

Fig. 2.

Tool chain form SystemC to Uppaal [13]

tool, translation from AST to Uppaal model takes place

in two phases:

e In the first phase, Uppaal model is created from the
AST by the transformation engine.

e In the second phase, the model obtained in the first
phase is optimized for reduction in number of templates
and variables etc.

The implementation of STATE tool consists of three pack-
ages: 1) model 2) engine 3) optimization

The package model consists of classes for the internal
representation of both the SystemC and the timed automata
model. The package engine contains classes that implement
the transformation rules from SystemC to Uppaal. The pack-
age optimization contains several optimizations to make the
generated Uppaal model smaller and easier to read. Fig. 2
shows the block diagram of the tool-chain.

Since SystemC is an extension of c++, it inherits the full
semantic scale of c++. In order to translate it to a more
restricted/ less expressive Uppaal modeling language, certain
constraints are imposed on SystemC designs that are listed in
[13].

V. SETUP

Simulation and verification can be computationally expen-
sive and time consuming for complex designs. Setting up nodes
dedicated for these two tasks, aids in the developing process.
The modeling environment is installed in a physical node and

B1 B2
Rest of 1 | Rest of
R TL1L
Network h ! ! I—I Network
OC1/BR1 0C2/BR2

Fig. 3. A segment of power transmission system

two virtual nodes are reserved for simulating and verifying
the design. The configurations are summarized in the Table
I. The GME tool generates set of header files, source file,
simulation and verification scripts and sends these files over
SCP to simulation and verification machines. The simulation
and verification results are sent back to the physical node in
the form of ved waveforms and text file labeled as log.txt. The
text file contains the status of all the properties and a counter
trace if any of the property fails to satisfy.

TABLE 1. SPECIFICATIONS
Node Nature CPU Cores | Memory oS
GME Host Physical 8 16 GB Windows 7
Verification Virtual 4 8 GB Ubuntu 14.10
Simulation Virtual 4 8 GB Ubuntu 14.10

VI. CASE STUDY

Electric power systems include a complex network of
cyber-physical components. The physical components of a
power system can be broadly classified as Generators, Loads,
Lines, Transformers, Buses, and Protection devices. The dy-
namics of these components are governed by the laws of
physics. The cyber components are related to the Protection
devices as well as the supervisory control and data acquisition
(SCADA) systems. These electric power systems are almost
always operational and are subjected to dynamic, operational
and environmental constraints. The stress and strain introduced
due to changing loads and operational requirements contribute
towards the degradation and eventual failure of physical com-
ponents are thereby affecting the nominal operation of these
systems. The protection devices are designed to detect any
abnormal operation, and isolate the faulty components, there-
by arresting the failure propagation and protecting the healthy
components. However, mis-operation and failures in these
protection devices, can lead to cascading effects that can bring
down the power-supply for a large network i.e. blackouts [17].
Therefore, it is very important to formally analyze the behavior
of these devices.

In order to analyze the behavior of the cyber components,
the hybrid dynamics of the circuit has been converted to a
discrete system. Consider a section of the transmission line
as shown in the Fig. 3. Transmission line TL1 is connected to
buses B1 and B2 through three phase breakers. These breakers
BRI1 and BR2 are controlled by over current relays OC1 and
OC2. The individual modules are briefly explained as follows:

A. TwoBusSystem

This module models the different faults associated to the
transmission line TL1 and their effects. Whenever a fault is
present in the transmission line, the fault current increases and
the load current decreases. The fault currents are represented

BR2.read() && (F1.read() || F2.read()) && IF3.read()/ 2
romes m%p

@“7

-

BR2.read() && F3.read()/ 1H2§1

IF2 write(2);

<q

18R2 read() |Tﬂ read() && F2.redd() && F3.read())

IF2.write(0). BR2

BR1.read() && (F3.read() || F2.read()) && !F1.read()/
IF1.write(1);

g :Q

F3
.) clk
O™
IF1 BR1.read() && F1.read()! IH131
+ IF1.write(2);
[EU 1BR1.read() || |(F1jread() && F2.redd() && F3.read())!
IF1.write(0);

.I_.I
N

Fig. 4. TwoBusSystem model

with signals siglF1 and sigIlF2. These signals are discrete in
nature and can take only three values: 0 (absent), 1 (low) and 2
(high). The value of these signals is updated by two processes
in the module through ports IF1 and IF2. Both the processes
are sensitive to a high frequency clock signal at port clk. The
ports IF1(IF2) is connected to port I of the over current relay
OC1(0C2). The value of fault current is influenced by two
quantities: 1) location of fault and status of breakers. If the fault
is close to the left end of the transmission line (close to OC1)
then fault current siglF1 will be high and siglF2 will be low.
So in order to cover all the cases, transmission line is divided
into three > segments. The location of fault is represented by
the signals at ports F1, F2 and F3 (corresponding to three
segments). The status of breakers is represented by the signals
at ports BR1 and BR2. Fig. 4 shows the ports and behavioral
model of TwoBusSystem module.

B. Directional Timed Over Current Relay

Fig. 5 shows the highly abstracted model of directional
timed over current relay. The over current relay is a simple
device which samples the continuous current and compares
the computed phasers to a threshold in order to detect the
presence of a fault. If the fault is detected a trip signal is sent
to the breaker.

The timed over current relay has two thresholds TH1 and
TH2 (TH1>TH?2), if current crosses TH1 a trip command to
sent immediately and if the current exceeds only the lower
threshold, TH2 then over current relay waits for some time
before sending the trip signal. As mentioned in previous
section, siglF1/siglF2 that represents fault current is connected
to port I of relay. The behavioral model contains a process
OverCurrentP1 that reads the port I at fixed rate and decides to
issue a trip command or not. The relay OC1(OC2) controls the
breaker BRI1(BR2) through signals TripDR1(TripDR2) from
port BR. The process OverCurrentP1 has following states:

2first segment: sigIF1>siglF2; second segment: siglF1=sigIF2; third
segment= siglF1 <siglF2

wp wy wp wp ay o] o] =2
F_md F_sd 1 clk reset waitTicks1 waitTicks2 BR
F_sd.read() || ((I.read()==1)&& Iwaitflag && IF_md.read())/ctr=0;
nTicks=waitTicks2;
waitflag=true;
F | F | F | ctr>=nTicks/ctr=0;
(x) (x) (x) BR.write(1);
waitflag=true;
nTicks otr waitflag lF,sa read() || ((I.read()==2)&& Iwaitflag && IF_md.read())/
BR.write(0);
true/BR write(1); ctr=0;
= Wi

ctr=0; nTicks=waitTicks1;

(Lread()==0)/

spt
(F sd.read() | (Lread() 1= 0)) && waitflag 8& IF_md.read()/
BR.write(0);

waitflag = false;

ctrgnTicks/ctr++;

reset.read()/

reset.read()/ @

CybefFault

treset.read()/

Blocking

reset.read()/

Fig. 5. Directional timed over current relay model

e Reset: This is the initial state of the system. This state
implies the relay has been manually reset by the operator.
The state machine will enter this state when there is an
active high signal at reset port.

e Check: In this state, machine checks the value of the
signal at port I. If the value of I is 2, state machine sets
the value at port BR to be 0 and enters the Wait state. If
the value is 1, it shifts to Wait state but does not issue
any command to breaker.

e Wait: This state implies the presence of fault in the
transmission line. The state machine moves back to Check
state in order to check the status of fault after a certain
period of time identified by the variable nTicks.

e Blocking: This state implies the fault has not been cleared
in the interval defined by the variable nTicks and operator
should manually reset the relay by sending an active high
signal at port reset.

e CyberFault: This state implies a cyber-fault (false nega-
tive) has occurred. This fault can be induced in the relay
by issuing a high signal at port F_md. This fault disables
the relay to detect any fault by forcing to shift from Check
state to CyberFault state. A manual reset signal from the
operator is required to move out of this state. There is
one more failure mode present in the relays which gets
activated by high signal at port F_sd. This fault forces
the relay to incorrectly send a command to breaker even
when there is no fault in the system (false positive).

C. Three Phase Breaker

Fig. 6 shows a simplified model of a breaker. It has 4 input
ports and 1 output port labeled as clk, F_SO, F_SC, cmd, and
BR_Status. The model includes one process which is sensitive
to changes in port clk. F_SO and F_SC ports are used to induce
faults in the breaker. The breaker has two states: Open and
Close. It reacts to the commands sent by the relay at cmd
port and changes its state accordingly. An active high (low)
signal on the cmd port instructs the breaker to close the circuit
(open). However, presence of fault in the breaker does not let
the breaker to act normally. An active high signal at the port
F_SO port forces the breaker to remain stuck in open state and
will ignore all the commands from the relay. Similarly, active
high signal at F_SC forces the breaker to remain in the close
state.

% tomd.read() 8& IF_SC.read()/ [%}I
BR_status .
o cmd
[ﬂ% o @ ggg o

F_sO 3 [l%ﬂ
= \omd.read() BreakerStateOpen BreakerSfateClose cme read(y
clk

cmd.read() 8& IF_SO.read()/

Fig. 6. Three Phase Breaker model

Fault Current IF1
increases

BR1is closed then
open immediately

Instruct
BR1to
close and
then close
due to
persistent
fault F1

Fault Current IF2
increases

Fault Current
IF1 still present

Trip signal sent to f Fault detected, Trip
BR2 after waiting j§f signal sent to BR1

Fig. 7. Case 1: Persistent Fault F1

D. Fault Generator

This module induces faults in above mentioned modules. It
has only one input port clk and 10 output ports. It contains two
processes P1 and P2 both sensitive to signal at port clk. Process
P1 triggers physical fault in the TwoBusSystem module and
P2 activates cyber faults in relays and breakers modules.

Using these modules and the topology shown in the Fig.
3, we’ll simulate the behavior of the relays and breakers for
two different fault scenarios followed by verification of model
of relays against liveness and safety properties.

VII. RESULTS
A. Simulation Results

1) Persistent Physical fault F1: A fault F1 is introduced
in TL1. This fault forces SampleTwoBusCircuit module
to update siglF1 and sigIF2 to 2, 1 respectively. Due to
this fault, OverCurrentRelay!l instructs Breakerl to open
instantaneously and shifts to wait state for some time.
After some time, relay again checks the status of the fault
by sending a close command. As the fault is permanent, it
instructs the breaker to open again and moves to blocking
state. The steps taken by the relay OverCurrentRelay?2 are
different as the value of signal at port I is 1. The relay
after detecting the fault moves to the wait state without
sending any trip signal to the Breaker2. After some time,
the relay checks the status of the fault. As the fault is
still present it moves to blocking state and instructs the
breaker to open. Fig. 7 shows the status of breakers and
commands sent by the relays.

2) Persistent Cyber Fault and Physical Fault F1: In
addition to F1, a cyber fault F_md is induced in the relay
OverCurrentRelay2. Because of this fault the relay fails
to detect any physical faults. As a result, fault F1 is not
detected. OverCurrentRelayl behaves normally while the
other relay does not detect anything at all as shown in the
Fig. 8.

Missed
detection

BR2 does

Fault Current IF1 BR1 is closed then

open immediately

BR1 trips not trip

kil ¢ [
B2 E————
SF_ndZ close and
[ml Lnenlclose
ue to
:?;2:“,"] persistent
fault F1

Fault Current IF2 Fault Current

IF1 still present

increases

Fig. 8. Case 2: Persistent fault F1 and missed detection fault F_md2
TABLE II. COMPUTATIONAL EFFORT OF THE TRANSFORMATION
Parse time (ms) 240
Translation time (ms) 65
Composition time (ms) 65
Optimization time (ms) 752

B. Model Checking Results

Table II shows the time taken during translating SystemC
code to Uppaal timed automata templates and the table III
summarizes the number of templates, variables, channels and
clocks are created in the translated Uppaal model.

TABLE III. UPPAAL MODEL

Templates 27
Binary Channels 132
Broadcast Channels 69
Integer Variables 263
Boolean Variables 11
Clock variables 2

The system under test is verified against following liveness
and safety properties.

1) A[]ldeadlock
e This property ensures there is no deadlock in the
system.
2) ((sigF13%val||sigF2%vall]||sigF3%val)&&
(IsigF'_md1$val)) — — > TripDR13$val
e This property ensures if the fault is detected by the
relay OCl it must issue a trip signal after some time.
3) ((sigF1$vall|sigF2%valll|sigF3%val)&&
(IsigF_md2%val)) — — > TripDR2%val
e This property ensures if the fault is detected by the
relay OC2 it must issue a trip signal after some time.

The table IV lists the results of Uppaal model checker
along with the time taken, and memory consumed during each
property verification.

TABLE IV. COMPUTATIONAL EFFORT OF VERIFICATION
Property Virtual memory peaks Verification time Verdict
1 2,582,440KB 1225.429s satisfied
2 2,938,772KB 1213.541s satisfied
3 2,938,772KB 1210.39s satisfied
VIII. CONCLUSION

In this paper, we presented a modeling environment that
aids the designer by graphically modeling both the structure
and behavior of different components of a design. The tool

allows the verification and simulation of each step of the design
flow. In future, we’ll add more features of SystemC language to
the modeling paradigm like hierarchal channels and transaction
level models. We’ll increase the scope of this tool by allowing
code generation for hardware descriptive languages like VHDL
or SystemVerilog.

ACKNOWLEDGMENT

This work is funded in part by the National Science Foun-
dation under the award number CNS-1329803. Any opinions,
findings, conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect
the views of NSF.

REFERENCES

[1] “Ieee standard for standard systemc language reference manual,” IEEE
Std 1666-2011 (Revision of IEEE Std 1666-2005), pp. 1-638, Jan 2012.

[2] V. Sinha, FE. Doucet, C. Siska, R. Gupta, S. Liao, and A. Ghosh, “Yaml:
a tool for hardware design visualization and capture,” in Proceedings of
the 13th international symposium on System synthesis. IEEE Computer
Society, 2000, pp. 9-14.

[3] C. Xi, L. JianHua, Z. ZuCheng, and S. YaoHui, “Modeling systemc
design in uml and automatic code generation,” in Proceedings of the
2005 Asia and South Pacific Design Automation Conference. ACM,
2005, pp. 932-935.

[4] B. A. Correa, J. F. Eusse, D. Munera, S. Sepulveda, J. F. Vélez, and
J. E. Aedo, “Uml2sc: A tool for developing complex electronic systems
using uml and systemc,” Revista Facultad de Ingenieria Universidad de
Antioquia, no. 48, pp. 165-173, 2009.

[5] FE Maraninchi, “A systemc/tlm semantics in promela and its possible
applications,” month, 2007.

[6] A. Habibi and S. Tahar, “An approach for the verification of systemc
designs using asml,” in Automated Technology for Verification and
Analysis. Springer, 2005, pp. 69-83.

[71 Y. Gurevich, B. Rossman, and W. Schulte, “Semantic essence of asml,”
Theoretical Computer Science, vol. 343, no. 3, pp. 370412, 2005.

[8] E.Borger and R. F. Stirk, Abstract State Machines: A Method for High-
level System Design and Analysis; with 19 Tables. Springer Science
& Business Media, 2003.

[9] Y. Zhang, F. Védrine, and B. Monsuez, “Systemc waiting-state au-
tomata,” in First International Workshop on Verification and Evaluation
of Computer and Communication Systems (VECoS 2007), 2007, p. 56.

[10] K.L.Man, “An overview of systemc fl,” in Research in Microelectronics
and Electronics, 2005 PhD, vol. 1. 1EEE, 2005, pp. 145-148.

[11] D. Karlsson, P. Eles, and Z. Peng, “Formal verification of systemc
designs using a petri-net based representation,” in Proceedings of the
conference on Design, automation and test in Europe: Proceedings.
European Design and Automation Association, 2006, pp. 1228-1233.

[12] P. Herber, J. Fellmuth, and S. Glesner, “Model checking systemc designs
using timed automata,” in Proceedings of the 6th IEEE/ACM/IFIP
international conference on Hardware/Software codesign and system
synthesis. ACM, 2008, pp. 131-136.

[13] P. Herber, A Framework for Automated HW/SW Co-Verification of
SystemC Designs using Timed Automata. Logos Verlag Berlin GmbH,
2010.

[14] G. Behrmann, A. David, and K. G. Larsen, “A tutorial on uppaal,” in
Formal methods for the design of real-time systems. Springer, 2004,
pp. 200-236.

[15] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomason,
G. Nordstrom, J. Sprinkle, and P. Volgyesi, “The generic modeling
environment,” in Workshop on Intelligent Signal Processing, Budapest,
Hungary, vol. 17, 2001.

[16] F. Karlsruhe, “Kascpar-karlsruhe systemc parser suite, 2012.”

[17] K. Yamashita, J. Li, P. Zhang, and C.-C. Liu, “Analysis and control of
major blackout events,” in Power Systems Conference and Exposition,
2009. PSCE’09. IEEE/PES. 1EEE, 2009, pp. 1-4.

