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ABSTRACT

Traffic networks are one of the most critical infrastructures
for any community. The increasing integration of smart and
connected sensors in traffic networks provides researchers
with unique opportunities to study the dynamics of this crit-
ical community infrastructure. Our focus in this paper is on
the failure dynamics of traffic networks. By failure, we mean
in this domain the hindrance of the normal operation of a traf-
fic network due to cyber anomalies or physical incidents that
cause cascaded congestion throughout the network. We are
specifically interested in analyzing the cascade effects of traf-
fic congestion caused by physical incidents, focusing on de-
veloping mechanisms to isolate and identify the source of a
congestion. To analyze failure propagation, it is crucial to
develop (a) monitors that can identify an anomaly and (b) a
model to capture the dynamics of anomaly propagation. In
this paper, we use real traffic data from Nashville, TN to
demonstrate a novel anomaly detector and a Timed Failure
Propagation Graph based diagnostics mechanism. Our nov-
elty lies in the ability to capture the the spatial information
and the interconnections of the traffic network as well as the
use of recurrent neural network architectures to learn and pre-
dict the operation of a graph edge as a function of its imme-
diate peers, including both incoming and outgoing branches.
Our results show that our LSTM-based traffic-speed predic-
tors attain an average mean squared error of 6.55 × 10−4

on predicting normalized traffic speed, while Gaussian Pro-
cess Regression based predictors attain a much higher aver-
age mean squared error of 1.78 × 10−2. We are also able
to detect anomalies with high precision and recall, resulting
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in an AUC (Area Under Curve) of 0.8507 for the precision-
recall curve. To study physical traffic incidents, we augment
the real data with simulated data generated using SUMO, a
traffic simulator. Finally, we analyzed the cascading effect of
the congestion propagation by formulating the problem as a
Timed Failure Propagation Graph, which led us in identifying
the source of a failure/congestion accurately.

1. INTRODUCTION

Since the emergence of smart cities, a major focus has been
in the area of Intelligent Transportation System. These sys-
tems provide researchers with unique opportunities to study
the dynamics of road traffic. In this paper, we study the failure
dynamics of traffic networks, focusing on the detection and
diagnostics of traffic anomalies based on traffic-prediction
models. Traffic predictions can be performed based on two
different approaches: model-driven and data-driven [Barros,
Araujo, and Rossetti (2015)]. In model-driven approaches,
we have a physical model that represents the network topol-
ogy, incorporating information about intersections, road seg-
ments, signals, geographical coordinates of Traffic Message
Channel (TMC), etc. In data-driven approaches, informa-
tion regarding various forms of traffic measurements, such as
speed and congestion factor, are needed for training, which
can be obtained from sensors, such as induction-loop detec-
tors placed in the road network.

Our aim here is to combine model-driven and data-driven
approaches to build an effective traffic prediction architec-
ture. We use the physical model of the network to gen-
erate a directed graph that captures the spatial interconnec-
tions within the network. The temporal dependencies of
the flow patterns are captured by training recurrent neural
network architectures using significant amounts of sensor
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data. Thus, combining the model-driven and data-driven ap-
proaches, we can assess the evolution of the traffic state of
the entire road network. We demonstrate our approach us-
ing real traffic data from Nashville, TN, USA obtained via
the HERE API [HERE Developer (2019)]. In particular, we
study the efficacy of building traffic-speed predictors using
two different approaches, Long-Short Term Memory Net-
works (LSTMs) and Gaussian Process Regression (GPR). For
both approaches, we model the speed of each road segment
in the network as a function of its neighboring road segments,
and build specialized traffic predictors for each edge of the
entire network.

We develop the traffic speed prediction model keeping two
objectives in mind: 1) detection of anomalous sensor read-
ings and 2) a model to capture the dynamics of congestion
propagation in a cascaded way. The disruptive events in the
traffic network causing anomalous sensor readings can be due
to malicious sensor attacks involving data manipulation as
well as real physical incidents creating congestion. For sen-
sor anomaly and attack detection, we introduced additive and
deductive anomalies in the real-time traffic data and showed
the ability of the trained traffic predictors to identify the at-
tacks using statistical control charts. We also analyzed the
precision and recall of this anomaly detection scheme.

Next, the cascading effect of congestion in a traffic network
is analyzed where congestions/perturbations created at a lo-
cal level at a targeted road segment can propagate backwards
like a wave to affect a larger part of the network leading to
chained congestions. To analize such effects in a large-scale
traffic network, we use the SUMO (Simulation of Urban MO-
bility) [“SUMO” (2019)] traffic simulator to access real-time
traffic simulation and monitor as well as analyze traffic pat-
terns under the influence of congestion. We trained traffic
predictors with data collected from SUMO under normal op-
erating conditions and showed that the pre-trained models ef-
fectively predicted the real-time cascading effect of conges-
tions spreading out to the neighboring road segments. Once
a persisting congestion is noted in a road segment, we identi-
fied the root-cause of the cascaded congestion by finding the
target road where the congestion started using Timed Failure
Propagation Graphs (TFPG) [Abdelwahed, Karsai, Mahade-
van, and Ofsthun (2009)].

Contributions Our contributions in this paper are:

• Building efficient LSTM based traffic predictors in an
unique way of modelling each road segment in a large
scale traffic network as a function of its neighboring
roads and comparing its performance with that of Recur-
rent Neural Network and Gaussian Process Regression.
We achieved an accurate prediction model with an aver-
age loss of 6.55× 104 on normalized speed values.

• These traffic predictors combined with statistical con-
trol chart CUSUM are able to detect anomalies in sensor

reading with high precision and recall indicating an AUC
of 0.8507 of the precision-recall curve.

• We formulated the traffic congestion propagation as a
Timed Failure Propagation Graph to identify the root
cause of failure in the network.

Outline The rest of the content is organized as follows. Sec-
tion 2 sets up the research problem that we solve. We provide
an outline of the research approach and compare it to related
works in Section 3. Next, we describe our main contribu-
tions. Section 4 presents the models that we use for traffic
speed prediction. We discuss our approach to anomaly detec-
tion and its comparison with the classical Gaussian Process
Regression based anomaly detection in Section 5. Then, we
discuss the cascade analysis approach and root cause isolation
in Section 6. Section 7 concludes the paper and discusses fu-
ture research directions.

2. PROBLEM STATEMENT

We are interested in developing data-driven detectors to iden-
tify the following disruptive events: (a) sensor attacks, that is,
cyber-attacks against smart sensors by a networked adversary
which may change the measurements values arbitrarily, and
(b) physical incidents, such as motor vehicle accidents, that
occur randomly and may cause a cascade of traffic disrup-
tions throughout the road network by creating chained traffic
congestion. In such cases, identification of the root cause of
an event can help eliminate the cascaded propagation of con-
gestion. To help setup our problem, we first present a number
of definitions, which include the transportation network as a
graph and certain operators on the graph that we use later in
the paper.

2.1. Definitions

Definition 1 (Transportation Network Graph) A graph
representing our system model is defined as G = (V,E)
where V is a set of nodes. E is the set of road segments
connecting the nodes. In the graph, let vi ∈ V denote a node
and eij = (vi, vj) ∈ E represent an edge.

Definition 2 (in, out) The in operator in : V → 2E gives
all the edges for which this node v is the destination. When
the out operator is applied to a node out : V → 2E it gives
all the edge for which this node v is the source.

Definition 3 (in degree, out degree) The in degree of a
node v is the number of road segments incoming to the node
and can be calculated as |in(v)|, whereas, the out degree of
a node v is the number of road segments outgoing from the
node and is calculated as |out(v)|.

Definition 4 (Traffic Message Channels (TMC)) An edge
is called a traffic message channel (TMC) if it has a speed
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and jam factor sensor associated with it. We denote the set of
TMC as ES ⊆ E.

Definition 5 (Jam Factor) We also have a function J that
provides the jam factor, a value between 0 to 1 that describes
the congestion on road. 0 means no congestion and 1 means
the observed speed is zero.

Definition 6 (k-hop incoming neighbors) The k-hop in-
coming neighbors (N k

in : E → 2E) of an edge are the
k-nearest hops of the incoming edges that can feed the traffic
into an edge. We define this function recursively. N 1

in(e) =⋃
x∈in(src(e))(in(src(x))). Given the set N k−1

in , the set N k
in

can be defined as N k
in(e) =

⋃
x∈Nk−1

in (e)(in(src(x))).

Definition 7 (k-hop outgoing neighbors) The k-hop out-
going neighbors (N k

out : E → 2E) to an edge are the k-
nearest hops of edges that take traffic away from an edge
via its out node. We define this function recursively as
well. N 1

out(e) =
⋃

x∈out(dst(e))(out(dst(x))). Given the
set N k−1

out , the set N k
out can be defined as N k

out(e) =⋃
x∈Nk−1

out (e)(out(dst(x))).

Definition 8 (Physical incident) By physical incidents, we
mean the failure circumstances such that the real speed of
the edge is significantly below maximum speed. This can
typically be explained by motor-vehicle accidents that oc-
cur randomly and may cause a cascade of traffic disruptions
throughout the road network. An incident can cause disrup-
tions (i) directly through traffic congestion, which may propa-
gate to connected roads, and/or (ii) indirectly by forcing vehi-
cles to take alternative routes, even before reaching the areas
that are not affected by direct congestion.

Definition 9 (Logical incident) A logical incident is the
hypothesis that the observed speed of the edge is significantly
different from its speed under normal operating condition. A
logical incident can be caused by a fault in the sensor or by
an adversary. The disruptive events alter the traffic speed
attribute where physical incidents have effect on real traffic
speed, but the sensor failures and attacks change the observed
or sensed traffic speed but not the real speed.

Definition 10 (AUC) AUC is the area under the precision
recall(PR) curve. It is used as an indicator of efficiency of the
anomaly detection approaches discussed in the paper. The
greater the AUC of the PR curve, the better is the detection
model.

2.2. Problem Definition and Dataset

In this paper, we are concerned with the following prob-
lem. Given a transportation graph and a sequence of real-
time speed readings, detect the occurrence of the anomalous

events. Performance in detecting anomalies is provided by
quantifiable measures such as false positives, true positives,
false negatives, true negatives as well as precision and recall.
Second, we want to identify the root cause of an event (e.g., if
a congestion event on a road causes a large disruption through
cascades of reroutes, we need to identify the original conges-
tion event as the root cause).

In this paper, we specifically study this problem for the trans-
portation network of Nashville, TN. In particular, we use the
data collected by our team from HERE to setup the problem.
The data contains timestamped representation of information
regarding speed, jam factor, free flow speed, etc. for each
Traffic Message Channel (TMC) ID. Each TMC ID identifies
a specific road segment and represents the sensor information
for that particular segment.

To inject physical incidents and study their effect, we use the
microscopic traffic simulator SUMO, which we have config-
ured for Nashville.

3. RELATED WORK

The approach that we will describe later in this paper is com-
bining three active areas of research (a) building a predic-
tor to forecast the normal congestion events and the expected
speeds on the road network; (b) using these predictors to build
anomaly detectors; and (c) developing a cascade model to
study the progression of congestion and effectively isolate the
root causes. In this paper we make the assumption of single
root failure (physical incident). The model of computation we
use and describe later in this paper can support multi-failure
hypothesis. But we leave that for our future work.

3.1. Existing Work on Traffic Forecast with Machine
Learning

Ma, Tao, Wang, Yu, and Wang (2015) presented an LSTM
neural network to predict travel speed using microwave de-
tector data. They collected 1-month traffic speed data from
two sites in Beijing expressway. They compared three differ-
ent typologies of recurrent neural network (i.e. Elman NN,
TDNN and NARX NN) as well as other non-parametric and
parametric methods (i.e. SVM, Time Series and Kalman Fil-
ter) with the LSTM NN based on the same dataset. The nu-
merical experiments proved that the LSTM NN performes
better than other algorithm in terms of accuracy and stability.
Tian and Pan (2015) introduced a model called Long Short-
Term Memory Recurrent Neural Network (LSTM RNN)
which represents long-term dependencies and determines the
optimal time lags for time series problems. The study used
data from the Caltrans Performance Measurement System
(PeMS) and included a comparison of the LSTM RNN model
with other four established prediction models, i.e., RW (Ran-
dom Walk), SVM (Support Vector Machine), FFNN (Feed
Forward NN) and SAE (Sum of Absolute Errors). This study
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mainly analyzed the temporal influence on traffic flow but
does not consider other factors, such as spatial impact from
neighbour observation stations, weather conditions, etc.

Polson and Sokolov (2017) developed a deep learning archi-
tecture which combined a linear model that was fitted us-
ing l1 regularization and a sequence of tanh layers. The
first layer identified spatiotemporal relations among predic-
tors and other segments modelled nonlinear relationships.
The study provided a twofold analysis of short-term traffic
forecasts from deep learning. It demonstrated that deep learn-
ing provides a significant advancement over linear models. A
good review of Deep Learning technologies used in forecast-
ing analysis can be found in Sengupta, Basak, Saikia, et al.
(2019). Prior work on traffic forecasting has also been car-
ried out with multi agent based approaches. Hu, Gao, Yao,
and Xie (2014) used Particle Swarm Optimization for traffic
flow prediction. Some recent swarm-based algorithms listed
in [ Sengupta, Basak, and Peters (2019), Sengupta, Basak,
and Peters (2018)] can also be used in this purpose.

For short term traffic volume forecasting, Zhao, Chen, Wu,
Chen, and Liu (2017) proposed a cascaded LSTM network
by combining the interaction among the road network in both
the time and spatial domain. They showed that the pro-
posed LSTM network approach for traffic volume prediction
is sturdy and had a minimum MRE (Mean Relative Error)
compared to other models such as ARIMA (Autoregressive
Integrated Moving Average) model, SVM (Support Vector
Machine) and SAE (Stacked Auto-encoder). LSTM and RNN
architectures also outperformed other techniques in numerous
applications, such as language learning [Gers and Schmidhu-
ber (2001)], connected handwriting recognition [Graves and
Schmidhuber (2009)], Remaining Useful Life Prediction of
hard disks [Basak, Sengupta, and Dubey (2018)].

In comparison our approach we model each road segment in
the network as a function of its neighboring roads and use
that relationship for prediction. When we compared our per-
formance with that of RNN and Gaussian Process Regression
we saw that we achieved a better prediction model with an
average loss of 6.55×10−4 calculated on Normalized Speed.

3.2. Existing Work on Traffic Anomaly Prediction

Zygouras et al. (2015) presented an approach to identify
anomalous sensors and resolve whether irregular measure-
ments are due to faulty sensors or unusual traffic. The pro-
posed method was implemented by using the Lambda Ar-
chitecture which combined a batch processing framework
(i.e. Hadoop3) and a distributed stream processing system
(i.e. Storm4) for efficiently processing both historical and
real-time data. The authors also developed a Crowdsourcing
system to extract answers from the human crowd based on
the MapReduce paradigm. The study recognised anomalous
SCATS (Sydney Coordinated AdaptiveTraffic System) sen-

sors from Dublin city with three methods; Pearsons correla-
tion, cross-correlation and multivariate ARIMA model. The
three different outlier detection techniques identified a com-
plementary set of faulty sensors. The study gave a detailed
experimental evaluation to prove that their proposed approach
effectively resolved the source of irregular measurements in
real-time.

Lu, Varaiya, Horowitz, and Palen (2008) provided a system-
atic study of previous loop fault detection and data correction
methods, and also systematic classification of possible faults
and the reasons behind them at different levels. According
to the study, existing work on loop fault detection and data
correction/imputation may be divided into three levels which
lead to different viewpoints for loop fault detection and data
correction: macroscopic such as: (a) TMC/PeMS level; (b)
mesoscopic a stretch of freeway; and (c) microscopic control
cabinet level. These three levels of approaches are comple-
mentary to each other although they study the problem from
different aspects using a different level of data.

In this work we used statistical control chart CUSUM to iden-
tify malicious sensor attacks with high precision and recall
indicating an AUC of 0.8507 of the precision-recall curve.

3.3. Existing Work on Cascading Failures

Daqing, Yinan, Rui, and Havlin (2014) studied the long-range
spatial correlation of cascading failures and their evolution
with time to predict system collapse in case of power grid fail-
ures and traffic congestion. Zhang, Lu, Lu, Chen, and Ding
(2015) employed an improved form of Coupled Map Lat-
tice(CML) model to analyze the cascading failures on Beijing
Traffic network. They considered the traffic network topology
and tested on various attack strategies and how the scale of
failure varies with external perturbations, coupling strengths
and attack strategies. Liang, Jiang, and Zheng (2017) pro-
posed a data-driven approach CasInf to study the cascading
patterns of traffic propagation through maximizing the like-
lihood function from the available data. They treated it as a
submodular function maximization problem providing near-
optimal performance guarantees.

In this paper, other than analyzing the cascading effect of
traffic congestion on the neighboring road segments of the
network, we show that the source of congestion can be iso-
lated by formulating the congestion propagation problem as a
Timed Failure Propagation Graph.

4. TRAFFIC SPEED PREDICTION MODEL

For the Nashville dataset, we have 3,724 unique TMCs. For
each TMC we have collected speed values for a total of 6000
timesteps. Each timestep specifies a small time interval of 10
minutes.

First, a matrix of dimension (total number of timesteps× traf-
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fic speed for all unique TMC IDs) (6000 × 3724) is formed.
Some of the TMCs do not have speed value recorded. To in-
terpolate the missing speed value of a particular TMC, we are
considering the speed values of all the neighbouring TMCs
for the preceding and succeeding timestep using data imputa-
tion.

Since we consider the speed of the neighbors for predicting
the speed of a TMC we must ensure that we normalize the
speeds (see definition 11). The normalized speeds are de-
fined to be in between 0 and 1 and help ensure data ranges
are balanced between the road segments. This is required for
building a good predictive model.

Definition 11 (Normalized speed) The normalized speed
of a TMC (definition 4) is a ratio of its current speed with the
average of speeds for times when the jam factor (definition 5)
is zero.

For each TMC,N 1
in(TMC) andN 1

out(TMC) give the set of
its immediate incoming and outgoing neighbors respectively.
For each TMC, the normalized speed values for each of its
neighbors (including incoming and outgoing) are treated as
input features whereas the normalized speed of the target
TMC is treated as the label. We applied both Recurrent Neu-
ral Networks and Long Short Term Memory Networks to
build the traffic predictors for each TMC in the traffic net-
work.

The number of timesteps to look back in order to predict the
result for current timestep has been chosen in a way that pro-
duces the least loss. The timesteps are varied from 5 to 20.
From the experimental results, we have seen that for RNN,
ten timesteps provide a stable outcome whereas LSTM gives
better result with 15 timesteps. Table 1 shows the average
loss on test data calculated over normalized speeds for differ-
ent timesteps produced by RNN and LSTM.

Table 1. Average Loss with Different Number of Timesteps

Number of Timesteps Average Loss Average Loss
to Look Back from RNN from LSTM

5 0.0007797 0.0007032
10 0.0006966 0.0007063
15 0.0006976 0.0006805
20 0.0006966 0.0006853

RNN and LSTM take the input as a three dimensional matrix
of dimension (Samples× timesteps× features) where
number of features is equal to the total number of Neigh-
bouring TMCs. As the sample labels for a particular TMC
is the normalized traffic speed value of that TMC, the net-
work learns to predict the speed at any timestep for the target
TMC given past 10 timesteps of data inputs form its neigh-
bors. The sample matrices are split randomly into Training
Set and Test Set (70% Training and 30% Testing).

4.1. Prediction Using Recurrent Neural Network

For Recurrent Neural Network (RNN) prediction model, we
have tried a different number of neurons (from 40 to 200) in
the input and hidden layers. We ran the models with a differ-
ent number of neurons for the first 100 TMC. From the aver-
age losses, we have found out that RNN works better with 80
neurons. Figure 1 shows the average losses produced by RNN
and LSTM for the different number of neurons. The average
losses provided by RNN show a downward trend for 40 to 80
neurons. Afterwards, as the number of neurons increases, the
average loss also increases.

Figure 1. Average loss from predicted speed values by RNN
and LSTM for different number of neurons

We have used Mean Squared Error as the loss function for
RNN. For training the deep neural model, we have used Adam
optimizer. Figure 2 shows the predicted speed value and ac-
tual speed value of the first TMC for the first 400 timesteps.
The loss of this prediction is 3.388× 10−5.

Figure 2. Predicted speed values by RNN vs actual speed
values for the test data of first TMC
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