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Abstract—Developing large-scale distributed real-time and
embedded (DRE) systems is hard in part due to complex
deployment and configuration issues involved in satisfying mul-
tiple quality for service (QoS) properties, such as real-timeliness
and fault tolerance. This paper makes three contributions to the
study of deployment and configuration middleware for DRE
systems that satisfy multiple QoS properties. First, it describes
a novel task allocation algorithm for passively replicated
DRE systems to meet their real-time and fault-tolerance QoS
properties while consuming significantly less resources. Second,
it presents the design of a strategizable allocation engine that
enables application developers to evaluate different allocation
algorithms. Third, it presents the design of a middleware-
agnostic configuration framework that uses allocation decisions
to deploy application components/replicas and configure the
underlying middleware automatically on the chosen nodes.
These contributions are realized in the DeCoRAM (Deployment
and Configuration Reasoning and Analysis via Modeling) mid-
dleware. Empirical results on a distributed testbed demonstrate
DeCoRAM’s ability to handle multiple failures and provide
efficient and predictable real-time performance.

Keywords-passive replication; replica allocation; resource
minimization; real-time.

I. INTRODUCTION

Distributed real-time and embedded (DRE) systems op-
erate in resource-constrained environments and are com-
posed of tasks that must process events with soft real-
time assurances. Examples include shipboard computing
environments; intelligence, surveillance and reconnaissance
systems; and smart buildings. A key quality of service
(QoS) attribute of these DRE systems is fault-tolerance since
system unavailability can degrade real-time performance and
usability.

Fault-tolerant DRE systems are often built using active
or primary-backup (also called passive) replication [1]. Due
to its low resource consumption, passive replication is ap-
pealing for soft real-time applications that cannot afford the
cost of maintaining active replicas and do not require hard
real-time performance [2]. Despite improving availability,
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however, server replication invariably increases resource
consumption, which is problematic for DRE systems that
place a premium on minimizing the resources used [3].

To address these concerns, DRE systems require solutions
that can exploit the benefits of replication, but share the
available resources amongst the applications efficiently (i.e.,
minimize the number and capacities of utilized resources).
These solutions must also provide both timeliness and
high availability assurances for applications. For a class of
DRE systems that are closed (i.e., the number of tasks,
their execution patterns, and their resource requirements
are known ahead-of-time and are invariant), solutions that
reduce resource usage may be determined at design-time,
yet can assure QoS properties of DRE systems at runtime.

The advent of middleware that supports application-
transparent passive replication [4]–[7] appears promising to
provide such design-time QoS solutions for fault-tolerant
DRE systems. Unfortunately, conventional passive replica-
tion schemes incur two challenges for resource-constrained
DRE systems: (1) the middleware must generate the right
replica-to-node mappings that meet both fault-tolerance and
real-time requirements with a minimum number of nodes,
and (2) the replica-to-node mapping decisions and QoS
needs must be configured within the middleware. Develop-
ers must otherwise manually configure the middleware to
host applications, which requires source code changes to
applications whenever new allocation decisions are made or
existing decisions change to handle new requirements. Due
to differences in middleware architectures, these ad hoc and
manual approaches are neither reusable nor reproducible, so
this tedious and error-prone effort must be repeated.

To address the challenges associated with passive replica-
tion for DRE systems, this paper presents a resource-aware
deployment and configuration middleware for DRE systems
called DeCoRAM (Deployment and Configuration Reason-
ing and Analysis via Modeling). DeCoRAM automatically
deploys and configures DRE systems and meets their real-
time and fault-tolerance requirements via the following novel
capabilities:
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• A resource-aware task allocation algorithm that im-
proves the current state-of-the-art in integrated passive
replication and real-time task allocation algorithms [8]–
[10] by providing a novel replica-to-node mapping
algorithm called FERRARI (FailurE, Real-time, and
Resource Awareness Reconciliation Intelligence). The
novelty of this algorithm is its support for (1) real-time
awareness, which honors application timing deadlines,
(2) failure awareness, which handles a user-specified
number of multiple processor failures by deploying
multiple backup replicas such that each of those repli-
cas can continue to meet client timing needs when
processors fail while also addressing state consistency
requirements, and (3) resource awareness, which re-
duces the number of processors used for replication.

• A strategizable allocation engine that decouples the
deployment of a DRE system from a specific task
allocation algorithm by providing a general framework
that can be strategized by a variety of task allocation
algorithms tailored to support different QoS proper-
ties of the DRE system. The novelty of DeCoRAM’s
allocation engine stems from its ability to vary the
task allocation algorithm used independently of the
feasibility test criteria used.

• A deployment and configuration (D&C) engine that
takes the decisions computed by the allocation algo-
rithm and automatically deploys the tasks and their
replicas in their appropriate nodes and configures the
underlying middleware appropriately. The novelty of
DeCoRAM’s D&C engine stems from the design of the
automated configuration capability, which is decoupled
from the underlying middleware architecture.

DeCoRAM’s allocation engine, and the deployment and
configuration engine are implemented in ∼10,000 lines
of C++. This paper empirically evaluates the capabilities
of DeCoRAM in a real-time Linux cluster to show (1)
how its real-time fault-tolerance middleware incurs low
resource consumption overhead, where application replicas
are deployed across processors in a resource-aware manner
using the FERRARI algorithm and (2) runtime performance,
where failure recovery decisions are made at deployment-
time.

II. RELATED WORK

This section compares DeCoRAM with related work
along the dimensions described below.
Replica-to-node mapping algorithms. Prior research on
real-time fault-tolerant task allocation algorithms [11]–[13]
have focused on active replication, whose resource con-
sumption overhead is not suitable for closed DRE systems.
Research has also focused on transient failures (failures that
appear and disappear quickly) [14] environments. However,
such approaches cannot provide high availability for appli-

cations in the presence of fail-stop processor failures, which
is the focus of our work.

Prior work that focuses on passively replicated real-time
fault-tolerant task allocation algorithms [8], [9], [15] deal
with online algorithms, which incur extra overhead for
closed DRE systems. In contrast, we focus on offline algo-
rithms based on static scheduling that leverage the invariant
properties of closed DRE systems, which enables us to seam-
lessly leverage existing operating systems schedulers. Prior
research on static scheduling-based passive replication [10]
consider only one processor failure at a time.

DeCoRAM’s replica allocation algorithm differs from
these approaches as follows: (1) it handles multiple pro-
cessor failures using passive replication while considering
primary replicas, backup replicas, and state synchronization
costs in the replica allocation problem, (2) it opportunisti-
cally overbooks processors with multiple backup replicas by
analyzing feasible failover patterns caused due to multiple
processor failures, (3) it extends time-demand analysis [16]
to meet real-time requirements both in normal conditions
and after multiple processor failures, and (4) DeCoRAM’s
allocation engine is decoupled from any specific allocation
algorithm and feasibility testing criteria.
Tools for task allocation, deployment, and configuration
of DRE systems. Prior work on deployment and config-
uration tools for real-time systems includes VEST [17]
and AIRES [18], which analyze domain-specific models
of embedded real-time systems to perform schedulability
analysis and provide automated allocation of components
to processors. SysWeaver [19] supports design-time timing
behavior verification of real-time systems and automatically
generates OS interfacing code with predictable timing infor-
mation for multiple target platforms.

DeCoRAM differs from these approaches as follows:
(1) it considers task allocation using minimal resources
along with real-time (i.e., response times) and fault-tolerance
in a passive replication scheme (i.e., replication and state
synchronization), (2) it automatically deploys and configures
applications and replicas on top of fault-tolerant middleware
on nodes chosen by the replica allocation algorithm, and
(3) DeCoRAM’s deployment and configuration engine is
decoupled from any specific tool or middleware.

III. PROBLEM DEFINITION AND SYSTEM MODEL

This section defines the problem definition for our work
on DeCoRAM in the context of the task and fault system
models used.

A. DRE System Model

Our research focuses on a class of DRE systems where
the system workloads and the number of tasks are known
a priori. Examples include system monitoring applications
found in the automotive domain (e.g., reacting to abnormali-
ties sensed by tires) or in industrial automation (e.g., periodic
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monitoring and relaying of health of physical devices to
operator consoles), or resource management in the software
infrastructure for shipboard computing. These systems also
demonstrate stringent constraints on the resources that are
available to support the expected workloads and tasks. For
this paper we focus on the CPU resource only.
Task model. We consider a set of N long running soft real-
time tasks (denoted as S = {T1, T2, ..., TN }) deployed
on a cluster of hardware nodes. Clients access these tasks
periodically via remote operation requests: each application
Ti is associated with its worst-case execution time (WCET,
denoted as Ei), its period (denoted as Pi), and its relative
deadline (which is equal to its period). For this paper we do
not consider task chains and precedence constraints, which
is the focus of our future work. All tasks have soft real-time
requirements.

On each processor, the rate monotonic scheduling al-
gorithm (RMS) [16] is used to schedule each task and
individual task priorities are determined based on their
periods. We assume that the networks within this class of
DRE systems provide bounded communication latencies for
application communication and do not fail or partition.
Fault model. We focus on fail-stop processor failures within
DRE systems that prevent clients from accessing the services
provided by hosted applications. The fail-stop assumption
for DRE systems is appropriate since failures can be masked
by recovering and failing over to redundant resources. We
use passive replication [1] to recover from fail-stop pro-
cessor failures. In passive replication, only one replica—
called the primary—handles all client requests when the
application state maintained at the primary replica could
change. Since backup replicas are not involved in processing
client’s requests, their application state must be synchronized
with the state of the primary replica. We assume that the
primary replica (which executes for worst-case execution
time Ei) uses non-blocking remote operation invocation
mechanisms, such as asynchronous messaging, to send state
update propagations to the backup replica, while immedi-
ately returning the response to the client.

Each backup replica of a task Ti is associated with its
worst-case execution time for synchronizing state Si, which
significantly reduces the response times for clients, but
supports only “best effort” guarantees for state synchroniza-
tion. Replica consistency may be lost if the primary replica
crashes after it responds to the client, but before it propagates
its state update to the backup replicas. This design tradeoff is
desirable in DRE systems where state can be reconstructed
using subsequent (e.g., sensor) data updates at the cost of
transient degradation of services.

B. Problem Motivation and Research Challenges

The goal of DeCoRAM is to deploy and configure a pas-
sively replicated DRE system of N tasks that is tolerant to at
most K fail-stop processor failures while also ensuring that

soft real-time requirements are met. To satisfy fault tolerance
needs, no two replicas of the same task can be collocated.
To satisfy real-time requirements, the system also must
remain schedulable. These goals must be achieved while
reducing resource utilization. To realize such a real-time,
fault-tolerant DRE system, a number of challenges arise,
which we examine below via an example used throughout
the paper.

Consider a sample task set with their individual periods, as
shown in Table I. Assuming that the system being deployed

Task Ei Si Pi Util

< A1, A2, A3 > 20 0.2 50 40
< B1, B2, B3 > 40 0.4 100 40
< C1, C2, C3 > 50 0.5 200 25
< D1, D2, D3 > 200 2 500 40
< E1, E2, E3 > 250 2.5 1000 25

Table I
Sample Ordered Task Set with Replicas

must tolerate a maximum of two processor failures, two
backup replicas of each task are needed as shown. The table
also shows the execution times taken by the primary replica,
the state synchronization times taken by the backup replicas,
and the utilization of a primary replica.

Using bin packing algorithms [20], [21] (e.g., based on
first-fit allocation) and ensuring that no two replicas of the
same task are collocated, we can identify the lower and
upper bounds on the number of processors required to host
the system. For example, Figure 1 shows the placement of
the tasks indicating a lower bound on processors that is
determined using a bin packing algorithm when no faults are
considered. Figure 2 shows the upper bound on processors

Figure 1. Lower Bound on Processors (No FT Case)

needed when the system uses active replication. This case
represents an upper bound because in active replication, all
replicas contribute WCET.

Figure 2. Upper Bound on Processors (Active FT Case)

7171



Passive replication can reduce the number of resources
used because the backup replica in a passively replicated sys-
tem only contributes to the state synchronization overhead.
Naturally, the number of processors required for passive
replication should be within the range identified above i.e.,
within the range of resources needed for the No-FT and
active replication cases.

Determining how much reduction in resources is possible
with passive replication while still meeting real-time require-
ments gives rise to the following challenges:
Challenge 1: Reduction in resource needs. Since backups
contribute to state synchronization overhead, a bin-packing
algorithm can pack more replicas, thereby reducing the
number of resources used. The resulting packing of replicas,
however, is a valid deployment only in no-failure scenarios,
which is unrealistic for DRE systems. On failures, some
backups will be promoted to primaries (thereby contributing
to WCET). Bin packing algorithms cannot identify which
backups will get promoted, however, since failures are un-
predictable and these decisions are made entirely at runtime.
What is needed, therefore, is the ability to identify a priori
the potential failures in the system and determine which
backups will be promoted to primaries so as to determine
the number of resources needed. Section IV-A describes an
algorithm that uses the bounded and invariant properties of
closed DRE systems to address this challenge in a design-
time algorithm.
Challenge 2: Ability to evaluate different deployment
algorithms. An algorithm for task allocation has limited
benefit if there is no capability to integrate it with production
systems where the algorithm can be executed for different
DRE system requirements. Moreover, since different DRE
systems may impose different QoS requirements, any one
allocation algorithm is often limited in its applicability
for a broader class of systems. What is needed, therefore,
is a framework that can evaluate different task allocation
algorithms for a range of DRE systems. Section IV-B
discusses how the DeCoRAM framework evaluates different
task allocation algorithms.
Challenge 3: Automated configuration of applications
on real-time fault-tolerant middleware. Even after the
replica-to-node mappings are determined via task allocation
algorithms, these decisions must be enforced within the
runtime middleware infrastructure for DRE systems. Al-
though developers often manually configure the middleware,
differences in middleware architectures (e.g., object-based
vs. component-based vs. service-based) and mechanisms
(e.g., declarative vs. imperative) make manual configuration
tedious and error-prone. What is needed, therefore, is a ca-
pability that can (1) decouple the configuration process from
the middleware infrastructure and (2) seamlessly automate
the configuration process. Section IV-C describes how the
DeCoRAM configuration engine automates the configuration
process.

IV. THE STRUCTURE AND FUNCTIONALITY OF

DECORAM

This section presents the structure and functionality of
DeCoRAM and shows how it resolves the three challenges
described in Section III-B.

A. DeCoRAM’s Resource-aware Task Allocation Algorithm

Challenge 1 described in Section III-B is a well-known
NP-hard problem [12], [20]. Since this challenge is similar
to bin-packing problems [20], it is at least as hard as bin-
packing due to the added burden of satisfying both fault-
tolerance and real-time system constraints. We developed an
algorithm called FailurE, Real-time, and Resource Aware-
ness Reconciliation Intelligence (FERRARI) presented be-
low to satisfy the real-time and fault-tolerance properties of
DRE systems while reducing resources utilized. FERRARI
is explained using the sample task set shown in Table I.

1) Allocation Heuristic: Algorithm 1 describes the de-
sign of DeCoRAM’s replica allocation algorithm called
FERRARI. Line 3 replicates the original task set correspond-
ing to the K fault tolerance requirements, and orders these
tuples according to the task ordering strategy (Line 5). For
example, to tolerate two processor failures, tasks could be
ordered by RMS priorities and the resulting set could contain
tasks arranged with tuples from highest priority to lowest as
shown in a sample task set of Table I.

Algorithm 1: Replica Allocation Algorithm
Input:

T ← set of N tasks to be deployed (not including replicas),
K ←number of processor failures to tolerate.

Output:
Deployment plan DP ← set of two tuples mapping a replica to a
processor,
PF : resulting set of processors used.

1 begin
2 Intially, DP = {}, PF = default set of one processor
3 Let T ′ ← {< tik >}, 1 ≤ i ≤ N, 1 ≤ k ≤ K /* Replicate each

tasks in T , K times so that T ′ contains set of N K-tuples */
4

5 Task_Ordering(T ′) // Order the tasks and replicas
6

7 foreach tuplei ∈ T ′, 1 ≤ i ≤ N do
8 for k = 1 to K do
9 /* Allocate a task and all its K replicas before moving to the

next */
10

11 Proc_Select: Pick a candidate processor pc from the set PF not
yet being evaluated for allocation

12 /* Check if allocation is feasible on this processor */
13 bool result = Test_Alloc_for_Feasibility(tik, k, pc, K)
14 if result==false then // Infeasible allocation
15 GoTo Proc_Select for selecting the next candidate processor for

this replica
16 else // Update the deployment plan
17 DP ← DP

⋃
{< tik, pc >} // add this allocation

18

19 if no pc from set PF is a feasible allocation then
20 Add a new processor to PF

21 GoTo Proc_Select// Attempt allocation again with the new set
of candidate processors

22

Lines 7 and 8 show how FERRARI allocates a primary
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task and all of its K replicas before allocating the next task.
For example, for the set of tasks in Table I, first all replicas
belonging to task A will be allocated followed by B and so
on. To allocate each replica, FERRARI selects a candidate
processor based on the configured bin-packing heuristic
(Line 11). To satisfy fault-tolerance requirements, FERRARI
ensures that the processor does not host another replica
of the same application being allocated when selecting a
candidate processor.

For the candidate processor, FERRARI runs a feasibility
test using novel enhancements we made to the well-known
time-demand analysis [16], which is used to test feasibility
(see Section IV-A2). We chose the time-demand analysis for
its accuracy in scheduling multiple tasks in a processor. Al-
though the time-demand analysis method is computationally
expensive, it is acceptable since DeCoRAM is a deployment-
time solution.

The feasibility criteria evaluates if the replica could be
allocated to the processor subject to the specified real-time
and fault-tolerance constraints (Line 13). If the test fails for
the current processor under consideration, a new candidate
processor is chosen. For our sample task set, after deploying
task sets A and B along with their replicas (as shown in
Figure 3), the next step is to decide a processor for the
primary replica of task C. Processor P1 is determined an

Figure 3. Allocation of Primary and Backup Replicas for Tasks A
and B

infeasible solution since the combined utilization on the
processor would exceed 100% if C1 were allocated on P1
already hosting A1 and B1 (40+40+25=105).

If a feasible allocation is found, the output deployment
plan set DP is updated (Line 17). If no candidate processor
results in a feasible allocation, however, the set of candidate
processors PF is updated (Line 20) and the replica allocation
is attempted again. As shown in Section IV-A2, C1 cannot
be allocated to any of P1, P2 or P3, thereby requiring
an additional processor (as shown in Figure 4). FERRARI
terminates after allocating all the tasks and its replicas.

2) Failure-Aware Look-Ahead Feasibility Algorithm:
Challenge 1 implied that we must explore the state space for
all possible failures in determining the feasible allocations.
The time-demand analysis on its own cannot determine
this state space. We therefore modify the well-known time-
demand function [16] ri(t) for task Ti in time-demand
analysis as follows:

ri(t) = Ei+

{ ∑i−1

k=1
� t

Pk
�Ek if k is primary∑i−1

k=1
� t

Pk
�Sk if k is backup

}
for 0 < t < Pi

where the tasks are sorted in non-increasing order of RMS
priorities. This condition is checked for each task Ti at
an instant called the critical instant phasing [16], which
corresponds to the instant when the task is activated along
with all the tasks that have a higher priority than Ti. The
task set is feasible if all tasks can be scheduled under the
critical instant phasing criteria.

Using this modified definition, we now enhance the fea-
sibility test criteria using the following novel features:
(1) Necessary criteria: “lookahead” for failures. Sec-
tion III-A explained how a task being allocated can play the
role of a primary (which consumes worst case execution time
E) or a backup replica (which consumes worst case state
synchronization time S). Due to failures, some backups on a
processor will get promoted to primaries and because E >>
S, the time-demand analysis method must consider failure
scenarios so that the task allocation is determined feasible
in both a non-failure and failure case. For our sample task
set, this criteria implies that all possible failure scenarios
must be explored for the snapshot shown in Figure 3 when
allocating the primary replica for task C (i.e., C1).

For any two processor failure combinations (e.g., the
failure of P1 and P2 or P1 and P3), the backups of tasks A
and B will be promoted to being primaries. It is therefore
no longer feasible to allocate C1 on either P2 or P3 (using
the same reasoning that eliminated P1 as a choice). An

Figure 4. Feasible Allocation for Task C1

enhancement to perform such a check is made to the time-
demand analysis, which then results in an extra processor to
host C1, as shown in Figure 4.
(2) Relaxation criteria: assign “failover ordering” to min-
imize processors utilized. Clause 1 above helps determine
the placement of newly considered primaries (e.g., C1). We
next address the allocation of backups. One approach is to
allocate C2 and C3 on processors P5 and P6 (see Figure 2).
This straightforward approach, however, requires the same
number of resources used in active replication, which is
contrary to the intuition that passive replication utilizes fewer
resources.

Using Clause 1, P1 can be eliminated as a choice to host
backup C2 since a failure of P4 will make C2 a primary
on P1, which is an infeasible allocation. Clause 1 provides
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only limited information, however, on whether P2 and P3
are acceptable choices to host backups of C (and also those
of D and E since they form a group according to the first-fit
criteria). We show this case via our sample task set.

Consider a potential feasible allocation in a non-failure
case that minimizes resources, as shown in Figure 5. Using

Figure 5. Determining Allocation of Backups of C, D and E

Clause 1, we lookahead for any 2-processor failure combina-
tions. If P1 and P2 fail, the allocation is still valid since only
A3 and B3 on P3 will be promoted to primaries, whereas
C1, D1 and E1 continue as primaries on P4. If P2 and P3
were to fail, the allocation will still be feasible since the
existing primaries on P1 and P4 are not affected.

An interesting scenario occurs when P1 and P4 fail. There
are two possibilities for how backups are promoted. If the
fault management system promotes A2 and B2 on processor
P2, and C3, D3 and E3 on processor P3 to primaries the al-
location will still be feasible and there will be no correlation
between the failures of individual tasks and/or processors.
If the fault management system promotes all of A2, B2,
C2, D2 and E2 to primaries on processor P2, however, an
infeasible allocation will result. The unpredictable nature of
failures and decisions made at runtime is the key limitation
of Clause 1.

A potential solution is to have the runtime fault man-
agement system identify situations that lead to infeasible
allocations and not enforce them. The drawback with this
approach, however, is that the number of failure combina-
tions increases exponentially, thereby making the runtime
extremely complex and degrading performance as the system
scale increases. A complex runtime scheme is unaffordable
for closed DRE systems that place a premium on resources.
Moreover, despite many properties of closed DRE systems
being invariant, the runtime cannot leverage these properties
to optimize the performance.

However, it is possible to overcome the limitation of
Clause 1 if the runtime fault management system follows
a specific order for failovers. Our algorithm therefore orders
the failover of the replicas according to their suffixes, which
eliminates the possibility of infeasible allocations at design-
time. Naturally, the replica-to-node mapping and hence the
time-demand analysis must be enhanced to follow this
ordering.

Based on this intuition, even with K processor failures it
is unlikely that backups on a live processor will be promoted
all at once. In other words, only a subset of backups on a
given processor will be promoted in the worst case, without

causing an infeasible allocation. The rest of the backups
will continue to contribute only S load, which enables the
overbooking of more backup replicas on a processor [15],
thereby reducing the number of processors utilized.

These two criteria form the basis of the enhancements
we made to the original time-demand analysis, which un-
derpins the feasibility test in our task allocation algorithm
FERRARI. Due to space considerations we do not show the
feasibility test algorithm itself, but the details are available
in [22].

Figure 6 shows a feasible allocation determined by FER-
RARI for the sample set of tasks and their replicas, which
reduces the number of resources used and supports real-time
performance even in the presence of up to two processor
failures.

Figure 6. Allocation of Sample Task Set

3) DeCoRAM Algorithm Complexity: We now briefly
discuss the complexity of FERRARI. The top-level algo-
rithm (Algorithm 1) comprises an ordering step on Line 5,
which results in O(Nlog(N) for N tasks. Allocation deci-
sion must then be made for each of the N tasks, their K
replicas, and upto M processors if the feasibility test fails
for M − 1 processors.

The overall complexity is thus O(N ∗ K ∗ M ∗
feasibility_test), where feasibility_test is the failure-aware
look-ahead feasibility algorithm described in Section IV-A2.
Each execution of the feasibility test requires (1 +

(
Pt

K

)
)

executions of the enhanced time-demand analysis [16]. Since
the replica allocation algorithm allocates tasks according
to non-increasing RMS priority order, however, the time-
demand analysis is not overly costly and can be performed
incrementally.

B. DeCoRAM Allocation Engine

The FERRARI algorithm presented in Section IV-A is
one of many possible task allocation algorithms that target
different QoS requirements of DRE systems. Moreover, it
may also be necessary to decouple an allocation algorithm
from the feasibility test criteria. For example, FERRARI
can leverage other schedulability testing mechanisms beyond
time-demand analysis.

The DeCoRAM Allocation Engine shown in Figure 7
provides a framework to evaluate multiple different allo-
cation algorithms that can work with different feasibility
criteria thereby addressing Challenge 2 in Section III-B.
DeCoRAM’s Allocation Engine is implemented in ∼6,500
lines of C++ and provides a placement controller component
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that can be strategized with different allocation algorithms,
including FERRARI (see Section IV-A). This component
coordinates its activities with the following other DeCoRAM
components:

Figure 7. Architecture of the DeCoRAM Allocation Engine

1. Input manager. DRE system developers who need to
deploy a system with a set of real-time and fault-tolerance
constraints express these requirements via QoS specifica-
tions that include: (1) the name of each task in the DRE
system, (2) the period, worst-case execution time, and worst-
case state synchronization time of each task, and (3) the
number of processor failures to tolerate. Any technique for
gathering these QoS requirements can be used as long as
DeCoRAM can understand the information format.

2. Node selector. To attempt a replica allocation, the
allocation algorithm must select a candidate node, e.g.,
using efficient processor selection heuristics based on bin-
packing [20]. The node selector component can be con-
figured to select suitable processors based on first-fit and
best-fit bin packing heuristics [23] that reduce the total
number of processors used, though other strategies can also
be configured.

3. Admission controller. Feasibility checks for schedu-
lability are required to allocate a replica to a processor.
The admission controller component can be strategized by
a feasibility testing strategy, such as our enhanced time-
demand analysis algorithm (see Section IV-A2).

4. Task replicator. The task replicator component adds a
set of K replicas for each task in the input task set and sorts
the resultant task set according to the chosen task ordering
strategy to facilitate applying the feasibility algorithm by
the admission controller component. Since FERRARI uses
time-demand analysis [16] for its feasibility criteria, the
chosen task ordering strategy is RMS prioritization, with
the tasks sorted from highest to lowest rate to facilitate easy
application of the feasibility algorithm. Other task ordering
criteria also can be used by the task replicator component.

For the closed DRE systems that we focus on in this
paper, the output from the DeCoRAM Allocation Engine
framework is (1) the replica-to-node mapping decisions for
all the tasks and their replicas in the system, and (2) the
RMS priorities in which the primary and backup replicas
need to operate in each processor.

C. DeCoRAM Deployment and Configuration (D&C) En-
gine

The replica-to-node mapping decisions must be config-
ured within the middleware, which provides the runtime
infrastructure for fault management in DRE systems. The
DeCoRAM D&C Engine automatically deploys tasks and
replicas in their appropriate nodes and configures the un-
derlying middleware using ∼3,500 lines of C++. Figure 8
shows how the D&C engine is designed using the Bridge
pattern [24], which decouples the interface of the DeCoRAM
D&C engine from the implementation so that the latter can
vary thereby addressing Challenge 3 in Section III-B. As
a result, any real-time fault-tolerant component middleware
can serve as the implementation. By using a common
interface, DeCoRAM can operate using various component
middleware, such as [4], [6].

Figure 8. Architecture of the DeCoRAM D&C Engine

The building blocks of DeCoRAM’s D&C engine are
described below:
• XML parser. The XML parser component converts the

allocation decisions captured in the deployment plan (which
is the output of the allocation engine) into in-memory data
structures used by the underlying middleware.
• Middleware deployer. The middleware deployer com-

ponent instantiates middleware-specific entities on behalf of
application developers, including essential building blocks of
any fault tolerance solution, such as the replication manager,
which manages the replicas; a per-process monitor, which
checks liveness of a host; and state transfer agent, which
synchronizes the state of primary with the backups.
• Middleware configurator. The middleware configura-

tor component configures the QoS policies of the real-time
fault-tolerant middleware to prepare the required operating
environment for the tasks that will be deployed. Examples of
these QoS policies include thread pools that are configured
with appropriate threads and priorities, e.g., RMS priorities
for periodic tasks.
• Application installer. The application installer com-

ponent installs and registers tasks with the real-time fault-
tolerant middleware, e.g., it registers the created object ref-
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erences for the tasks with the real-time fault-tolerant middle-
ware. Often these references are maintained by middleware
entities, such as the replication manager and fault detectors.
Client applications also may be transparently notified of
these object references.

DeCoRAM’s D&C engine provides two key capabilities:
(1) application developers need not write code to achieve
fault-tolerance, as DeCoRAM automates this task for the
application developer, and (2) applications need not be
restricted to any particular fault-tolerant middleware; for
every different backend, DeCoRAM is required to support
the implementation of the bridge. This cost is acceptable
since the benefits can be amortized over the number of DRE
systems that can benefit from the automation.

V. EVALUATION OF DECORAM

This section empirically evaluates DeCoRAM along sev-
eral dimensions by varying the synthetic workloads and the
number of tasks/replicas.

A. Effectiveness of the DeCoRAM Allocation Heuristic

By executing FERRARI on a range of DRE system tasks
and QoS requirements, we demonstrate the effectiveness of
DeCoRAM’s allocation heuristic in terms of reducing the
number of processors utilized.
Variation in input parameters. We randomly gen-
erated task sets of different sizes N , where N =
{10, 20, 40, 80, 160}. We also varied the number of failures
we tolerated, K, where K = {1, 2, 3, 4}. DRE systems
often consist of hundreds of applications, while passively
replicated systems often use 3 replicas, which make these
input parameters reflect real-world systems. For each run
of the allocation engine, we varied a parameter called max
load, which is the maximum utilization load of any task in
the experiment. Our experiments varied max load between
10%, 15%, 20%, and 25%.

For each task in our experiments, we chose task periods
that were uniformly distributed with a minimum period of 1
msec and a maximum period of 1,000 msec. After the task
period was obtained, each task load was picked at random
from a uniformly distributed collection with a minimum task
load of 0% up to the specified maximum task load, which
determines the worst-case execution times of each task.

We applied a similar methodology to pick the worst-case
state synchronization times for all tasks between 1% and
2% of the worst-case execution times of each task. The
deadline of each task was set to be equal to its period. Our
objective in varying these parameters as outlined above was
to understand how effectively DeCoRAM reduces resources
and how each input parameter impacts the result.
Evaluation criteria. To determine how many resources
FERRARI was able to save, we defined two bounds: a lower
bound for the no-failure case (shown as No-FT in Figure 9)

and an upper bound for the active replication case (shown
as AFT).

We then strategized FERRARI to use the first-fit (FF-FT)
and best-fit (BF-FT) (max utilization) allocation techniques,
and computed the number of processors needed.
Analysis of results. Figures 9a, 9b, 9c, and 9d show the
number of processors used when each allocation heuristic
attempts to allocate varying number of tasks with varying
max load for a task set. As N and K increase, the number
of processors used increased exponentially for AFT. This
exponential increase in processors is due to the behavior of
the active replication scheme, which executes all the replicas
to provide fast failure recovery on a processor failure.

In contrast, when DeCoRAM uses the FF-FT or the BF-
FT allocation heuristics, the rate of increase in number of
processors used in comparison with the No-FT allocation
heuristic is slower compared to AFT. For example, when K
is equal to 1, the number of processors used by both the FF-
FT and BF-FT allocation heuristics is only slightly larger
than those used by the No-FT allocation heuristics.

As the number of tasks and processor failures to tolerate
increases, the ratio of the number of processors used by the
FF-FT and the BF-FT allocation heuristics to those used
by the No-FT allocation heuristic increases, but at a much
slower rate than the increase in the case of AFT. For large
N and K (e.g., see Figure 9d, 160 tasks and 4 backups for
each task), the number of processors used by the FF-FT and
the BF-FT allocation heuristics is only half the number of
processors used by AFT.

This result is a direct consequence of the relaxation
criteria described in Section IV-A2. As the number of tasks
to allocate and number of backup replicas increases, the look
ahead step finds more opportunities for passive overbooking
of backups on a processor for FF-FT and BF-FT allocation
heuristics.

B. Validation of Real-time Performance

We empirically validate the real-time and fault-tolerance
properties of an experimental DRE system task set de-
ployed and configured using DeCoRAM. The experiment
was conducted in the ISISlab testbed (www.dre.vanderbilt.
edu/ISISlab) using 10 blades (each with two 2.8 GHz
CPUs, 1GB memory, and a 40 GB disk) and running the
Fedora Core 6 Linux distribution with real-time preemption
patches (www.kernel.org/pub/linux/kernel/projects/rt). Our
experiments used one CPU per blade and the blades were
connected via a CISCO 3750G switch to a 1 Gbps LAN.

The experimental setup and task allocation follows the
model presented in Figure 6 and Table I. For our experiment
we implemented the Bridge pattern [24] in the DeCoRAM
D&C engine for our FLARe middleware [7]. Clients of each
of the 5 tasks are hosted in 5 separate blades. FLARe’s
middleware replication manager ran in the remaining blade.
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(a) Varying number of tasks and backups with 10% max load (b) Varying number of tasks and backups with 15% max load

(c) Varying number of tasks and backups with 20% max load (d) Varying number of tasks and backups with 25% max load

Figure 9. Performance of FERRARI with Varying Tasks, Backups, and Loads

The experiment ran for 300 seconds. We introduced 2
processor failures (processors P1 and P2 in Figure 6) 100
and 200 seconds, respectively, after the experiment was
started. We used a fault injection mechanism where server
tasks call the exit() system call (crashing the process hosting
the server tasks) while the clients CLIENT-A or CLIENT-
B make invocations on server tasks. The clients receive
COMM_FAILURE exceptions and then failover to replicas
according to the order chosen by DeCoRAM.

Figure 10 shows the response times observed by the
clients despite the failures of 2 processors. As shown by

20

40

60

80

100

120

50 100 150 200 250 300

R
es

po
ns

e 
T

im
e 

(m
ill

is
ec

on
ds

)

Time (sec)

(CLIENT-B)

(CLIENT-A)(A) (B)

Figure 10. DeCoRAM Empirical Validation

the label A in Figure 10, at 100 seconds when replica
A1 fails (processor P1 fails, thereby failing B1 as well),
client CLIENT-A experiences a momentary increase of 10.6

milliseconds in its end-to-end response time, which is the
combined time for failure detection and subsequent failover
but stabilizes immediately, thereby ensuring soft real-time
requirements. The same behavior is also observed at 200
seconds (see label B) when P2 fails.

These results demonstrate that irrespective of the over-
booking of the passive replicas, DeCoRAM can still assure
real-time and fault-tolerance for applications.

VI. CONCLUDING REMARKS

This paper describes the structure, functionality, and per-
formance of the DeCoRAM deployment and configuration
middleware, which provides a novel replica allocation al-
gorithm called FERRARI that provides real-time and fault-
tolerance to closed DRE systems while significantly reduc-
ing resources utilized. DeCoRAM provides a strategizable
allocation engine that is used to evaluate FERRARI’s ability
to reduce the resources required in passively replicated
closed DRE systems. Based on the decisions made by FER-
RARI, DeCoRAM’s deployment and configuration engine
automatically deploys application components/replicas and
configures the middleware in the appropriate nodes thereby
eliminating manual tasks needed to implement replica allo-
cation decisions. The results from our experiments demon-
strate how DeCoRAM provides cost-effective replication
solutions for resource-constrained, closed DRE systems.
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DeCoRAM is available in open-source format at www.dre.
vanderbilt.edu as part of the CIAO middleware distribution.
Additional technical details on DeCoRAM can be found
in [22].
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