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Abstract—Timely and accurate detection of events affecting the
stability and reliability of power transmission systems is crucial
for safe grid operation. This paper presents an efficient unsuper-
vised machine-learning algorithm for event detection using a com-
bination of discrete wavelet transform (DWT) and convolutional
autoencoders (CAE) with synchrophasor phasor measurements.
These measurements are collected from a hardware-in-the-loop
testbed setup equipped with a digital real-time simulator. Using
DWT, the detail coefficients of measurements are obtained. Next,
the decomposed data is then fed into the CAE that captures
the underlying structure of the transformed data. Anomalies
are identified when significant errors are detected between input
samples and their reconstructed outputs. We demonstrate our
approach on the IEEE-14 bus system considering different events
such as generator faults, line-to-line faults, line-to-ground faults,
load shedding, and line outages simulated on a real-time digital
simulator (RTDS). The proposed implementation achieves a
classification accuracy of 97.7%, precision of 98.0%, recall of
99.5%, F1 Score of 98.7%, and proves to be efficient in both
time and space requirements compared to baseline approaches.

Index Terms—convolutional neural network, hardware-in-the-
loop, unsupervised machine learning, phasor measurement units

I. INTRODUCTION

Detection and categorization of grid events, an example of
which is shown in Fig 1, as well as locating the source of the
event to expedite the recovery process, is extremely essential
for ensuring the overall reliability and resiliency of the power
system. Inadequate detection may lead to widespread outage
incidents affecting hundreds of millions of customers. This
is particularly evident from the 1996 west coast blackout,
the 1997 New York City blackout, and the 2012 north-India
blackout, caused due to a combination of overloaded line
tripping, system faults, poor situational awareness, and human
errors [1]. High-resolution Phasor Measurement Unit (PMU)
data and machine learning (ML) applications have opened up
a new world of opportunities to improve grid resiliency by
constructing extensive data-driven models that facilitate better
situational awareness and event detection [2], [3]. Various
detection methods have been developed including supervised
(with labeled data) [4]-[7], unsupervised (no labeled data) [8]—
[14], or semi-supervised (few labeled data) [15]-[17].

There exist key challenges in current PMU-based event
detection methods. First, supervised learning is not well-suited
for most anomaly detection problems due to the need for
label data, which may often be unavailable, and the high
cost associated with labeling. The literature on unsupervised
event detection is new and still limited [8]-[14]. Second,
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Fig. 1: (a) IEEE 14-bus power transmission system, (2) PMU
data corresponding to an event on bus 3 at 0.5s.

raw PMU data is generated in the form of a time series
and numerous analyses [18]-[20] have shown that analyzing
PMU data for events in the time-frequency domain is a more
effective approach compared to simple time series analysis.
To address the above challenges, this paper presents the
Wavelet-Convolutional Auto Encoder (W-CAE) framework,
shown in Fig. 2, for power transmission system event detection
and localization. The framework has two main components:
the Discrete Wavelet Transform (DWT) and the Convolutional
Auto Encoder (CAE). We avoid Fourier Transform as it lacks
time information of frequencies, which may lead to inaccurate
event analysis. Instead, we employ the DWT that sends PMU
data from the time domain to the joint time-frequency domain.
DWT is utilized to determine the critical features of our ML
model, as well as for the purpose of event localization. The
decomposed signal from DWT is fed to the CAE learning
model. By treating the decomposed signals as images, we
leverage the benefits of convolutional operations in our frame-
work to detect anomalous samples based on reconstruction
error. If a reconstruction error for a particular sample is above
a certain threshold, then the sample is flagged as an anomaly.
By providing computationally efficient processing on PMU
samples, the proposed W-CAE framework can be used by grid
operators in real-time during the diagnosis phase following an
event. The key contributions of this paper are as follows,

1) Proposed a fully unsupervised anomaly detection algo-
rithm that incorporates discrete wavelet transform for
feature extraction and a convolutional autoencoder for
detecting several types of events.

2) Validated the algorithm using PMU data obtained from a
hardware-in-the-loop real-time digital simulator (RTDS).

3) Evaluated the efficiency of the proposed anomaly de-
tection algorithm compared to a baseline method using
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Fig. 2: Overview of the W-CAE framework for power system event detection.

classification metrics such as accuracy, precision, recall,
the area under the curve (AUC), and F1 score.

4) Evaluated the efficiency of the proposed anomaly de-
tection algorithm in both time and space requirements
against a baseline method.

The rest of the paper is organized as follows - Section II
gives an overview of various PMU-based event detection
methods. Section III formalizes the event detection problem
statement and provides an overview of our method. Section IV
discusses the proposed method in detail. Section V presents
the evaluation results of our proposed method. Section VI
concludes our work and addresses future research directions.

II. STATE-OF-THE-ART

PMUs provide a massive amount of high-resolution time-
synchronized voltage and current phasors at the rate of
30/60/120/240 frames/s. With the increase in governmental
support [21], it is anticipated that PMUs will further proliferate
in the near future for wide-area grid monitoring systems to im-
prove situational awareness, detect abnormalities, analyze their
root causes, and take prompt appropriate actions. The ML-
based anomaly detection problem using PMU measurements
can be broadly classified into three categories: supervised,
semi-supervised, and unsupervised methods.

Supervised methods use labeled data to train a classifier.
In [4], a convolutional neural network (CNN) is used with
scalograms generated from a pseudo-continuous quadrature
wavelet transform. The authors in [5] exploit the temporal
structure of the PMU data through the correlation matrix with
CNN. Other approaches used for detecting events and attacks
include Extreme Learning [6] where a state reconstruction
method was constructed and a text-mining method [7] through
symbolic aggregation approximation.

Semi-supervised approaches make use of both labeled and
unlabeled data for event detection. In [15], a Generative
Adversarial Network-based (GAN) model is combined with
a signal-processing sorting algorithm to detect anomalies
through highly correlated PMU samples. A Deep Autoencoder
is constructed in [16] that detects physically induced anomalies
in PMU data. Lastly, GANs and autoencoders are combined

in [17] to create a Fault-Attention Generative Probabilistic
Adversarial Autoencoder for the detection of anomalies.

Unsupervised learning does not require labeled data. Exam-
ples include adaptive and online Isolation Forest method [8]
and principal component analysis (PCA) [9]. In [10], a
change-point detection method is used for event detection,
followed by PCA for event identification. The authors in [11]
generate spectrograms via short-time Fourier Transform and
use a convolutive dictionary model for event detection via
generalized likelihood ratio tests. DBSCAN provides real-time
event detection by leveraging the spatiotemporal differences of
anomalous samples [12]. In [13], an ensemble approach uses
multiple k-Means clustering models. In [14], a spatiotemporal
graph autoencoder exploits spatial and temporal relationships
of PMUs for event classification and localization.

This paper extends the research in unsupervised power
system event detection by proposing a novel wavelet convolu-
tional autoencoder. By transforming PMU data into the joint
time-frequency domain using DWT, the autoencoder is able to
detect events without needing data labels.

III. OVERVIEW OF THE W-CAE FRAMEWORK

We formulate the problem of real-time monitoring as a
general anomaly detection problem with the goal of finding
diversions from the expected normal grid operations. Fig. 2.
shows the proposed W-CAE framework for the power trans-
mission system event detection problem.

Data Generation: PMU data is generated from a real-time
RTDS testbed at a rate of 30 frames/s. The simulated data
model the state of operation under normal conditions as well
as the occurrence of power disturbances.

Feature Extraction: To extract features from the PMU data,
we perform a DWT on small windows of PMU signals to
obtain approximation and detail coefficients. DWT places em-
phasis on disturbances in non-stationary signals and provides
time localization.

Feature Pre-processing: We structure the output of DWT as

an image where each image has dimensions defined by the
number of channels across all PMUs and the length of a time
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Fig. 3: (a) Voltage signal and (b) Detail coefficients from a
one-level decomposition after a line-to-line fault event.

window. Thus, a single image covers the state of the grid in
any given time window.

Learning Model: The deep learning model we employ is a
CAE that learns an underlying manifold of the input space
(decomposed PMU signals under normal grid operations)
using convolutional layers. An encoder provides a mapping
from the input to the latent space, while the decoder learns
how to reconstruct the original input. An anomalous sample
will be detected if its reconstruction error is higher than a
threshold. By treating the input as images of detail coefficients,
convolution will be useful in detecting large perturbations in
frequencies.

IV. PROPOSED METHOD

This section provides details of the proposed W-CAE frame-
work. Specifically, we focus on three aspects - discrete wavelet
transform, data pre-processing, and convolutional autoencoder.

A. Discrete Wavelet Transform

DWT is used to convert a PMU signal s(t) in the time
domain to the joint time-frequency domain. The signal s(t)
is decomposed through the use of scaling functions, ¢(t), and
wavelet functions, (), which act as low pass and high pass
filters, respectively. Scaling functions filter out frequencies
higher than half the highest frequency in the original signal and
wavelet functions filter out lower frequencies [22]. Each level
of decomposition outputs a set of approximation coefficients
a;(n) and a set of detail coefficients d;(n), where ¢ denotes the
level of decomposition. Fig. 3 presents an example of detail
coefficients obtained from PMU measurements during a 3 — ¢
line-to-line fault. The decomposition of s(t) is represented as,

s(t) =Y ajo(k)bjo () + DY di(k)wyn(t) (1)

k k. j=jo
where j is the scale factor and k is the translation factor.
Our model incorporates a sliding window component into
wavelet analysis. Given a total period of time 7', we define a

window size M where the number of windows W is defined
as W =T — M +1. These windows are overlapping and let us
capture patterns between contiguous time windows. We choose
a window size that is small enough to pinpoint anomalies but
large enough to avoid data loss caused by downsampling.

B. Data Pre-processing

The pre-processing stage transforms the DWT output into
images. First, the output of the DWT algorithm is structured
as a multi-dimensional tensor A € REXPXCXWXD where
E is the number of simulations performed using the RTDS
testbed, P is the number of PMUs on the 14-bus system, C' is
the number of PMU channels, W is the number of windows,

and D is the number of_detail coefficients. W is a tunable

M

parameter, and D = Dre is defined in terms of the window

size M and the level of the decomposition K.

First, the DWT data undergoes min-max normalization.
Next, in order to generate samples of 2-d images, we first
slice the tensor A into smaller tensors that represent all of
the channels for a single PMU. For each PMU p;, we define
a smaller matrix B; € RE*WXD that contains all of p;’s
detail coefficients for a given simulation e;. An aggregation
of the detail coefficients is then performed that squeezes B;
into two dimensions. We consider mean and max magnitude
aggregation as two heuristics. Compared to looking at the
maximum magnitude, mean aggregation retains the highest
variance in detail coefficients. An example is illustrated in
Fig. 4. Note that B; will have dimensions C' x W after the
aggregation. Given each p; and their corresponding B;, we
construct images by stacking each B; so that the collection of
B;’s gives one single matrix that contains all the aggregated
values for each PMU’s channels across time. Since C' << W,
we divide the W windows into smaller chunks with widths
equal to C. A single chunk, or image sample, will be repre-
sented as x € RPC*PC With the PMU data being sampled
at a very high sampling frequency, each image will be small
enough to allow for fast data processing, making our approach
suitable for online stream processing.

C. Convolutional Autoencoder

Autoencoders are a feed-forward neural network primarily
used for embedding input data into a latent space representa-
tion [23]. The basic structure of an autoencoder is composed
of an encoder that maps input samples to a latent space and a
decoder that reconstructs the encoded samples. A traditional
autoencoder is built on hidden layers composed of neurons
that contain activation functions such as ReLU or sigmoid
functions [16]. A standard encoding of an input vector z into
the latent space ¢ is represented as

6(x) = h(Wx + b) @)

where W is a weight matrix, b is a bias vector, and h(-)
denotes a non-linear activation function. The decoder, repre-
sented by d(¢), maps ¢ to a reconstructed vector & such that

d(¢) = h(W"¢ +b") 3)
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Fig. 4: (a) Max magnitude aggregation of detail coefficients.
(b) Average aggregation of detail coefficients.
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Fig. 5: Architecture of the proposed CAE.

where W* and b* represent the weight matrix and bias vector,
respectively. In our encoder, there are two convolutional layers,
each followed by a ReLU and Batch Normalization layer,
as shown in Fig. 5. The decoder is composed of the same
structure as the encoder. In each convolutional layer, re-sizing
of images is performed by kernel filters, which detect features
in local regions of an image. Let n = PC be the height and
width of z, and c be defined as the number of color channels in
x. Function ¢ : REX™*" s R X™MX™ maps the input image
of aggregated detail coefficients to a latent representation ¢(x).
Function d : RS XXMy REX1X" then takes ¢(x) as input
and returns d(¢(x)) = & as the reconstruction of x. The
autoencoder learns the optimal ¢ that maps the inputs to an
underlying manifold that is most representative of the input
while also learning an optimal d that can reconstruct the
samples. The training process, shown in Algorithm 1, involves
minimizing the mean-squared error (MSE) between = and &
which is defined as,

N

1
MSE = N 2(% — &) “4)
A high anomaly score (or high reconstruction error) above
a threshold o will indicate the presence of an event. We

optimize « to be a quantile of the distribution of reconstruction
errors in the test set. If we define F' to be the cumulative
distribution function for the reconstruction errors, then the
quantile function is defined by

F7YB) =inf{z: F(z) > B} 6))

In optimizing o = F~1(j3), we seek a 3 that provides high
class separability. A low [ will make the algorithm sensitive
to anomalies; however, this may increase the number of false
positives. Also, anomalies are localized in time with DWT.

Algorithm 1: Training Algorithm

Input: dataset D = {x;},, learning rate 7, batch
size R, batches B, epochs S;
Output: Trained CAE ©
/+ Initialize the CAE model */
1 © := Build-CAE(n);
2 for s € [1,...,5] do

3 forbc[1,...,B] do
4 z = ¢(xp);
5 Ty = d(2);
6 MSEb = %Haﬁb—mbﬂg;
/+ Perform backpropagation */
7 Update-Weights(O);
8 end
9 end
10 return ©

V. PERFORMANCE EVALUATION

This section describes the results and discussion of the W-
CAE framework for power system event detection. We focus
on evaluating the model’s classification accuracy, precision,
recall, F1 score, and AUC. Ideally, the model needs to min-
imize the occurrence of false negatives due to the safety-
critical nature of modern smart grids. We will also compare
our approach, W-CAE, to a baseline approach, the Time-
Convolutional Autoencoder (T-CAE), that does not implement
DWT. The T-CAE approach contains the same CAE used
in the W-CAE implementation; however, the image data will
come directly from the original time series data generated by
RTDS.

The machine learning models are built using tensorflow
and DWT is implemented using PyWavelets. All exper-
iments were performed on a Linux machine with an AMD
processor and 32 CPU cores. A single NVIDIA Titan X GPU
was used for the hyperparameter tuning and training.

A. Power System Data Generation

All simulations are performed on the IEEE-14 bus system
which is modeled in the RTDS. The RTDS is capable of
conducting electromagnetic transient simulations of a power
system in real time and has several I/O and communication
cards to facilitate external interfacing. The built-in GTNETx2-
PMU firmware PMUS8 is used to obtain phasor measurements.



TABLE I: CAE Details

Type of Activation Layer ReLU
Number of Convolutional Layers 4
Learning Rate 0.1
Optimizer Adam
Learning Rate Decay 1 x10°5
Loss Function MSE
Maximum Epochs 50
Batch Size 32

TABLE II: Evaluation Metrics

Model Accuracy | Precision | Recall F1 AUC B
W-CAE 97.7 98.0 99.5 98.7 | 0.962 | 0.0645
T-CAE 89.4 90.2 98.8 94.4 | 0.460 0.01
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Fig. 6: Loss curves for (a) W-CAE and (b) T-CAE.

A total of 8 PMUs are placed at buses 1,2,3,4,6,9,11 and
13, which monitor lines 1 —5,2—-1,3—-2,4—-5,6 —11,9 —
14,11 — 10 and 13 — 12. The PMU data includes three-phase
voltage phasors, current phasors, frequency, and rate of change
of frequency. For each PMU, 15 channels of data are obtained.
A total of 5000 raw data points are obtained for each channel
from the RTDS for 4 second. The total data size is 0.85 GB.

B. Experimental Settings

After experimentation, the Haar mother wavelet, decom-
position level K = 4, and window size of 100 were chosen
as parameters for performing DWT. Different 5 € [0,1] are
chosen to determine the value of «, which represents the clas-
sification threshold. The size of the training and test datasets
for each model differ slightly due to data pre-processing. The
W-CAE has a total of 3110 training samples and 3111 test
samples, while the T-CAE has a total of 3120 training samples
and 3172 test samples. An 80 : 20 split on the training samples
for each model produces training and validation sets. Training
is unsupervised and is based on purity-approach. The loss on
the validation set is calculated at the end of each epoch and
the maximum number of epochs is set to 50. Early stopping
is implemented based on validation loss and the loss function
is optimized using the ADAM optimizer [24] with a decay of
1 x 1072, All hyperparameter optimization is done via grid
search combined with cross-fold validation that chooses the
optimal batch size, learning rate, and the number of training
epochs. The details are summarized in Table 1.

C. Experimental Results

Table II summarizes the evaluation results of the proposed
W-CAE compared with the T-CAE. It is observed that W-
CAE achieved higher performance on all classification metrics
with $ = 0.645. Although T-CAE achieves a high recall with
B = .01, it fails to provide high precision and accuracy.

Fig. 6 shows the training and validation loss curves for the
W-CAE and T-CAE. The W-CAE model performs very well
in reconstructing training samples and only requires half of
the total number of epochs in order for the validation loss to
converge with the training loss. In Fig. 7, a confusion matrix
demonstrates the ability of the W-CAE to classify nearly
all true positives, thus leading to a high recall. Furthermore,
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Fig. 7: Confusion matrices for (a) W-CAE and (b) T-CAE.
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most of the true negatives are correctly classified, increasing
precision and accuracy.

Fig. 8 presents the ROC curves for the W-CAE and T-CAE.
T-CAE does not achieve a high AUC, indicating that it fails to
provide good class separation, as compared to W-CAE, which
is able to achieve an AUC closer to 1.0. Thus, T-CAE performs
nearly as well as a random classifier, which would have an
AUC = 0.50. This is due to the fact that T-CAE is unable to
classify the true negative samples accurately.

The performance of T-CAE and W-CAE in analyzing time
and space requirements was similar, with T-CAE requiring
14.6 s and W-CAE requiring 17.6 s on average for training,
while both models only needed 1.245 GB of space (including
the model, datasets, and GPU memory usage). Compared to
the baseline CUSUM algorithm for change-point analysis, our
model was much faster, as CUSUM required an average of
almost 70 minutes to run on the 5856 signals in the test set,
with each signal taking an average of 0.75 s to analyze.

The W-CAE also proves to be efficient for real-time stream-
ing applications. The time complexity for DWT is O(n), where
n is the length of the input signal. For a window size of
100, performing DWT on a single PMU only takes 0.2 ms
on average. The computation time can be further reduced by
parallelizing across geographically clustered PMUs, making
it fit for real-time processing. Note that the prediction takes
negligible time and all training is offline. In summary, features
extracted from the detail coefficients using DWT are more
informative of events than time series signals. Thus, W-CAE
outperforms T-CAE in event detection.
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VI. CONCLUSION

In this paper, we present an unsupervised power system
event detection algorithm using wavelet transform and a
convolutional autoencoder. We demonstrate that incorporating
discrete wavelet transform as a feature extractor prior to
anomaly detection proves to be more effective than relying
on time-series phasor data. Our approach leveraged coeffi-
cients obtained from wavelet decomposition of phasor data,
transforming them into an image, and using an unsupervised
deep learning method for event detection and localization. Our
approach has high accuracy and provides a better sense of
class separability compared to a baseline method as observed
by a high AUC of 0.962, a low training time of 17.6 s, and
reasonable space requirements of 1.245 GB, making it suitable
for online applications. The proposed method was validated
on real-time phasor measurements obtained from a real-time
digital simulator for different power system events. In the
future, we will consider additional events such as cyber-attacks
and evaluate other deep learning models used for handling time
series such as recurrent neural networks and transformers.
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