
On the Data-Driven Prediction of Arrival Times for Freight Trains
on U.S. Railroads

William Barbour1, Chinmaya Samal2, Shankara Kuppa3, Abhishek Dubey4, Daniel B. Work5

Abstract— The high capacity utilization and the pre-
dominantly single-track network topology of freight rail-
roads in the United States causes large variability and
unpredictability of train arrival times. Predicting accurate
estimated times of arrival (ETAs) is an important step for
railroads to increase efficiency and automation, reduce
costs, and enhance customer service. We propose using
machine learning algorithms trained on historical railroad
operational data to generate ETAs in real time. The
machine learning framework is able to utilize the many
data points produced by individual trains traversing a
network track segment and generate periodic ETA pre-
dictions with a single model. In this work we compare the
predictive performance of linear and non-linear support
vector regression, random forest regression, and deep
neural network models, tested on a section of the railroad
in Tennessee, USA using over two years of historical data.
Support vector regression and deep neural network models
show similar results with maximum ETA error reduction
of 26% over a statistical baseline predictor. The random
forest models show over 60% error reduction compared
to baseline at some points and average error reduction of
42%.

I. INTRODUCTION

Freight trains on US railroads can have unpredictable
runtimes due to infrastructure capacity constraints result-
ing from the topology of the networks, which are pri-
marily composed of single track with sidings [1]. Single
track network segments require complex dispatching by
human dispatchers to coordinate meet and pass move-
ments [2] and have been shown to be a primary driver of
train delay [3]. This is in contrast to multi track routes
which run with much more regularity and predictability

1William Barbour is with the Department of Civil and Environ-
mental Engineering and the Institute for Software Integrated Systems,
Vanderbilt University, Nashville, TN 37240

2Chinmaya Samal is with the Department of Computer Science
and Computer Engineering and the Institute for Software Integrated
Systems, Vanderbilt University, Nashville, TN 37240

3Shankara Kuppa is with CSX Transportation, Jacksonville, FL
32202

4Abhishek Dubey is with the Department of Computer Science
and Computer Engineering and the Institute for Software Integrated
Systems, Vanderbilt University, Nashville, TN 37240

5Daniel B. Work is with the Department of Civil and Environmental
Engineering and the Institute for Software Integrated Systems, Van-
derbilt University, Nashville, TN 37240

and consequently allow more trains to achieve their
minimum runtimes [4]. Additionally US networks carry
a heterogeneous train mix with respect to train type
and physical characteristics. Freight trains vary widely
in length and priority and some locations serve both
freight and passenger trains which can also be quite
long; all of these factors are known to negatively impact
predictability of the network and delay experienced by
trains [5]. Accurate predictions of estimated times of
arrival (ETAs) for train made hours in advance are
necessary for railroad operations because they are used
for calling the next crew, assembling trains with mixed
cargo, allocating locomotives, and providing customer
delivery estimates [6].

The research question addressed is the prediction of
ETAs for freight trains on US railroads. In our prior
work [7], we considered the prediction problem for US
freight railroads using individualized machine learning
models in which a distinct model is used for each origin-
destination pair. This was shown to allow the models
to learn location-specific feature weights to implicitly
account for the fact that some factors (e.g., tonnage)
have a more important role in subsets of the network
(i.e., when traversing in terrain with a steep grade). A
variety of linear and non-linear support vector regression
models were able to demonstrate a 21% improvement
over a baseline statistical method.

In the present work, we expand the comparison of
methods to include a deep learning based method and
a random forest predictor in addition to the support
vector regression methods considered in [7]. To address
the larger data requirements encountered by the deep
learning based method, we encode the origin-destination
information in the feature space and present a single
model for all origin destination pairs on the network.
We find that the quality of the ETA can vary greatly
between the various machine learning methods, with
the random forest significantly outperforming all other
methods considered in this work. Consequently, the main
research contribution of this article is a comparison of
existing, well-studied machine learning algorithms for
suitability in the real-time generation of accurate arrival

1

2018 21st International Conference on Intelligent Transportation Systems (ITSC)
Maui, Hawaii, USA, November 4-7, 2018

978-1-7281-0323-5/18/$31.00 ©2018 IEEE 2289

times for freight trains on congested US rail networks
using a single unified model that makes predictions from
multiple locations.

The remainder of this article is organized as follows.
In Section II we examine some prior work related to
the research question of predicting and updating ETAs
for freight trains. In Section III, we present the machine
learning problem framework, details of models used, and
data features used to predict ETAs. In Section IV, the
implementation and experimental specifics are outlined
and results are presented. Sections V and VI compare
and discuss model performance, conclude the article,
and suggested avenues of further investigation.

II. RELATED WORK

There are a variety of techniques by which ETAs can
be generated, including analytical methods, simulation
tools, and data-driven methods. Analytical methods have
been widely used to produce schedules and arrival
estimates for passenger and freight trains based on the
network topology and the traffic across particular routes.
These scheduling methods are often solved using opti-
mization and can handle multiple objectives such as de-
lay minimization or passenger cost [8]; see [9], [10] for
an extensive survey of many of these methods. Heuristic
techniques are often employed to solve these optimiza-
tion problems [11]. Scheduling has been extended to
be robust to small perturbations produced by delays
[12] and applicable for mixed passenger and freight
traffic [13]. This is important because small deviations
from a predetermined schedule can easily compound
into larger deviations and delay, which is referred to
as knock-on delay [14]. Additionally, rescheduling can
be performed regularly or as new information becomes
available [2], [15]. Simulation methods, likewise, can
predict train trajectories and ETAs and have been shown
in some areas to closely match reality; see [1], [11] for
examples and a more thorough comparison of analytical
and simulation literature.

Analytical models and simulation methods have the
notable caveat of requiring explicit declaration of rules,
such as train dispatching rules, track speed limits, train
dynamics, and physical constraints [14]. The arrival
times of freight traffic on US railroads are due to many
factors of the heterogeneous train lineup and network
congestion factors regarding the available capacity and
delay that can be expected from meets and passes on
single track sections [5]. Additionally, the effects from
these many variables are not absolute. Analytical models
and scheduling methods are adept at finding a feasible
train plan (end even an optimal one) but it is difficult to

account for the full range of intricacies that governs dy-
namic freight rail operations in practice and the changes
in these dynamics between locations and over time [16].
For these reasons, we address the problem with a data-
driven approach, which allows a prediction model to
capture complex relationships between variables implic-
itly through the training process without enumerating the
rules and relationships explicitly [16].

Machine learning methods, in general, are adept at
this task of learning linear and non-linear relationships
between input variables and outputs, but deep neural
networks in particular can capture a high degree of in-
terdependent and non-linear complexity [17]. However,
the most notable limitation of data-driven methods is
the requirement of abundant high-quality data. Increased
availability of data streams in the rail industry has
given rise to many modern applications in operations,
maintenance, and safety [6].

Data-driven prediction has been studied primarily in
the context of passenger rail. Kecman and Goverde [18]
illustrate the importance of route conflicts in their pre-
diction of train event times; they also estimate running
and dwell times using track occupancy data and multiple
predictive models, including random forests [19]. Wang
and Work [16] created historical and online regression
models to predict Amtrak arrival times and noted sig-
nificant advantages of using data from a train’s current
performance as well as that of its neighbors in the online
regression model. Marković et al. [20] applied support
vector regression and artificial neural network models
to the delay prediction problem on Serbian passenger
rail. Yaghini et al. [21] also used a neural network
model trained only on time and route information in
predicting discretized passenger train delay in Iran. Liu
et al. [22] used a neural network model in predicting
runtime between stations and dwell time at stations
in urban rail transit. Oneto et al. [23] explored neural
network architecture and performance for the Italian rail
network using historical and real-time data. Compared to
freight rail in the United States, passenger rail has delay
values typically on the order of minutes, compared to
the hours of delay that can occur for US freight trains.

In terms of freight rail prediction, Gorman [3] calcu-
lated freight train running time by estimating free run
time and congestion-related delay by geographic area
and performed an econometric analysis of individual
delay variables. Bonsra and Harbolovic [24] performed
estimation of freight train arrival times in an offline
manner using resulting route conflicts between trains and
also noted the importance of these congestion-related
factors as well as train priority.

2

2290

III. METHODOLOGY

This section discusses general supervised machine
learning framework used to predict ETAs, the raw data
and the processed training data, and the specifics of the
deep learning model and comparison models used to
address the problem of ETA prediction.

A. Supervised machine learning ETA prediction

In the context of predicting ETAs, we consider
a machine learning formulation in which a set of
training data xtr = {x(1), x(2), ..., x(m)}, where
x(i) ∈ Rn, and corresponding known outputs ytr =
{y(0), y(1), ..., y(m)} are used to learn a model f(·)
that maps input vectors x(i) to output values y(i). The
dimension n refers to the number of input features that
are used to describe each sample. The model should
minimize some measure of prediction error (f(x(i)) −
y(i)), which is referred to as a loss. We test the
resulting model using test input data xts = {x(m +
1), x(m + 2), ..., x(m + p)} and known output data
yts = {y(m+1), y(m+2), ..., y(m+ p)} that does not
overlap with training data. It is desirable to learn a model
that generalizes new data that it has not seen before.
Failing to do so is referred to as overfitting and occurs
when a model is allowed to become overly complex to
produce high accuracy on only observations that have
been used directly to train the model.

In our case, the training samples x(i) are each a
large feature vector containing information about the
freight train, its crew, and the network state at the
time that a prediction is being made. The output y(i)
refers to the true runtime between the train’s current
position at the time the feature vector was computed
and the train’s destination. These points in time when
ETAs are generated correspond to discrete locations on
the network, referred to as stations or mileposts, and
typically coincide with control points at the ends of
sidings. In this manner, many ETA updates are generated
for a train along a route.

Consequently, the features change as time elapses. Not
only does the network state change, but the characteris-
tics of the train and its crew are also subject to change.
Therefore, each feature vector x(i) contains real-time
data from the exact moment that the ETA should be
generated at the corresponding milepost. Next we briefly
describe the models compared in this work.

B. Statistical model

We benchmark all machine learning model against
a statistical predictor that uses historical data. Simple
statistical predictors are known to be in use in some
ETA prediction systems on the railroad. For this reason,

we include a statistical model that predicts the median
runtime ỹ from a route station to the train’s destination
as the ETA for each train. The median is used in lieu
of the mean because the distribution of train runtime
has a long tail of high outlier values. Due to the
confidentiality of the raw dataset, rather than presenting
absolute runtimes (which are on the order of hours, and
can have delays on the order of 10s of minutes to hours),
we present all results normalized to this baseline model.

C. Support vector regression

The support vector regression (SVR) model consid-
ered in this work uses the standard ε-SVR formulation
described in [25]. The predictor f(x) = wTx(i) + b,
where w ∈ Rn is the vector of feature weights and
b ∈ R1 is the regression intercept, is derived from the
convex optimization problem:

minimize
w,b,ξ,ξ∗

1

2
‖w‖22 + C

m∑
i=1

(ξ(i) + ξ∗(i))

subject to y(i)− wTx(i)− b ≤ ε+ ξ(i), ∀i
wTx(i) + b− y(i) ≤ ε+ ξ∗(i), ∀i
ξ(i), ξ∗(i) ≥ 0, ∀i

(1)

The model applies a 2-norm to the feature weights
w and uses a hinge loss with a tolerance ε to errors
where the loss is zero. Deviations y(i)−f(x(i)) for each
observation i in excess of ε are denoted ξ(i) and ξ∗(i)
and penalized by a scalar factor C relative to feature
weights. The coefficient C and ε are hyperparameters
that are tuned in the model training phase.

Support vector regression also allows the use of a
non-linear kernel function that transforms the input data
x(i) into a much higher dimensional space Φ(x(i)).
The higher dimensional transformation is not defined
explicitly but is the result of the inner product ΦTΦ in
the regression, known as the kernel trick [26]. In this
work we present results using a polynomial kernel and
radial basis function kernel.

D. Random forest regression

Random forest regression is an ensemble algorithm
that constructs a series of regression trees using ran-
domly sampled subsets of the training data for each
tree and a subset of available data features for splitting
within trees [27], [28]. Regression trees are constructed
by splitting data samples at each node in the tree ac-
cording to values of input features. Each node resulting
from the split more effectively isolates data samples
with similar output values. The best split is determined
by a minimization of resulting prediction error. Nodes

3

2291

x1

x2

x3

x4

Input
layer

Hidden
layer

y1

Output layer
(regression)

Fig. 1: Simple Feed-forward neural network with one
hidden layer.

are no longer split when the number of samples in
the node falls below the minimum or the decrease in
prediction error falls below a defined threshold. The
predicted output value for each terminal node in the tree
is calculated from the corresponding training samples
that terminated in the node. The predictions made by
individual trees are averaged to arrive at the ensemble
prediction. Combining many weak learner regression
trees in the random forest predictor has shown to be an
effective methodology and helps avoid overfitting [29],
[30].

E. Deep feed-forward neural network model

A neural network consists of multiple neurons orga-
nized in layers, with individually weighted connections
between neurons in adjacent layers. At minimum, a
feed-forward neural network consists of three distinct
layers: the input layer, one hidden layer, and an output
layer consisting of one node for regression, as shown
in Figure 1, or multiple nodes for classification. A
deep feed-forward neural network has multiple hidden
layers. The depth of the model is determined by the
number of hidden layers. After being processed at the
hidden layer nodes, their outputs are forwarded to the
output layer which then makes a prediction, according
to its activation function. This feed-forward process is
characteristic of the neural network and is used for
making predictions, given an input vector. The training
phase of a neural network is comprised of selecting the
optimal weights for each of the connections between
the neurons. More specifically, given the input vector
at the input layer, and the known output that actually
occurred, the problem is defined as choosing the weights
for the connections between neurons so as to minimize

the error between the prediction and actual observation.
Gradient-based optimization is used for training the
neural network and choosing weights.

F. Description of data

Machine learning algorithms have the notable limita-
tion of requiring a large amount of data to complete the
training process. This work is made possible by access
to over two years of historical train data from CSX
Transportation that includes information about physical
train characteristics, train crew information, and can be
used to compile a full network state at any time during
the data collection period.

Specifically, we build a feature set with the quanti-
ties described in Table I. The feature set is a mix of
categorical, binary, and continuous quantities. Network
state is calculated based on trains occupying network
segments between stations, along with their relevant
properties. The prediction location is included as a one-
hot encoding of the route locations.

The resulting feature space has 184 dimensions and
the number of labeled data records is over 170,000, each
of which represents a feature vector captured at a timing
point for the train and the corresponding runtime label.
The training and testing data is min-max normalized
before being used in the models.

IV. NUMERICAL EXPERIMENTS

We now describe the exact implementation of the
models and the experimental details.

The network segment where these methods are ap-
plied is between Nashville, TN, and Chattanooga, TN.
The segment is 140 miles long and is almost entirely
single-track. Other CSX network segments connect at
the endpoints of the route, but none intersect the middle
of the route. The mileposts at which ETAs are updated
are spaced about 4 miles apart on average. This is
known to be one of the more unpredictable routes on
the network during the period on which the data was
collected, as it has high volume relative to capacity,
a heterogeneous train mix, and significant topography,
which is difficult to navigate for long and heavy trains.

The neural network models were implemented using
Keras [31] with TensorFlow [32] backend. Support
vector regression, random forest, and statistical models
were built using Scikit-Learn [33]. All models were
tested on a computer with 16-core 3.4 GHz processor,
64 GB of RAM, and Nvidia GTX 1080 GPU. Note that
neural network models were run on the GPU, while other
models were run on the CPU.

Model performance was evaluated using five-fold
shuffled cross validation. As previously mentioned, in

4

2292

TABLE I: Summary and dimension of implemented
features.

Feature Dim. Description

Train length,
tonnage and
horsepower per
ton

3 The physical characteristics of the
train.

Train priority 1 Priority ranking on a 1-20 scale;
mapping given by CSX.

Crew time
remaining

1 Amount of time remaining that the
current train crew can legally work.

On duty time to
departure

1 Time between crew on duty time
and train departure.

Traffic counts 7 Count of other trains between ori-
gin and destination; includes total
count and counts subdivided by di-
rection and priority relative to train
being predicted.

Available sidings 1 Count of sidings on route with
length greater than that of the train
being predicted.

Track segment
occupancy

30 Binary variables denoting whether
a segment on the origin-destination
route is occupied by another train.

Occupying train
direction, priority,
and relative
priority

90 Denotes the direction (same or op-
posite), priority (1-20 scale), and
relative priority (compared to train
being predicted) of a train occupy-
ing a track segment on the origin-
destination route.

Track segment
occupancy around
destination point

15 Indicates track segment occupancy
for segments around the destination
point, but not included in the pri-
mary route.

Location 35 Binary indication of station corre-
sponding to this feature vector.

order to maintain confidentiality of the operational prac-
tices on this route segment, the machine learning models
are compared to the statistical predictor as a baseline
and results are given in percent improvement in mean
average error over the baseline predictor. Mean average
error would be in units of minutes and is defined as

MAE =
1

mte

mte∑
i=1

|f(x(i))− y(i)|. (2)

The SVR model was tuned using an exponential grid
space for the hyperparameters C and ε. Kernel hyperpa-
rameters (γ for RBF kernel and degree for polynomial
kernel) were also tuned in the same grid space. Optimal
values were selected from all combinations of hyperpa-
rameter values in the grid space and found to be C = 10.
and ε = 0.075 for all SVR models. The random forest

0 10 20 30 40
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
lo

ss

Deep neural network training progression

Training loss, Adam-ReLU DNN
Testing loss, Adam-ReLU DNN

Training loss, SGD-ReLU DNN
Testing loss, SGD-ReLU DNN

Fig. 2: Learning curve for deep neural network showing
normalized training and testing loss values.

regression model was tuned by exploring a grid space
that included the hyperparameters: number of estimators,
maximum features considered in split, and minimum
samples required for node split. Values explored in the
grid space were chosen based on the dimensionality and
characteristics of the data and hyperparameter values
were chosen to achieve high predictive performance and
minimize overfitting.

The deep neural network model architecture is the
results of extensive tuning both in the configuration of
hidden layers (from three to ten hidden layers were
tested), activation function (ReLU and tanh were tested)
and optimization function (Adam and SGD were tested)
used in the model. Ultimately, eight hidden layers are
used with 200, 200, 150, 100, 70, 40, 20, and 10
nodes in each, respectively. The rectified linear unit [34]
is chosen for the activation function of neurons; the
Adam optimizer [35] is found to perform best for
training the neural network. Early stopping criteria are
employed to avoid overfitting. The learning curve for
the resulting Adam-ReLU model is shown in Figure 2
and compared to the same architecture using stochastic
gradient descent optimization. The Adam optimizer not
only converges faster (in 32 epochs), but also shows
far less variability in validation loss on the way to
convergence.

The predictions resulting from the testing data sam-
ples are grouped by the station to which they correspond.
Each of these samples serves as an ETA prediction
made for a particular train at that station, traveling
towards the destination following station 35. The results
for all six models are shown in Figure 3, in terms of
percent improvement in MAE compared to the baseline

5

2293

0 5 10 15 20 25 30 35
Station number

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

Pe
rc

en
t i

m
pr

ov
em

en
t o

ve
r m

ed
ia

n
pr

ed
ict

or Performance of algorithms over route stations

median
linear SVR

random forest
deep neural net

RBF kernel SVR
polynomial kernel SVR

Fig. 3: Relative improvement of arrival time estimates
at each station.

TABLE II: Summary of model performance over full
route

Model Mean %
Improvement

Maximum %
Improvement

Median 0.0% 0.0%

Linear SVR 12.2% 21.0%

Polynomial
kernel SVR

15.3% 23.6%

RBF kernel SVR 17.6% 26.4%

Random Forest 42.1% 67.1%

Deep Neural Net 16.3% 24.9%

statistical predictor. The results across the route are
averaged and shown in Table II. Model training times
were also monitored and are shown in Table III. SVR
models are constrained to single-threaded computation
in this implementation. Conversely, random forest model
can be trained in parallel across CPU cores and the DNN
model can use the GPU for computation.

V. DISCUSSION

There is a noticeable grouping of the SVR models and
DNN that maintains over 20% improvement over base-
line at stations far from the destination and decreases in
relative performance approaching the destination. Linear
SVR conspicuously drops below the baseline at the
three stations closest to the destination. Meanwhile, the
random forest model outperforms all other models at
nearly every station. Its performance varies more widely

1Random forest implementation runs in parallel on CPU.
2DNN was implemented on GPU.

TABLE III: Mean model training time.

Model Mean training time (seconds)

Median 0.1

Linear SVR 20

Polynomial kernel SVR 11360

RBF kernel SVR 5560

Random Forest1 25

Deep Neural Net2 250

across the route, but achieves improvements exceeding
60% relative to the baseline at stations far from the
destination. Predictions at this point are of particular
interest for the railroad because of the difficulty of
prediction and the increased decision-making potential
for hours in the future. The random forest model also see
frequent prediction improvements over 50% and average
42% improvement over baseline across the route.

As predictions are made closer to the destination,
the mean runtime and expected mean average error
(in absolute terms) decrease. But mean average error
relative to baseline also decreases as predictions were
made closer to the destination. This is likely due to
the fact that runtimes are also less variable close to a
train’s destination and the factors that drive the residual
variability are difficult to quantify with available data.
For example trains can be held outside of the yard due
to personnel constraints or space constraints such as
lack of availability of a specific track needed (e.g., for
refueling or classification). We hope to construct features
that quantify this destination yard state in future work.

Fluctuating performance of all models, but particu-
larly the random forest model is notable. This can be
explained in part by the nonlinear dynamics of the route.
Train and route features differ in their predictive impact
by location [7]. For example, route topography plays a
role in the predictive impact of train length and tonnage.
At locations with a significant hill on the route, long
and heavy trains will have a statistically higher runtime
than others; but after the hill is traversed, the statisti-
cal difference in remaining runtime will diminish. We
see a performance variation at approximately the route
midpoint that is likely due to a mountain that must be
traversed producing an effect of this sort. However, the
dramatic performance variability of the random forest
model is likely caused by the nuanced relationships that
tree-based regressors can extract from categorical and
binary data such as the network state used in this work.
It is possible that predictions made by the random forest

6

2294

model at some of the low-performing stations depend
highly on additional variables not present in the feature
space, such as availability of helper locomotives that
supplement train power when traversing hills that are
present on the route. The training error of the random
forest model is up to 10% lower than the testing error
(in absolute terms), but the testing results are consistent
through cross validation.

VI. CONCLUSION

In this article we discuss the advantages and diffi-
culties of producing freight train arrival time estimates
using data-driven methods. We discuss the raw data and
input features used in the research. Six models including
one statistical model, three SVR models, a deep neural
network model, and a random forest regression model
are implemented. Performance of the models is analyzed
at locations across the study area and found to vary,
particularly for the random forest model.

The random forest model achieves the best perfor-
mance yet realized on this data set, with an average 42%
improvement in MAE relative to the baseline statistical
predictor. The average improvement of the random forest
model and the maximum predictive improvements of
over 60% are actionable for freight rail operational
decision making.

Areas of future research include enhancing the fea-
ture space, which may include route topography, data
quantifying the state of rail yards, and externalities such
as weather and scheduled maintenance. We also know
that the delay encountered by a train on the line of road
is closely coupled to the meet and pass movements that
the train will make on its route. For this reason, we are
investigating trajectory prediction from the dispatching
perspective. A dispatching model that acts similarly to
a human dispatcher could be a highly capable ETA
predictor. Additionally, we hope to investigate synthetic
data generation to supplement training data for the deep
neural network model, which may allow for a larger,
more complex network to be built.

ACKNOWLEDGMENT

The authors acknowledge funding by the Roadway
Safety Institute, the University Transportation Center for
USDOT Region 5, which Includes Minnesota, Illinois,
Indiana, Michigan, Ohio, and Wisconsin. Financial sup-
port was provided by the United States Department of
Transportation’s Office of the Assistant Secretary for
Research and Technology (OST-R). Financial support
was also provided by the Federal Highway Administra-
tion’s Office of Innovative Program Delivery (OIPD), via

the Dwight David Eisenhower Transportation Fellowship
Program.

REFERENCES

[1] Pavankumar Murali, Maged Dessouky, Fernando Ordóñez, and
Kurt Palmer. A delay estimation technique for single and double-
track railroads. Transportation Research Part E: Logistics and
Transportation Review, 46(4):483–495, 2010.

[2] Andrea Dariano, Dario Pacciarelli, and Marco Pranzo. A branch
and bound algorithm for scheduling trains in a railway network.
European Journal of Operational Research, 183(2):643–657,
2007.

[3] Michael F Gorman. Statistical estimation of railroad congestion
delay. Transportation Research Part E: Logistics and Trans-
portation Review, 45(3):446–456, 2009.

[4] Samuel Sogin, Yung-Cheng Lai, C Dick, and Christopher
Barkan. Comparison of capacity of single-and double-track
rail lines. Transportation Research Record: Journal of the
Transportation Research Board, 2374:111–118, 2013.

[5] Mark Dingler, Yung-Cheng Lai, and Christopher Barkan. Impact
of train type heterogeneity on single-track railway capacity.
Transportation Research Record: Journal of the Transportation
Research Board, 2117:41–49, 2009.

[6] Faeze Ghofrani, Qing He, Rob MP Goverde, and Xiang Liu.
Recent applications of big data analytics in railway transportation
systems: A survey. Transportation Research Part C: Emerging
Technologies, 90:226–246, 2018.

[7] William Barbour, Juan Carlos Martiniz Mori, Shankara Kuppa,
and Daniel B. Work. Prediction of arrival times of freight traffic
on us railroads using support vector regression. Transportation
Research Part C: Emerging Technologies (expected), 2018.

[8] Yuting Zhu, Baohua Mao, Yun Bai, and Shaokuan Chen. A
bi-level model for single-line rail timetable design with consid-
eration of demand and capacity. Transportation Research Part
C: Emerging Technologies, 85:211–233, 2017.

[9] Jean-Francois Cordeau, Paolo Toth, and Daniele Vigo. A
survey of optimization models for train routing and scheduling.
Transportation science, 32(4):380–404, 1998.

[10] Alberto Caprara, Leo Kroon, Michele Monaci, Marc Peeters,
and Paolo Toth. Passenger railway optimization. Handbooks
in operations research and management science, 14:129–187,
2007.

[11] Quan Lu, Maged Dessouky, and Robert C Leachman. Mod-
eling train movements through complex rail networks. ACM
Transactions on Modeling and Computer Simulation (TOMACS),
14(1):48–75, 2004.

[12] Fahimeh Khoshniyat and Anders Peterson. Improving train
service reliability by applying an effective timetable robustness
strategy. Journal of Intelligent Transportation Systems, pages
1–19, 2017.

[13] Valentina Cacchiani, Alberto Caprara, and Paolo Toth. Schedul-
ing extra freight trains on railway networks. Transportation
Research Part B: Methodological, 44(2):215–231, 2010.

[14] Malachy Carey and Andrzej Kwieciński. Stochastic approxima-
tion to the effects of headways on knock-on delays of trains.
Transportation Research Part B: Methodological, 28(4):251–
267, 1994.

[15] Francesco Corman and Egidio Quaglietta. Closing the loop
in real-time railway control: Framework design and impacts
on operations. Transportation Research Part C: Emerging
Technologies, 54:15–39, 2015.

[16] Ren Wang and Daniel B Work. Data driven approaches for
passenger train delay estimation. In Intelligent Transportation
Systems (ITSC), 2015 IEEE 18th International Conference on,
pages 535–540. IEEE, 2015.

[17] Donald F Specht. A general regression neural network. IEEE
transactions on neural networks, 2(6):568–576, 1991.

7

2295

[18] Pavle Kecman and Rob MP Goverde. Online data-driven
adaptive prediction of train event times. IEEE Transactions on
Intelligent Transportation Systems, 16(1):465–474, 2015.

[19] Pavle Kecman and Rob MP Goverde. Predictive modelling of
running and dwell times in railway traffic. Public Transport,
7(3):295–319, 2015.

[20] Nikola Marković, Sanjin Milinković, Konstantin S Tikhonov,
and Paul Schonfeld. Analyzing passenger train arrival delays
with support vector regression. Transportation Research Part C:
Emerging Technologies, 56:251–262, 2015.

[21] Masoud Yaghini, Mohammad M. Khoshraftar, and Masoud
Seyedabadi. Railway passenger train delay prediction via neural
network model. Journal of Advanced Transportation, 47(3):355–
368, 2012.

[22] Yafei Liu, Tao Tang, and Jing Xun. Prediction algorithms for
train arrival time in urban rail transit. In Intelligent Transporta-
tion Systems (ITSC), 2017 IEEE 20th International Conference
on, pages 1–6. IEEE, 2017.

[23] Luca Oneto, Emanuele Fumeo, Giorgio Clerico, Renzo Canepa,
Federico Papa, Carlo Dambra, Nadia Mazzino, and Davide
Anguita. Dynamic delay predictions for large-scale railway
networks: Deep and shallow extreme learning machines tuned
via thresholdout. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 47(10):2754–2767, 2017.

[24] Kunal Kunal Baldev Bonsra and Joseph Harbolovic. Estimation
of run times in a freight rail transportation network. PhD thesis,
Massachusetts Institute of Technology, 2012.

[25] Alex J Smola and Bernhard Schölkopf. A tutorial on support
vector regression. Statistics and computing, 14(3):199–222,
2004.

[26] Christopher JC Burges. A tutorial on support vector machines
for pattern recognition. Data mining and knowledge discovery,
2(2):121–167, 1998.

[27] Leo Breiman. Classification and regression trees. Routledge,
1984.

[28] Leo Breiman. Random forests. Machine learning, 45(1):5–32,
2001.

[29] Andy Liaw, Matthew Wiener, et al. Classification and regression
by randomforest. R news, 2(3):18–22, 2002.

[30] Aparna Oruganti, Fangzhou Sun, Hiba Baroud, and Abhishek
Dubey. Delayradar: A multivariate predictive model for transit
systems. In BigData, pages 1799–1806, 2016.

[31] François Chollet et al. Keras. https://keras.io, 2015.
[32] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,

Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, An-
drew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray,
Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya
Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. Software available from tensorflow.org.

[33] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[34] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve
restricted boltzmann machines. In Proceedings of the 27th
international conference on machine learning (ICML-10), pages
807–814, 2010.

[35] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

8

2296

