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Abstract—In this paper we focus on application of data-driven
methods for remaining useful life estimation in components where
past failure data is not uniform across devices, i.e. there is a
high variance in the minimum and maximum value of the key
parameters. The system under study is the hard disks used
in computing cluster. The data used for analysis is provided
by Backblaze as discussed later. In the article, we discuss the
architecture of of the long short term neural network used and
describe the mechanisms to choose the various hyper-parameters.
Further, we describe the challenges faced in extracting effective
training sets from highly unorganized and class-imbalanced big
data and establish methods for online predictions with extensive
data pre-processing, feature extraction and validation through
online simulation sets with unknown remaining useful lives of the
hard disks. Our algorithm performs especially well in predicting
RUL near the critical zone of a device approaching failure. With
the proposed approach we are able to predict whether a disk is
going to fail in next ten days with an average precision of 0.8435.
We also show that the architecture trained on a particular model
is generalizable and transferable as it can be used to predict RUL
for devices in other models from same manufacturer.

Keywords: RUL; Long Short Term Memory; Prognostics;
Predictive Health Maintenance; RNN; Reliability

I. INTRODUCTION

In the past we have developed approaches for both model-

driven as well as data driven prognostics as shown by our work

on the predictive health maintenance of lithium ion batteries

employed in small satellite missions discussed in [1]. However,

most of those past work were contingent about uniform failure

metrics as observed across the devices. For example, in [1] we

discovered that the battery failure semantics remained uniform

across different devices. However, in some cases, the same

metric when measured across different devices show variance

in the minimum and maximum value observed. For example,

we will show later in the paper that the hard disks from

the same manufacturer show large variance when we look at

the observed SMART parameters, especially near the point of

failure. However, the interesting point to note is that always

the same SMART parameters are critical markers of failures.

These observations lead to an interesting challenge in

training the remaining useful life (RUL) predictors while

normalizing the data, when the range of values the features

can take, vary vastly among the devices. To showcase this

approach, the Backblaze dataset [2] is considered. There have

been several studies directed at predicting RUL of hard disks

using model-driven approaches [3]. However, they cannot

always capture the device dynamics well [4] using standard

distributions specially when it is important to consider the

trend of variance in the minimum and maximum range of the

feature values across the devices. This is required in order to

have an effective normalization strategy for prediction.

Contributions: To account for these challenges, this paper

develops an online prediction model using Deep Long Short

Term Memory (LSTM) [5] networks. It is motivated by the

need to provide accurate predictive analytics despite the unusu-

ally non-linear pattern dynamics of the Backblaze hard drive

dataset [2]. The goal, in summary, is to predict the remaining

useful life of the drives under test in the Backblaze data. The

results presented in the paper show an average precision of

0.8435, recall of 0.72, and F1 score of 0.77 when predicting

whether a hard disk is going to fail in the next ten days. The

contributions discussed in the paper are:

• Learning failure patterns using device-specific normal-
ization: It should be noted that even if the devices worked

with are from the same manufacturer, they do not necessarily

fail under similar conditions i.e. with similar failure-specific

feature values. To make things worse, at some of the feature

values deemed healthy for one device, another device may

fail. It should be noted that the data has some failure states

which have similar feature sets to those of active states

[6]. This renders the possibility of finding out one specific

set of feature values corresponding to global failure slim.

This in turn makes it infeasible for traditional Machine

Learning (ML) paradigms to learn the highly non-linear

causal embeddings latent in each instance of progression

towards a fault. In the proposed approach we have taken care

of extracting the training set from such highly unorganized

feature sets with major class imbalances and established cus-

tom, device-specific normalization techniques in the training

and testing stages to overcome this issue.

• Generalization of prediction model within the class of
devices: Most of the existing work in this domain uses

cross validation. However, we divide the data into training,

validation, and a simulation set (for testing) such that the

training and validation data are from the same distribution

where the RUL of a device is known, but the simulation

data is the online data coming in real time for devices

with unknown RUL. This enables extension of prediction

capacity to simulation data being fed in an online manner

whose failure logs have not been used in the training process

- the caveat is to preprocess the data for such devices in such
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a way so that they have similar underlying pattern mappings

to that of the training set. Further, we show that our trained

models work well even for other hard disk models from the

same manufacturer.

The rest of the paper is organized as follows: Section II

outlines the problem. Section II-B discusses the related work.

Section III describes our approach. Section IV describes the

Long Short Term Memory Architecture used for the predic-

tion framework. Section V reports the results followed by

an involved analysis of the outcomes, Section VI discusses

the comparative analyses with the existing research while

Section VII provides concluding remarks and future direc-

tions.

II. PROBLEM DESCRIPTION

The generalized problem that we are trying to solve is

as described in Figure 1. We have training data for several

devices from the start of data collection upto failure stage.

Different devices fail at different time instants with different

feature values. Some of the feature values deemed healthy

for one device, could cause failure in another device. For the

training set, the features corresponding to failure is known. But

as there is no universal feature set causing failures across all

devices we go for device specific normalizations with respect

to the failure causing features for preprocessing of training

data before feeding them into the LSTM networks.

Fig. 1: General scenario on training and online simulation data

For the online simulation data, features corresponding to

failure are not known apriori. Simulation data comes in

real time for devices that are active now but going to fail

sometime in future. We propose mechanisms for integrated

feature normalization for online simulation data to estimate

failure causing features with respect to which the data needs

to be normalized so that they have similar underlying pattern

mappings to that of training set. Only then the trained network

can be applied on simulation data to accurately predict RUL.

A. Dataset
We are working with the Backblaze hard drive dataset

and providing an approach to the solution to the problem

described above. The dataset contains the snapshot of 30 dif-

ferent S.M.A.R.T. (Self-Monitoring, Analysis and Reporting

Technology) indices including both raw and normalized values

for each operational hard drive model from various companies

reported once every twenty-four hours has been considered for

this work.

We captured the data sequences from January 2017 through

December 2017 containing information about 91,243 devices

manufactured by various companies out of which we chose to

work with the device model ST4000DM000 from Seagate due

to the following reasons:

• Failure statistics from 2017 suggest Seagate devices failed

the most

• Out of all device models ST4000DM000 from Seagate

contributed to most of the failures.

TABLE I: Summary of SMART features Used

Feature
no.

SMART
ID

Attribute
Name

Description

5 7
Seek error

rate

Frequency of the errors during
disk head positioning and rises
with approaching failure.

6 9
Power-on-

hours
count

Estimated remaining lifetime,
based on the time a device was
powered on.

22 240
Head flying

hours/transfer
error-rate

Time spent during the posi-
tioning of the drive heads

23 241
Total LBAs

written

Related to the use and hence
indicating the aging process of
hard drives

24 242
Total LBAs

read

Related to the use and hence
indicating the aging process of
hard drives

TABLE II: Summary of Symbols Used

Symbols Meaning

f Selected features

Ai Training data matrix for each device i
T0 Day when the data collection starts

Tf Day when the device fails

Tc
The current time when the device is active and
when we want to test the device for its RUL

Hsh×f
Historical data H of past two months from Tc

with sh sample size and f features
φ Sorted H in ascending order

Q3
Set of all elements contained between 50th and
75th percentile of data

φ75 75th percentile of Sorted H
Bi Simulation data matrix for each device i

B̃i Normalized Bi

j
Time index for training data varying from
Tf − 150, ....., Tf

m
Time instances for simulation data varying from
Tc − 150, ....., Tc

Fn Fisher score of feature n

μk
n Mean of the nth feature for class k

σk
n Variance of the nth feature for class k

dk The number of data instances in each class

ts
Time steps to look back in the LSTM network
which is considered to be 25

209



B. Related Work

Classical approaches on error prediction of disk drives are

generally model-driven. They focus on modelling the failure

patterns with statistical distributions. B. Schroeder et al.[3],

provided a quantitative analysis of hard disk replacement

rates and discussed the statistical properties of the distribution

capturing time between replacements. On the other hand,

Wang et al. [4], concludes that the time between failure cannot

be captured through any of the standard distributions and

commented on the difficulty of capturing fault trend using

standard distributions.

The recent works on device health forecasting has adopted

an array of approaches: in one study by Eker et al. [7]

RUL prediction was carried out by directly comparing sensor

similarity instead of using any health estimates. With the

thrust moving towards data-driven approaches Gugulothu et

al. [8] used an RNN model to generate embeddings which

capture the summary trend of multivariate time series data

followed by factoring the notion that embeddings for healthy

and degraded devices tend to be different, into their fore-

casting scheme. Recent work on device health monitoring as

evidenced in [9] reinforce the idea of using RNNs to capture

intricate dependencies among sensor observations across time

cycles of dynamic period range. In [10], the authors came up

with disk replacement prediction algorithm with changepoint

detection in time series Backblaze data and concluded some

rules for directly identifying the state of a device: healthy or

faulty. Aussel et al., [6] used the same dataset to perform

hard drive failure prediction with SVM, RF and GBT and

discussed their performances based on precision and recall.

Prediction of remaining useful lives using quantum particle

swarm optimization [11] [12] of lithium-ion battery has been

discussed in [13] and a host of recent swarm intelligence

algorithms [14] can be effectively applied in prediction of RUL

of various devices in conjuction with other ML approaches.

We present a comparative analysis with some of these works

in Section VI.

III. OUR APPROACH

In this work, we seek to provide a RUL prediction model by

using a Deep Long Short Term Memory (LSTM) [5] network.

We selected 5 features out of 24 as shown in Table I, through

feature selection methods discussed later in this section. If

the data collection starts at day T0 and a device can fail

in any day Tf after that, a device can have data for all

such time indices j where j varies from T0 to Tf . All the

time instances have been discretely sampled at an interval of

one day. We can formulate a multivariate time series data

Ai ⊆ R
j×f (f being the selected features) for each device

i. So Ai should have past j days of features starting from

the day of failure Tf until T0. For normalization of feature

matrices we need to have similar length for each Ai data

matrix, such that the time index j varies from Tf upto a fixed

length of a sequence back, which in our case is upto 150 days

prior to failure as we are interested to find failures occurring

within this time region. Now the training dataset can be

represented as: {Ai ⊆ R
j×f | j = Tf , Tf − 1, ...., Tf − 150}.

The corresponding training labels attached to each row of Ai

is: {Tf − j}.
For online simulation data, we consider Tc as the current

time when the device is active and when we want to test the

device for its Remaining Useful Life, such that T0 < Tc < Tf .

Hence the problem boils down to predicting the RUL of a de-

vice i, i.e., the remaining time it is active from the time instant

Tc upto failure. Hence, a simulation dataset can be formu-

lated such that {Bi ⊆ R
m×f | m = Tc, Tc − 1, ...., Tc − 150}

where Bi is the simulation data matrix for each device i with

data for varying time index m. Table II lists all the symbols

used in this paper along with their description.

A. Feature selection

All the twenty four SMART statistics reported by the

Seagate model are not correlated with the progression towards

failure. First, correlation coefficients between each individual

feature and the RUL are calculated to observe how the feature

trends change as the device progresses towards failure and the

features with highest absolute values of correlation score are

selected. Figure 2 shows the correlation of each feature with

failure. The features are sorted according to increasing order

of correlation values. Five out of twenty four features have

been chosen in this way with feature numbers shown in the

plot.

Fig. 2: Sorted feature list in ascending order of correlation

and Fisher score value. Table I summarizes the five chosen

features.

Next we choose another supervised filter feature selection

method, Fisher score [15], which focuses on features having

better distinguishing capability in terms of greater variance of

values among different classes and more similar feature values

within a particular class. Let us consider, an input dataset x
having n features with their labels y comprising of L different

classes with class index k such that k = 1, 2, ...L and the

number of data instances in each class is dk. We calculate

the mean of all data samples of nth feature as μn, while μk
n

and σk
n are the mean and variance of the nth feature for class

k. Hence the Fisher score of nth feature Fn is described as:
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Fn =

∑L
k=1 dk(μ

k
n − μn)

2

∑L
k=1 dk(σ

k
n)

2
(1)

The numerator
∑L

k=1 dk(μ
k
n − μn)

2 denotes the inter-class

variance and the denominator
∑L

k=1 dk(σ
k
n)

2 denotes the

intra-class variance with respect to nth feature. Then the fea-

tures are sorted in the order of higher Fisher score as features

with higher Fisher scores tend to exhibit better differentiating

capacity among classes. The Fisher score of each feature are

normalized w.r.t. the maximum score and the logarithm of

normalized Fisher score is plotted in Figure 2. It shows that the

Fisher scores are higher for features having higher correlations.

The best five features chosen from these two methods are

summarized in Table I.

B. Feature Normalization:
1) Preparation of training data: The dataset is challenging

to work with as failure causing features vary a lot and some

of the failure states have similar feature sets as those of active

states, making it infeasible for neural networks to learn from

these features directly. A commonly observed trend noted

among the five selected features is that they have an increasing

trend while approaching failure. So, min-max normalization

i.e., normalization of features from 0 to 1 is applied to capture

the increasing trend of features approaching failure on each

data matrix Ai having information about past 150 days.

A sequence length denoting the number of time steps to look

back in the LSTM network (discussed later in this section)

has been chosen with a trade-off between minimum required

sequence length, time for training and online simulation and

accuracy of prediction, and the data is organized as a three

dimensional matrix (Samples× timesteps× features). The

sequence length is varied and the one producing the minimum

error between actual and predicted RUL is selected which in

this case is twenty five days.

Each (timesteps× features) matrix for each training ex-

ample has the label of remaining useful life such that the

network learns to predict RUL at any timestep given past 25

days of data inputs. The network is trained in a way to predict

the RUL of a device within a range of 0 to 125 days from Tc,

i.e., the current day when we decide to test a device. The

training examples along with the labels are generated from

which 5% of the data are used for validation purposes. The

training data has 71072 examples with the matrix of dimension

(71072× 25× 5).
2) Preparation of online simulation data: For the training

purposes, the data has been normalized from 0 to 1 with

respect to Tf , the day when the device failed, while in case of

simulation the actual feature statistics corresponding to failure

is not known apriori. But as the increasing trend of features

approaching failure has been observed, if a time series data

for an active device with unknown RUL is taken then the

maximum attainable value of a feature can be approximated

from the historical data distribution. Considering that value to

be maximum, the features in the given data matrix Bi can be

normalized and fed into the LSTM network to predict when

it is going to fail.

In this process a lot depends on the values of features

which will be taken as maximum and w.r.t. which the current

feature values will be normalized. For finding the optimal

value for setting as maximum in the normalization process

we look past two months’ historical data distribution for any

currently active device under test. In spite of fluctuations in

the feature data within a shorter period of time, the overall

moving average of feature values taking any data segment

comprising of few months into account, tend to increase over

time. Also the distribution of each feature for a duration of

any two consecutive months are mostly similar as shown in

Figure 3 where the histogram for historical data distribution of

each feature looking back for two months from two different

time instances referenced as feature sets 1 and 2 have been

shown. So consideration of past two months of data in fetching

historical maximum is appropriate in the sense that it is

not too short to be affected by noisy fluctuations of small

sequence of data as well as not too large so as to balance the

computational overhead. Also, as the feature value variations

have an underlying uptrend over months, so if too many

months were considered in this scheme, then the prediction

would have been biased towards values from those times of the

year when the SMART values were even lower than the current

values. This would have been an inaccurate representation and

throw the predictions off by a margin.

Figure 3 shows the histogram for each feature to show a

typical distribution of that feature for any two consecutive

months. On an average the histograms describe that feature

1 has most of its data concentrated within lower 25 percentile

of the entire data range, with outliers occupying the rest of the

dataspace. Features 2 and 3 have almost 70% data within the

upper quartile of the entire data spectrum. Feature 4 also has

many outliers with 80% of the total data within the 3rd quartile

of the data spectrum. Feature 5 has 90% of its data within the

3rd quartile of the data spectrum indicating a somewhat more

sparse distribution in the 4th quartile.

If the maximum value of each feature from historical data is

considered as the value at failure for the simulation data, and

feature values are subsequently normalized w.r.t. the historical

maximum, the following happens: an approximation is made

such that the feature values of the current (active) device under

test will fail only when they reach the maximum attainable

values given the past records. This is the most optimistic case.

In this case, the normalized feature values will result in lower

fractional values than it would have been, if normalized by its

actual failing feature values, considering the maximum value

of a feature may be an outlier in the distribution. This results

into prediction of a much higher Remaining Useful Life (RUL)

than in reality. This process of obtaining the best optimistic

case RUL is referred to as Prediction Strategy 1.

To resolve this issue the data is sorted at first and normalized

considering the values at the supremum of 3rd quartile (75th
percentile) of the entire data spectrum as the maximum feature

value as most of the data is concentrated within this upper
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Fig. 3: This figure shows the histogram of five selected features (table I) and also emphasizes that the distribution of each

feature for a duration of any two consecutive months are mostly similar.

bound. Quartiles, as the measure of bounds, are chosen to work

with to keep the generality of normalization over data from

any part of the year. This is because in spite of having similar

distributions, the data samples are not identically distributed

as shown for feature sets 1 and 2 in Figure 3. Consequently,

it is not possible to find a specific percentile that suits all. By

choosing 75th percentile, the upper bound stays close to the

historical maximum yet the elimination of significant number

of samples of relevance to the analysis, can be avoided. This

strategy also helps get rid of potential outliers in the sample

sets. This approach to normalization, referred to as Prediction

Strategy 2, results in significantly better approximations of the

RUL. The normalization process is described in Figure 4 and

Algorithm 1 describes the overall procedure for preprocessing

and online prediction of RUL for the simulation stage. All

symbols used are explained in Table II.

Algorithm 1 Algorithm for preprocessing and online predic-

tion of RUL for the simulation data

Input: Simulation Data : {Bi ∈ R
m×f} for each i

Output: Predicted RUL for each i from time Tc

1: Load historical data Hsh×f

2: for p = 1 to f do
3: φ = sort(H(:, p))
4: φ75 = sup(Q3(φ))
5: B̃i(:, p) = (Bi(:,p) - min(Bi(:,p))) / (φ75 - min(Bi(:,p)))

6: end for
7: L = B̃i(1 : ts, :)
8: Feed L to the pretrained LSTM network as online simu-

lation data

9: Output the RUL

Fig. 4: Normalization of data for training and online simulation

Fig. 5: The Stacked LSTM Architecture

IV. LONG SHORT TERM MEMORY (LSTM)
LSTM is a widely used variant of recurrent neural network

proposed by Hochreiter and Schmidhuber [5], capable of
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capturing dynamic temporal behavior in time series data by

the use of shared parameters while traversing through time. A

self-feedback LSTM unit associated with input, output and

forget gate, control the motion of information through the

gating mechanisms. As the name suggests, the input and output

gate of each memory cell in LSTM directs the inputs and

outputs flowing in and out from the cell respectively, whereas

the forget gate decides upon which information needs not to

be memorized anymore. The values of the gates are decided by

sigmoid activation function. At any point of time it takes the

current input, captures hidden state information for previous

time steps upto a given sequence length and generates output

according to the task given. The input feature at a timestamp

combining current input, previous hidden state information and

shared parameters with tanh activation function is multiplied

with the input gate coefficient and updates the value of the

memory cell combining the forget gate coefficient controlled

previous timestamp's value of the cell. Any hidden output

state is thus a result of output gate-controlled tanh activated

memory cell value, which is then used for producing outputs.

Figure 5 shows the stacked LSTM architecture.

Fig. 6: Selection of optimal number of units per layer based

on the training loss, validation loss and training time

Fig. 7: Effect of variation of dropout ratio on estimation of

RUL

A. Hyper-parameter Selection
• Number of Units in each layer: For selecting optimal

number of units for two layered LSTM model a graph

showing varying number of units per layer and training and

validation loss corresponding to them along with execution

time is plotted as presented in Figure 6. From the figure it

is evident that the optimal number of units per layer is 100

with quite low execution time as increasing number of units

further increases validation loss much greater than training

loss indicating overfitting.

• Selection of Dropout Ratio: Dropout is an important

regularization parameter to control over-fitting. The effect

of variation of dropout ratio on the accuracy of estimation

of Remaining Useful Life has been shown in Figure 7.

According to the results we chose dropout ratio of 0.2 for

both the layers.

To prove the fit of LSTM to this problem we also trained

a Naive Bayes classifier which is a probabilistic classifier

based on Baye’s Theorem. The network has good training

and validation accuracy because of the normalized structure of

training data and distinct labels associated with distinct feature

values. But at the time of testing for devices it fails completely.

This is due to the fact that the combination of features for a

given input of simulation data do not necessarily match with

the combinations with which it was trained. Therein, comes the

utility of of LSTM, where the model is being able to predict

the labels learning the temporal embeddings of failure.

The online prediction model used in our approach is com-

putationally inexpensive as we are just feeding the simulation

data into pre-trained LSTM model and obtaining the remaining

useful life instantly. The network takes approximately 0.005

seconds to predict the RUL of a device on insertion of

processed simulation data into the pre-trained LSTM unit.

V. RESULTS AND DISCUSSION

A. Beyond training and cross-testing
The preparation of online simulation data is described in

Algorithm 1 and Figure 4. The actual and predicted RUL of

the devices are shown in Figure 8 where different disk drives

having various remaining useful lives have been considered to

show the performance of the proposed approach over a diverse

range of simulation example indices.

Overall, prediction strategy 2 produces better estimation of

RUL than prediction strategy 1 for the devices with impending

failures which is more important and provide a fair approxi-

mation of devices that are going to fail later.

B. Variation of Predicted RUL over time for a single disk
Generally in a cloud service system, the revenue loss caused

due to allocating Virtual Machines to faulty hard disks can be

modeled as a sum of the false positives and negatives weighted

by their respective losses.

RevenueLoss = lossnfp × nfp+ lossnfn × nfn (2)

Where lossnfp and lossnfn are losses incurred due to false

positives nfp and false negatives nfn respectively. Depending
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Fig. 8: The actual and predicted Remaining Useful Lives of

various devices under online simulation

Fig. 9: Reduction in Uncertainty in Prediction As a Device

Approaches EOL

on the application, more importance can be given to precision

or recall based on the costs associated with lossnfp and

lossnfn.

As we are more interested in predicting imminent failures,

the prediction accuracy for devices which are going to fail

sooner is more critical than those that having greater RUL.

Based on the online prediction results of disk drives having

imminent failure the decision on the allocation of jobs in the

cloud architecture is to be taken. So the prediction accuracy

is much sensitive in this region as smaller number of false

positives or false negatives can incur greater revenue loss. It

is of critical importance to determine how the uncertainty in

prediction of RUL for any device reduces as it approaches

its end of life and remains to be analyzed. Figure 9 shows a

graph of prediction of RUL for a single device at different time

instances and indicates greater accuracy of prediction near the

time region of actual failure.

C. Variation of Precision, Recall and F1 score over time

The Precision and Recall of prediction of RUL for numerous

devices have been shown in Figure 11 based on the fixed

threshold of whether a device is going to fail in next ten days.

The process is carried on for seven consecutive days to get a

time series variation of these measures over a fixed threshold.

The plot shows an average Precision of 0.84, Recall of 0.72

and F1 score of 0.77. The flat nature of the curve indicates

the consistency and robustness in decision making using the

model over several consecutive days.

Fig. 10: The actual and predicted Remaining Useful Lives of

various devices under online simulation for a different model

from same manufacturer

Fig. 11: Precision and Recall of Prediction of RUL over Seven

Consecutive Days

D. Generalizable and transferable architecture among dif-
ferent disk models

One of the major advantages of the proposed online RUL

prediction system is the ability to transfer the architecture

learned from one disk model to others. The network was

trained with model ST4000DM000 and the pre-trained model

on ST4000DM000 has been tested on a different model

ST8000DM002 from Seagate which provided acceptable re-

sults on prediction of RUL over simulation example indices

as shown in Figure 10 using prediction strategy 2. Hence

the proposed framework can be trained on a single model

from a manufacturer and can be successfully used to predict

RUL for different models from same manufacturer proving its

generalizability and transferability. The only thing to keep in

mind is that if the historical data distribution of a feature varies

drastically from the model the network has been trained on,

a different threshold for the normalization step at the time of

online simulation might produce more accurate result.

VI. COMPARATIVE ANALYSES WITH EXISTING RESEARCH

Despite the significant existing work on the issue, there is a

lack of an overall framework for online device health monitor-

ing that leverages the learning capabilities of LSTM Networks

extracting meaningful information from the sequences of data

to identify trends indicating a device approaching failure.

Further, through our generalized prediction framework we
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show that our proposed architecture trained on one model from

a manufacturer performs well on the other models from the

same manufacturer, which has not been shown explicitly in

the existing research in this domain.

In most of the existing research [16] [17] the entire dataset

is first normalized and then divided into training and test

sets which are drawn from same distribution. In this way, the

information of failure gets embedded in test data. This does

not represent real world test cases if we want the model to

perform online prediction with simulation data without any

knowledge on failure characteristics. If we would have drawn

the simulation data distribution in a similar fashion as that of

the training one, using future information, then we could have

had much better prediction of the RUL as shown in Figure 12.

But as this does not indicate the actual efficiency of the

prediction model, this cannot be used in a real life scenario. In

[6] the authors claimed that the best performance on Backblaze

dataset was shown by Random Forest (RF). The Precision and

Recall values based on the threshold of device failure within 10

days were recorded as almost 0.93 and 0.6 dividing the dataset

into training and test sets using cross-validation techniques,

whereas we obtained an average precision of 0.84 and recall

of 0.72 using the decision threshold of device failure within

10 days without using any future information in the simulation

process. Hence our proposed architecture is able to mitigate

the challenge of predicting RUL of a device without any future

knowledge of online simulation data with acceptable decision

outputs manifesting real-world scenarios.

In [18] deep neural network based RUL estimation has

been carried out by both LSTM and CNN where LSTM

achieved better performance. The authors chose to perform

the tests on the same Seagate model ST4000DM000 and

performed the prediction of RUL on models of a single serial

number Z300ZQST where the RMSE and the deviation of

predicted result from ground truth are shown. In our work the

trained network on model ST4000DM000 showed satisfactory

performance on a completely different model from Seagate

covering various serial numbers. We also discuss separate

preprocessing steps for training and online simulation data so

as to emulate the real scenario.

Fig. 12: Evaluation Results using future Information in online

simulation

VII. CONCLUSION AND FUTURE WORK

In this work, we proposed a data-driven framework using

deep LSTM architectures for online estimation of remaining

useful life of devices where the feature values corresponding

to failure are not uniform across devices. The architecture

proposed is efficient in predicting imminent device failures

and is generalizable and transferable to different disk models.

Although, the inferences made are based on our work on the

hard disk data, the combined Normalization and Inference

Mechanisms shown in this paper are applicable to any generic

timeseries progressing towards failure. In future, we will

extend this architecture to create an adaptive job scheduler

which considers hardware failures, workload forecasts and

application interface models. We expect to use this generalized

framework in various related applications with data specific

modifications focused on online relaying of decisions of

critical importance.
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