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Abstract

System-level detection, diagnosis, and mitigation of faults in complex
systems that include physical components as well as software are es-
sential to achieve high dependability. The paper introduces a model,
referred to as the Timed Failure Propagation Graph (TFPG) that cap-
tures the causal propagation of observable fault effects in systems. Sev-
eral algorithms based on this model have been developed, including:
consistency-based centralized and distributed algorithms for multiple-
fault fault source isolation in real-time, algorithms to calculate diagnos-
ability metrics, and algorithms to prognosticate impending failures. The
model and the associated algorithms are applicable to physical systems
but recently they have been applied to component-based software sys-
tems as well, where similar fault propagation can take place. The paper
describes the modeling paradigm, the algorithms developed, and how
they were applied in a system and software context.

1 Introduction

The ultimate challenge in system health management is the theory for and appli-
cation of the technology to systems, for instance to an entire vehicle. The main
problem the designer faces is complexity; simply the sheer size of the system,
the number of data points, anomalies, and failure modes, can be overwhelming.
Furthermore, systems are heterogeneous and one has to have a systems engi-
neer’s view to understand interactions among systems. Yet, system-level health
management is crucial as faults increasingly arise from system-level effects and
interactions. While individual subsystems tend to have built-in redundancy or
local anomaly detection, fault management, and prognostics features, the system
integrators are required to provide the same capabilities for the entire vehicle,
across different engineering subsystems and areas.

The heterogeneity of subsystems necessitates the use of techniques that are
domain-independent and applicable in mechanical and hydraulic systems, as well
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as to electronics, and even in software. The most common, high-level concept
one can find across these domains is the concepts of (1) observable degradations,
anomalies, discrepancies caused by failure modes, (2) their propagation, and
(3) their temporal evolution towards system-level faults. Such propagation and
evolution effects are clearly cross-domain and cross-subsystem, and, if they are
understood by the designer, they can be used in system level diagnostics and
prognostics.

In this paper we present a model-based technology for system-level health
management based on the concept of Timed Fault Propagation Graphs (TFPG,
for short). We present the modeling language, fault diagnostics and prognostics
algorithms that are applicable to complex systems, and how these techniques
can be used for the health management of software systems.

We argue that the reasoning approach described here can be called as ‘real-
time’ in two ways. First, it can operate in real-time, on-line and is capable of
producing the new fault diagnostics results as soon as new evidence becomes
available (or as time elapses). This will be elaborated in the section on the
reasoner. Second, the operation of the reasoner is bounded in space (memory
footprint) and time (response time). The bounds depend on the complexity and
structure of the particular model used. Note that we use a model-based reasoner,
hence its operation and behavior is ultimately determined by the model used.
While we cannot at this time analytically estimate the worst-case response time
of the reasoner simply from the model, we can predict it by using the specific
model in the reasoner and applying it to a ‘worst-case’ input sequence of alarms.

The model-based approach described in this paper could be the next logical
step after applying machine learning and/or data mining algorithms to data
collected during operations. What the data mining techniques discover can be
used in the following ways. One, the data mining can provide assistance to the
modeler who constructs the TFPG models: correlations discovered in the data
may serve as clues to building the causal models. Second, the data mining results
can be used to build the discrete monitors (fault detectors) needed by the TFPG
reasoner in operation. These monitors detect the anomalies in the system and
will trigger the higher-level TFPG reasoner. Third, the data mining can play an
important role in refining and improving the models. We will discuss this last
point in a separate section.

The paper is organized as follows. First we review system-level fault diag-
nostics techniques. Next we describe the TFPG model, the reasoning algorithms
used and present examples. This is followed by a section about the application
of the TFPG in software health management. Then we describe the application
of TFPG in system prognosis. Finally, we conclude with a discussion on how
data mining techniques can be used to improve a TFPG-based system and some
observations for future research. We also included a number of examples, with
specific test results. The tests were conducted on an Intel Xeon (W5320) 2.67
GHz Processor with 4GB of RAM.
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2 Related Work

2.1 Failure Propagation Models

Diagnostic reasoning techniques share a common process in which the system
is continuously monitored and the observed behavior is compared with the ex-
pected one to detect abnormal conditions. In many industrial systems, diagnosis
is limited to signal monitoring and fault identification via threshold logic, e.g.,
detecting if a sensor reading deviates from its nominal value. Failure propaga-
tion is modeled by capturing the qualitative association between sensor signals
in the system for a number of different fault scenarios. Typically, such associa-
tions correspond to relations used by human experts in detecting and isolating
faults. This approach has been effectively used for many complex engineering
systems. Common industrial diagnosis methods include fault trees [23, 51, 22,
24], cause-consequence diagrams [41, 42], diagnosis dictionaries [44], and expert
systems [48, 50].

Model-based diagnosis (see [17, 21, 38] and the references therein), on the
other hand, compares observations from the real system with the predictions
from a model. Analytical models, such as state equations [39], finite state ma-
chines [46], hidden Markov models [49], and predicate/temporal logic [43] are
used to describe the nominal system behavior. In the case of a fault, discrep-
ancies between the observed behavior and the predicted normal behavior occur.
These discrepancies can then be used to detect, isolate, and identify the fault
depending on the type of model and methods used. In consistency-based diag-
nosis the behavior of the system is predicted using a nominal system model and
then compared with observations of the actual behavior of the system to obtain
the minimal set of faulty component that is consistent with the observations
and the nominal model. Consistency-based diagnosis was introduced in a logical
framework in [43] and was later extended in [13]. The approach has been applied
to develop diagnosis algorithms for causal systems [11, 12] and temporal causal
systems [18, 10].

The diagnosis approach presented in this paper is conceptually related to
the temporal causal network approach presented in [10]. However, we focus on
incremental reasoning and diagnosis robustness with respect to sensor failures.
The causal model presented in this paper is based on the timed failure propaga-
tion graph (TFPG) introduced in [29, 30]. The TFPG model is closely related to
fault models presented in [37, 27, 32] and used for an integrated fault diagnosis
and process control system [26]. The TFPG model was extended in [3] to include
mode dependency constraints on the propagation links, which can then be used
to handle failure scenarios in hybrid and switching systems. TFPG modeling and
reasoning tool has been developed and used successfully in an integrated fault
diagnoses and process control system [26].

The temporal aspects of the TFPG model are closely related to the domain
theoretic notion of temporal dependency proposed in [6]. However, there are sev-
eral major differences between the two approaches. In particular, TFPG-based
diagnosis implements a real-time incremental reasoning approach that can han-
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dle multiple failures including sensor/alarm faults. In addition, the underlying
TFPG model can represent a general form of temporal and logical dependency
that directly incorporates the dynamics of multi-mode systems.

2.2 Fault Recovery

The fault recovery aspect of this work has been inspired by our previous work on
reflex and healing architecture. Reflex and Healing (RH) [34, ?] is a biologically
inspired two stage mechanism for recovering from faults in large distributed
real-time systems. The first stage is composed of primary building blocks of
fault management components called reflex engines (also referred to as man-
agers) that are arranged in a hierarchical management structure. A reflex engine
integrates several fault management devices expressed as timed state machine
models. While some of these state machines are used as observers that gener-
ate ‘fault-events’ (discussed in next section), others are used as mitigators to
perform time-bounded reactive actions upon occurrence of certain fault-events.

At the system-level, fault-recovery is done using a planned reconfiguration of
the system. This involves a planning step that searches over a set of candidate
models obtained by using a set of pre-specified goals and a list of constraints
[47]. This step is typically multi-objective in nature and is dependent on several
factors such as system goals, resilience to future faults and performance. This
architecture has been successfully demonstrated for a large-scale software infras-
tructure for a particle accelerator [16], and computing cluster infrastructure used
for scientific workflows [40].

2.3 Fault Detection and Health Management of Software

Conmy et al. presented a framework for certifying Integrated Modular Avionics
software applications build on ARINC-653 platforms in [9]. Their main approach
was the use of ‘safety contracts’ to validate the system at design time. They
defined the relationship between two or more components within a safety critical
system. However, they did not present any details on the nature of these contracts
and how they can be specified. We believe that a similar approach can be taken to
formulate acceptance criteria, in terms of “correct” value-domain and temporal-
domain properties that will let us detect any deviation in a software component’s
behavior.

Nicholson presented the concept of reconfiguration in integrated modular
systems running on operating systems that provide robust spatial and temporal
partitioning in [35]. He identified that health monitoring is critical for a safety-
critical software system and that in the future it will be necessary to trade-off
redundancy based fault tolerance for the ability of “reconfiguration on failure”
while still operational. He described that a possibility for achieving this goal is to
use a set of lookup tables, similar to the health monitoring tables used in ARINC-
653 system specification, that maps trigger event to a set of system blue-prints
providing the mapping functions. Furthermore, he identified that this kind of
reconfiguration is more amenable to failures that happen gradually, indicated by
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parameter deviations. Finally, he identified the challenge of validating systems
that can reconfigure at run-time.

Goldberg and Horvath have discussed discrepancy monitoring in the context
of ARINC-653 health-management architecture in [19]. They describe extensions
to the application executive component, software instrumentation and a tempo-
ral logic run-time framework. Their method primarily depends on modeling the
expected timed behavior of a process, a partition, or a core module - the differ-
ent levels of fault-protection layers. All behavior models contain “faulty states”
which represent the violation of an expected property. They associate mitigation
functions using callbacks with each fault.

Sammapun et al. describe a run-time verification approach for properties
written in a timed variant of LTL called MEDL in [45]. They described an
architecture called RT-MaC for checking the properties of a target program
during run-time. All properties are evaluated based on a sequence of observations
made on a “target program”. To make these observations all target programs
are modified to include a “filter” that generates the interesting event and reports
values to the event recognizer. The event recognizer is a module that forwards the
events to a checker that can check the property. Timing properties are checked by
using watchdog timers on the machines executing the target program. The main
difference in this approach and the approach of Goldberg and Horvath outlined
in previous paragraph is that RT-MaC supports an “until” operator that allows
specification of a time bound where a given property must hold. Both of these
efforts provided valuable input to our design of run-time component level health
management.

3 Fault Diagnostics Using Timed Failure Propagation
Graphs

3.1 The Timed Failure Propagation Graph Model

A TFPG is a labeled directed graph where nodes represent either failure modes,
which are fault causes, or discrepancies, which are off-nominal conditions that
are the effects of failure modes. Edges between nodes in the graph capture the
effect of failure propagation over time in the underlying dynamic system. To
represent failure propagation in multi-mode (switching) systems, edges in the
graph model can be activated or deactivated depending on a set of possible
operation modes of the system. Formally, a TFPG is represented as a tuple
(F,D,E,M,ET,EM,DC), where:

– F is a nonempty set of failure nodes.
– D is a nonempty set of discrepancy nodes.
– E ⊆ V × V is a set of edges connecting the set of all nodes V = F ∪D.
– M is a nonempty set of system modes. At each time instance t the system

can be in only one mode.
– ET : E → I is a map that associates every edge in E with a time interval

[t1, t2] ∈ I.
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– EM : E → P(M) is a map that associates every edge in E with a set of
modes in M . We assume that EM(e) 6= ∅ for any edge e ∈ E.

– DC : D → {AND, OR} is a map defining the class of each discrepancy as either
AND or an OR node.

– DS : D → {A, I} is a map defining the monitoring status of the discrepancy as
either A for the case when the discrepancy is active (monitored by an online
alarm) or I for the case when the discrepancy is inactive (not monitored)1.

In the above model, the map ET associates each edge e ∈ E with the minimum
and maximum time for the failure to propagate along the edge. For an edge
e ∈ E, we will use the notation e.tmin and e.tmax to indicate the correspond-
ing minimum and maximum time for failure propagation along e, respectively.
That is, given that a propagation edge is enabled (active), it will take at least
(most) tmin (tmax) time for the fault to propagate from the source node to
the destination node. The map EM associates each edge e ∈ E with a subset
of the system modes at which the failure can propagate along the edge. Conse-
quently, the propagation link e is enabled (active) in a mode m ∈M if and only
if m ∈ EM(e). The map DC defines the type of a given discrepancy as either AND
or OR. An OR type discrepancy node will be activated when the failure propagates
to the node from any of its parents. On the other hand, an AND discrepancy node
can only be activated if the failure propagates to the node from all its parents.
We assume that TFPG models do not contain self-loops and that failure modes
are always root nodes, i.e., they cannot be a destination of an edge. Also, a dis-
crepancy cannot be a root node, that is, every discrepancy must be a successor
of another discrepancy or a failure mode.

Figure 1 shows a graphical depiction of a failure propagation graph model.
Rectangles in the graph model represent the failure modes while circles and
squares represent OR and AND type discrepancies, respectively. The arrows be-
tween the nodes represent failure propagation. Propagation edges are parame-
terized with the corresponding interval, [e.tmin, e.tmax], and the set of modes at
which the edge is active. Figure 1 also shows a sequence of active discrepancies
(alarm signals) identified by shaded discrepancies. The time at which the alarm
is observed is shown above the corresponding discrepancy. Dashed lines are used
to distinguish inactive propagation links.

The TFPG model captures observable failure propagations between discrep-
ancies in dynamic systems. In this model, alarms capture state deviations from
nominal values. The set of all observed deviations corresponds to the monitored
discrepancy set in the TFPG model. Propagation edges, on the other hand,
correspond to causality (for example, as defined by energy flow) in the system
dynamics. Due to the dynamic nature of the system, failure effects take time
to propagate between the system components. Such time in general depends on
the system’s time constants as well as the size and timing of underlying failure.
Propagation delay intervals can be computed analytically or through simulation
of an accurate physical model.

1 In this paper we will use the terms alarms and monitored discrepancies interchange-
ably as they mean the same thing.
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Fig. 1. TFPG model (t = 10, Mode=A ∀t ∈ [0, 10].

Failure propagation in a TFPG system has the following semantics. The
state of a node indicates whether the failure effects reached this node. For an
OR type node v′ and an edge e = (v, v′) ∈ E, once a failure effect reaches v
at time t it will reach v′ at a time t′ where e.tmin ≤ t′ − t ≤ e.tmax. On the
other hand, the activation period of an AND alarm v′ is the composition of the
activation periods for each link (v, v′) ∈ E. For a failure to propagate through
an edge e = (v, v′), the edge should be active throughout the propagation, that
is, from the time the failure reaches v to the time it reaches v′. An edge e is
active if and only if the current operation mode of the system, mc is in the set
of activation modes of the edge, that is, mc ∈ EM(e). When a failure propagates
to a monitored node v′ (DS(v′) = A) its physical state is considered to be ON,
otherwise it is considered to be OFF. If the link is deactivated any time during
the propagation (because of mode switching), the propagation stops. Links are
assumed to be memory less with respect to failure propagation so that current
failure propagation is independent of any (incomplete) previous propagation.
Also, once a failure effect reaches a node, its state will change permanently and
will not be affected by any future failure propagation.

3.2 Reasoning algorithm

The reasoning algorithm for TFPG model diagnosis is based on a consistency
relationship defined using three state mappings for the graph nodes of the TFPG
model: physical, observed, and hypothetical.

A physical system state corresponds to the current state of all nodes in the
TFPG model. At any time t the physical state is given by a map ASt : V →
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{ON, OFF} ×R, where V is the set of nodes in the TFPG model. An ON state for
a node indicates that the failure (effect) reached this node, otherwise it is set
to OFF. The physical state at time t is denoted ASt(v).state, while ASt(v).time
denote the last time at which the state of v is changed. Failure effects are assumed
permanent, therefore, the state of a node once changed will remain constant after
that. A similar map is used to define the state of edges based on the current
mode of the system.

The observed state at time t is defined as a map St : D → {ON, OFF} × R.
Clearly, observed states are only defined for discrepancies. The observed state
of the system may not be consistent with the failure propagation graph model
temporal constraints, due to potential alarm failures. However, we assume that
monitored discrepancy signals are permanent so that once the observed state of
a discrepancy has changed, it will remain constant after that.

The aim of the diagnosis reasoning process is to find a consistent and plau-
sible explanation of the current system state based on the observed state. Such
explanation is given in the form of a valid hypothetical state. A hypothetical
state is a map that defines node states and the interval at which each node
changes its state. Formally a hypothetical state at time t is a map HV ′

t : V ′ →
{ON, OFF}×R×R where V ′ ⊆ V . Similar to actual states, hypothetical states are
defined for both discrepancies and failure modes. The estimated earliest (latest)
time of the state change is denoted H(v).terl (H(v).tlat).

A hypothetical state is an estimation of the current state of all nodes in the
system and the time period at which each node changed its states. Estimation
of the current state is valid only if it is consistent with the TFPG model. State
consistency in TFPG models is a node-parents relationship that can be extended
pairwise to arbitrary subsets of nodes. Formally, let Pr(v) denotes the set of
parents of v in a TFPG model G. We can define observable consistency at time
t as a relation OConst ⊂ P(V ) × V such that (V ′, v) ∈ OCons if and only
if V ′ = Pr(v) and the observable state of v is consistent with that of all its
parents V ′ based on the map St and the failure propagation semantics. The
observable state consistency relationship can be directly extended to any set of
nodes representing a subgraph of G. In this case we overload the relationship
OCons so that OConst ⊆ P(V ), where for each V ′ ⊆ V :

V ′ ∈ OConst ⇔ ∀v ∈ V ′ (PrV ′(v), v) ∈ OCons

where PrV ′(v) is the parents of v restricted to V ′. The set of maximally consistent
set of nodes is denoted Φt where V ′ ∈ Φt if and only if

V ′ ∈ OConst and ∀V ′′ ⊆ V V ′ ⊂ V ′′ ⇒ V ′′ 6∈ OConst

The set Φt can be efficiently computed incrementally based on Φt−1 based on
a new event et. The event et corresponds to either a new triggered monitored
discrepancy or a time-out event generated when a sensor alarm is not observed
at state ON while it is supposed to be based on its current hypothetical state. The
underlying procedure will be denoted UpdateMCO(Φt−1, et). Note that initially
Φ0 = {V }.
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Algorithm 1 The diagnosis procedure Diag(Φt−1, et)

Φt ← UpdateMCO(Φt−1, et)
HSt ← ∅
define
In(X) := {v ∈ X|(∀v′ ∈ X) (v, v′) 6∈ E}
PSet(X) := {v ∈ V −X|(∃v′ ∈ In(X)) (v, v′) ∈ E}
ODC(X) := ∪v∈XReach(v)−X
TSet(X) := {v ∈ V −X|ODC(X)× v ∩ E = ∅}
CSet(X) := {v ∈ TSet(X)|(∃v′ ∈ X) (v′, v) ∈ E}
end define
for all V ′ ∈ Φt do
H ← St|V ′

while PSet(V ′) 6= ∅ do
select v from PSet(V ′)
H ← BProp(H, v)
V ′ ← V ′ ∪ {v}

end while
while CSet(V ′) 6= ∅ do

select v from CSet(V ′)
H ← FProp(H, v)
V ′ ← V ′ ∪ {v}

end while
for all v ∈ V − V ′ do
H(v).state← OFF

H(v).terl, H(v).terl← 0
end for
HSt ← HSt ∪ {H}

end for
return Φt, HSt

Based on the semantics of failure propagation it is possible to define a con-
structive notion of hypothetical consistency such that given a consistent hypo-
thetical stateHV ′

t it is possible to extend this map forward (procedure BProp(HV ′

t , v))by
assigning the maximal hypothetical state of the node v based on the hypothetical
state of its parents in V ′, or backward (operation FProp(HV ′

t , v)) by assigning
the maximal hypothetical state for v′ based on the state of its children in V ′.
The following algorithm outlines the incremental reasoning procedure.

The above diagnosis algorithm returns a set of new hypotheses that can
consistently explain the current observed state of the TFPG system. A failure
report is then generated from the computed set of hypotheses HSt. The failure
report enlists the set of all consistent state assignments that maximally matches
the current set of observations. Any observed state that does not match the
current hypothesis is considered faulty. A detailed description and analysis of
the diagnosis algorithm can be found in [4].
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Hypothesis Ranking The quality of the generated hypotheses is measured
based on three independent factors:

– Plausibility is a measure of the degree to which a given hypothesis group
explains the current fault signature. Plausibility is typically used as the first
metric for sorting the hypotheses, focusing the search on the failure modes
that explain the data that is currently being observed.

– Robustness is a measure of the degree to which a given hypothesis is expected
to remain constant. Robustness is typically used as the second metric for
sorting the hypotheses, helping to determine when to take action to repair
the system.

– Failure Rate is a measure of how often a particular failure mode will occur.

The plausibility metric considers two independent factors, namely, alarm
consistency and failure mode parsimony. The alarm consistency factor is defined
as the ratio of the active consistent alarms to that of all (currently) identified
alarms. The failure mode factor is defined as the ratio of identified failure modes
(according to the underlying hypothesis) to the total number of failure modes
in the system. This factor is a direct representation of the parsimony principle
(hypothesis with fewer failures is more plausible). Hypotheses plausibility metrics
are ordered lexicographically (alarm factor is more dominant).

The diagnoser selects the current set of hypothesis incrementally in an at-
tempt to improve the current plausibility measure. In other words, the diagnoser
will update a given hypothetical state map only if such an update can increase
the plausibility of the underlying hypothesis. In addition, changes are restricted
so that the updated hypothesis remains valid.

Reasoner Performance The reasoning algorithm described above is an on-
line algorithm as it continually updates the active hypothesis set as new evidence
(alarms and mode changes) becomes available. Furthermore, it can be triggered
based on the elapse of time (with no changes in the alarms) and it will revise the
hypotheses as needed. This latter capability is made possible by the propagation
time interval on the edges: if propagation does not happen, it may facilitate the
preference of one failure mode over another in the hypothesis. From a strictly
pragmatic point of view, the two most important metrics of reasoner performance
are the worst-case response time and the dynamic memory footprint used. We
argue that for a particular model (with a given topology, failure modes, alarms,
etc.) these two metrics are always bounded.

The dynamic memory footprint is based on the number and the size of the
hypotheses the reasoner has to manage during an update. This worst-case can be
induced by an alarm input sequence that activates alarms in the reverse, that is
alarms farthest from the failure modes are activated first, then the alarms before
them, etc. As the number of alarms is bounded this process results in a bounded
use of dynamic memory. In fact, we have created a tool that predicts the dynamic
memory footprint of the reasoner based on this technique and simulating its
memory usage patterns.
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The worst-case response time of the reasoner depends on the size and com-
plexity of the graph and the size of the active hypothesis set. As both of them
are bounded, the worst-case response time is bounded as well. Similarly to the
previous case, one can predict the worst-case response time based on worst-case
scenarios, on the actual reasoner implementation.

Note that the worst-case response time of the reasoner might be much worse
than the average or typical response time. It is an open research question how
to analytically estimate the average-case response time. In our experience, pre-
sented below, we found that for realistic models and realistic scenarios the rea-
soner performs well.

3.3 TFPG Examples

This section describes example of TFPG models and the results of the experi-
ment performed using these models. Each test case involved loading the appropri-
ate TFPG model into the centralized TFPG Reasoner, feeding the reasoner with
a timed sequence of events. Each test case typically contained at least 10 events
or more - depending on the nature of the test case. These test cases included
cases with alarms firing in the correct sequence as per the graph (for single and
multiple simultaneous failures), false alarms, intermittent alarms, mode changes.
The tests were conducted on an Intel Xeon (W5320) 2.67 GHz Processor with
4MB RAM.

Figure 2 shows a trivial non-hierarchical TFPG model. It shows the root
causes of the failure (Failure-Modes FM1, FM2) and the anomalies (Discrepan-
cies RD1, D1, SD12, D12, RD2, D2) that would be triggered when one or more
of these failures were to occur. All observable discrepancies have an alarm asso-
ciated with them (e.g. alarm MRD1 for RD1, M1 for D1 etc.). The links capture
the failure propagation starting from the Failure Modes to Discrepancies and
to subsequent Discrepancies downstream. Some of these links depict additional
constraints related to activation and timing for failure propagation. The activa-
tion condition (a Boolean expression over the modes) captures when failure can
propagate over a link. The timing constraint expresses the time bounds within
which the failure effect is expected to propagate over that link. These constraints
are not specified when the failure can propagate over the link at any time or in
any mode. While this model is flat, it can be made hierarchical by composing
a TFPG model (at any level) from a TFPG model of components. Overall, this
model has 2 Failure Modes, 6 Discrepancies (5 Observable),7 failure propagation
links, 2 Modes (with 2 states each).

Next two examples describe typical TFPG models of subsystems in real ap-
plications. However, visual rendering of these models is not possible because of
their complexity and the space limitations.

Example 1. Pump and Valve This example refers to a Pump and Valve (PV)
subsystem. Table 1 presents a summary. It captures a hierarchical TFPG model
of the faults, anomalies and failure effect propagation in a simple example con-
sisting of a Pump, a Valve, 2 sensors, and the associated interface hardware. The



12 Sherif Abdelwahed, Abhishek Dubey, Gabor Karsai, and Nag Mahadevan
T

a
b
le

1
.

T
F

P
G

D
ia

g
n
o
sis

E
x
p

erim
en

ts
M

o
d
el

P
a
ra

m
eters

E
x
a
m

p
le

#
C

#
F

M
#

D
#

F
P

#
A

#
M

#
IP

#
O

P
#

A
G

M
em

A
v
g
.

U
p

d
a
te

T
im

e
(sec)

#
T

C

C
en

tra
l-

ized
1

P
u
m

p
&

V
a
lv

e
1
1

3
6

1
2
0

1
7
4

2
7

3
N

A
N

A
2
9

1
8
.5

0
.0

1
2
8

8
7

2
G

en
eric

F
u
el

T
ra

n
sfer

S
y
stem

1
5
3

4
8
1

1
9
7
3

3
4
0
9

2
7
0

9
N

A
N

A
2
4
4

2
7
5

0
.2

1
5
5
0

D
is-

trib
u
ted

3
G

lo
b
a
l

0
0

2
1

9
9

3
0

0
.1

1
(0

.0
6
)

1
1
0

A
R

E
A

1
1
7

3
4

1
1

4
3

1
1

0
0

9
1
1

7
.5

0
.0

1
2

A
R

E
A

2
5
0

1
5
3

6
2

5
9
0

6
2

0
1

0
8
7

2
5
.4

0
.0

8

4
G

lo
b
a
l

2
1

5
2

9
2

1
7
6

1
8

3
2
8

1
8

3
8

7
4
.5

0
.3

(0
.1

8
)

2
2
3

A
R

E
A

1
/

A
R

E
A

2
3
9

1
3
1

2
6
8

5
3
9

3
3

3
3

2
5
4

4
7
.5

0
.1

4

A
R

E
A

3
/

A
R

E
A

4
3
4

8
7

1
1
9

2
6
6

1
3

0
1
1

7
2
4

2
4
.5

0
.0

9
6

S
o
ftw

a
re

D
ia

g
n
o
sis

(C
en

tra
l-

ized
)

5
G

P
S

S
y
s-

tem
1

1
9

7
8

1
7
2

9
2
2

1
2

1
2

0
.0

6
3

1
0

#
C

-
N

u
m

b
er

o
f

C
o
m

p
o
n
en

ts,
#

F
M

-
N

u
m

b
er

o
f

F
a
ilu

re
M

o
d
es,

#
D

-
N

u
m

b
er

o
f

D
iscrep

a
n
cies,

#
F

P
-

N
u
m

b
er

o
f

F
a
ilu

re
P

ro
p
a
g
a
tio

n
s,

#
A

-
N

u
m

b
er

o
f

A
la

rm
s,

#
M

-
N

u
m

b
er

o
f

M
o
d
es,

#
IP

-
N

u
m

b
er

o
f

In
p
u
t

P
o
rts,

#
O

P
-

N
u
m

b
er

o
f

O
u
tp

u
t

P
o
rts,

#
A

G
-

N
u
m

b
er

o
f

A
m

b
ig

u
ity

G
ro

u
p
s,

#
T

C
-

N
u
m

b
er

o
f

T
est

C
a
ses,

M
em

-
W

o
rst

ca
se

m
em

o
ry

u
sed

(M
B

).
F

o
r

th
e

g
lo

b
a
l

rea
so

n
ers

th
e

tim
e

n
o
ted

in
p
a
ren

th
eses

is
th

e
a
ctu

a
l

tim
e

sp
en

t
in

rea
so

n
in

g
fo

r
crea

tin
g

a
n
d

u
p

d
a
tin

g
g
lo

b
a
l

h
y
p

o
th

eses.
A

d
d
itio

n
a
l

tim
e

is
sp

en
t

in
th

e
g
lo

b
a
l

rea
so

n
er

fo
r

a
ssim

ila
tin

g
th

e
in

fo
rm

a
tio

n
fro

m
lo

ca
l

a
n
d

g
lo

b
a
l

h
y
p

o
th

eses
to

crea
te

th
e

set
o
f

sy
stem

-w
id

e
co

n
sisten

t
fa

ilu
re

h
y
p

o
th

eses.
S
ee

S
ectio

n
3
.5

fo
r

fu
rth

er
d
eta

ils.



Model based software health management 13

FM1

FM2

D1

D12

D2

M1

M12

M2

SD12

RD2

RD1

MRD1

MRD2

ModeBModeA

(ModeB==ON)

(ModeB==ON)    |     [5,20]

(ModeA==Normal)  

 (ModeA==High) || 

(ModeA==Low)  

 

[0,5]

    

[10,15]

Fig. 2. An Illustrative TFPG Example

operation (and hence the failure propagation) of the PV subsystem is governed
by 3 Modes - associated with Pump (On/ Off), Valve(Open/ Close) and the sub-
system(Active/ Standby/ Shutdown). Apart from capturing the failure modes
and their propagation in the pump, valve and their sensors, it also captures the
failure effects originating from the power distribution and remote interface units
associated with these devices. The failure propagation in the system depends
on the operating of the system and the control actions (modes) issued to the
devices (pump, valve). Further offline analysis of the model revealed that give
the causal linkage expressed between the failures and the observed discrepancies
in the TFPG model, the number of ambiguity groups in terms of failure modes
was 29. The average processing time to update the result was 0.0128 sec. The
estimate of worst case memory usage is around 18.5 MB.

Example 2. Generic Fuel Transfer System Another example, more comparable
to a real-life application, is a hierarchical TFPG model for an aircraft fuel trans-
fer system. The subsystem is symmetrically divided into left and right parts
with supply tanks (Left and Right Fuselage Tanks, Left and Right Wing Tanks)
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feeding to a central transfer-manifold which then feeds to engine-feed tanks (Left
and Right Feed Tanks). The supply tanks and the feed tanks are full initially.
The controller tries to maintain a constant supply to the engines while main-
taining the center of gravity of the aircraft. The hierarchical TFPG model of
this subsystem includes failure propagation across the main subsystem elements
(the tanks and the manifold) as well as the power and control elements. The
properties of this TFPG model are captured in Table 1 Offline analysis revealed
that there were a total of 244 failure ambiguity groups. The average processing
time for an update was 0.22 sec. The estimate of worst case memory usage is
around 275 MB.

3.4 Distributed reasoning

A centralized reasoning approach (TFPG based or otherwise) is not well-suited
for the on-line diagnosis of very large systems that are made up of many sub-
systems with limited failure interactions across the sub-system boundary. In such
cases, a single centralized diagnosis engine might not scale to provide the desired
response time. In a centralized system, all alarms and mode changes have to be
routed to the central reasoner that would have to operate large models. It might
be more pragmatic to use multiple reasoners to perform diagnosis of different
areas / sub-systems. These area reasoners can be hosted on the same or different
processing nodes and can respond faster than a single system-wide reasoner as
their search spaces are much smaller and they can operate in parallel. However
this approach of splitting the task among multiple independent area reasoners
does not address cascading fault-effects from one sub-system to another. Addi-
tionally, it cannot provide a coherent system-wide knowledge of the fault-status
of the entire system. This section discusses a TFPG-based distributed reasoning
approach that handles these problems.

Overview. The TFPG-based distributed reasoning approach (discussed later
in this section) employs a global TFPG reasoner and multiple local TFPG rea-
soners. The TFPG-model of the global reasoner captures only the failure inter-
actions between sub-systems monitored by the local reasoner(s). The TFPG-
model of the local reasoner contains a detailed TFPG model of the sub-system
monitored by the local reasoner(s). The local reasoners operate in parallel and
autonomously, each of them reasoning over the events in its specific sub-system.
The local reasoner(s) communicate updates of any potential fault-cascade to the
global reasoner. The global reasoner, on its part, ensures that this information
is transferred only to relevant local reasoners whose sub-system could be poten-
tially affected by the fault cascade. Using the knowledge obtained from the local
reasoner of the potential fault-cascades and their individual diagnosis results the
global reasoner builds a globally consistent system-wide diagnosis report. This
approach ensures that there is a relatively quick diagnosis result from the local
reasoners which, if required, could be refined or updated by the global reasoner
that yields system-wide consistent result.

The figure 3 captures a model of the local reasoners and the global reasoner.
Note that the global reasoner does not have a detailed view of the subsystems.
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Fig. 3. Distributed TFPG model with three local TFPG models and one global TFPG
model.

That is the purview of the local reasoners. The following sub-sections list exten-
sions to the original TFPG model and algorithms. Readers are referred to [28]
for further details.

Extensions to the TFPG Model: The original TFPG model - a tuple of
(F,D,E,M,ET,EM,DC) - needs to be extended to be able to express the global
and subsystem TFPG-models.

The global and the subsystem model include two additional sets of elements

– (IP ): a set of input ports,

– (OP ): a set of output ports

The input and output ports are the interface points for connecting a subsys-
tem model (monitored by a local reasoner) with the rest of the model. Any failure
propagation into the subsystem model has to go through an input port. Like-
wise, any failure propagation out of the subsystem model has to go through an
output port. In the TFPG failure propagation semantics, these input and output
port extension elements are similar to un-monitored (silent) OR-discrepancies.
While both the subsystem models and the global model are aware of the input
and output ports associated with each subsystem model, there is a difference
in their knowledge of the failure propagation interactions associated with these
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ports. While each subsystem model is aware of only the failure propagation in-
teractions within the subsystem, the global model is aware of only the failure
propagation interaction outside of the subsystem models.

The global model is a TFPG model that is composed of multiple sub-system
models and the failure propagation interaction between these sub-system models.
As is evident from the model depicted in the figure 3 , the global model is not
aware of the detailed TFPG-model inside a sub-system. It is aware of just the
input and output ports of a sub-system model.

Extensions to the reasoner. The TFPG Algorithm 1 described earlier is
central to the reasoning in the global and local reasoners as well. This algorithm is
applied to reason upon any external physical event update - changes in the state
of the alarm or modes. Additionally, in a local reasoner, if the update resulted in
a change to the hypothetical state of any of the interface nodes (input and output
ports), then the update needs to be communicated to the global then to the local
reasoner which shares the interface element. In the reasoner receiving the update
information, the update to the hypothetical state of the input/ output port, is
treated like an external physical event update and the reasoning algorithm 1
is applied to reason about it. This process of applying the reasoning algorithm
and communicating updates to the input/ output port from the local (global) to
the global(local) reasoner continues, until the propagation stops. At this point,
the metrics associated with the hypothesis in the local reasoner are re-computed
and transmitted to the global reasoner which then recomputes the metrics of the
hypothesis in the global reasoner.

All through the update propagation, the local and global reasoners are re-
sponsible for maintaining the hypothetical states of the nodes (including input/
output ports) in their respective TFPG models. In addition, the hypothesis in
the local reasoner have a reference to a parent hypothesis in the global reasoner.
Likewise, the hypothesis in the global reasoner has references to a hypothe-
sis from each of the local reasoner. This reference tracking and maintaining of
consistent hypothetical states of the shared interface elements (input / output
ports) ensures that the hypothesis in the local and global reasoners are con-
sistent with one another. This enables the hypothesis in the global reasoner to
provide a system-wide consistent diagnosis result. This knowledge of a system-
wide consistent result in the global, allows the global reasoner to find the best
explanation, i.e. the fault source, for the sequence of alarms observed in the local
reasoner(s). This information can be fed back to the local reasoner to help in
prioritizing its hypotheses.

An essential aspect of the distributed diagnosis is its reliance on the commu-
nication between the reasoners. It should be noted that this algorithm permits a
local reasoner to communicate only with the global reasoner. The communication
messages transferred between Global and local reasoner(s) include

– (Command): Commands issued by the global reasoner to the local reasoner.
This could include commands to initiate a diagnosis update, command to
report diagnosis result or event update, etc.
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– (Response): Message sent the local reasoner in response to a command from
the global reasoner.

– (Update): Updates to the hypothetical state of an input/ output port sent
in either direction between the global and its associated local reasoners.

The previous paragraphs provided an outline of the steps associated with
processing event updates in distributed reasoning approach. The following para-
graphs describe two specific strategies that were applied to handle reasoning
about new events. Throughout the course of this discussion, it is assumed that
the reasoner(s) and the event-generator(s)/event-reporter(s) share the same clock.

Synchronous Event Processing. In this strategy, when an external phys-
ical events (alarm/ mode updates) is received, the reasoner immediately reports
it to the global reasoner, without updating the local state. The global reasoner
stores all such external events (in any reasoner) in a queue, which is sorted by
the event occurrence (or detection) time. This strategy assumes that the external
physical events are reported to the global reasoner as soon as they are reported
to the local reasoner. This ensures that the events are processed in the correct
order. The global reasoner takes up the first event in the queue and commands
the appropriate reasoner (where the event occurred) to process it. The reasoner
applies the TFPG algorithm 1 to process the event. In case any updates on the
hypothetical states of the interface elements are detected, the reasoner performs
the updates and communicates them as described in the section 3.4. Once this
step is finished, the global reasoner directs each of the local reasoners to report
their local hypothetical results. It fuses these results to get a global consistent
result and commands the local reasoners to update/synchronize their hypothesis
with the global. This could involve elimination of unnecessary local hypothesis.
The global reasoner takes up the next event in the queue and directs the appro-
priate reasoner to processes it. If the queue is empty, the global reasoner waits
for a new physical event to be reported (either triggered directly in the global
reasoner or reported from the local reasoner). Thus, in this strategy the global
reasoner directs the execution of events across the areas.

Asynchronous Event Processing. In the asynchronous strategy, the lo-
cal reasoner(s) does not wait for the global reasoners command to process /
reasoner about an external physical event. As soon as an external physical
event is reported to a local reasoner(s), it informs the global reasoner about
this event. It also stores the event in a local sorted event queue. If the local
reasoner is not processing any command from the global reasoner and its lo-
cal event-queue is not empty, it starts processing these events from the queue.
It stores the hypothesis updates based on these events in a separate list (the
transient-hypothesis-list). Each local reasoner continues to maintain a pri-
mary hypothesis list that is synchronized with the global reasoner (the stable-hypothesis-list).

The global reasoner also maintains a sorted event queue. It processes the
events in the queue in the similar manner as Synchronous Event Processing.
When it is time to process the next event in the queue, it directs the appropri-
ate reasoner to start processing it. Since the local reasoner could have already
processed this event, it checks its transient hypothesis list for updates relating
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to the event. If available, it does not process the event but updates the stable-
hypothesis-list based on the results in transient-hypothesis-list. If not available,
it processes the event and updates the stable-hypothesis-list. It then commu-
nicates the updates to the global reasoner. Next, this leads to propagation of
updates across the system, which continues until the states stabilize. The global
reasoner collects the updated hypothesis results from the local reasoners and
creates an updated globally consistent result which is used to prune the stable-
hypothesis-list in local reasoners.

Whenever the stable-hypothesis-list is updated in the local reasoner, hy-
potheses in its transient-hypothesis-list need to be checked if they need to be
re-evaluated. It is possible that none of them need to be updated, or some or all
of them need to be updated because of lack of consistency with the global stable
state.

The two strategies described above have their own advantages and disadvan-
tages. While with asynchronous updates, one can receive a quick update on a
local event from a local reasoner. This is not possible in the synchronous mode of
processing where the event is processed only when all events (across all reason-
ers) that occurred before it are processed. This is particularly inefficient if the
local event was purely the result of a local fault or a cascading fault whose effect
was already stored in a stable manner in the local reasoner. On the other hand,
the asynchronous processing algorithm is much more complicated and involves
a lot more book-keeping in the local reasoner. It could suffer from repeated
re-computation if the stable-hypothesis-list involving the events are repeatedly
updated by events currently being processed by the global reasoner.

The distributed reasoning approach described above has been implemented
using a distributed software platform, and evaluated on numerous examples, but
further refinements are subject of active research.

3.5 Distributed TFPG Examples

This section describes examples of distributed TFPG models and the results of
the experiment performed using these models. Each reasoner (global and sub-
system) was hosted on a separate process and the communication between the
processes was realized through a CORBA-based middleware. Each test case in-
volved starting the associated reasoner processes (global and subsystems) with
the appropriate model and feeding the timed sequence of events to the appro-
priate reasoner (based on which subsystem the event triggered in). The total
number of events triggered (across all subsystems and global) in each test case,
depended on the nature of the test case. Some test cases triggered the alarms
associated with one or more failure modes in the correct sequence as per the
graph. Others altered these sequences by introducing false alarms, intermittent
alarms, mode changes, etc.

Figure 4 shows a trivial distributed TFPG model. It shows a Distributed
TFPG model with a global model and three subsystem (area) models. The
global model is aware of the presence of subsystem models and the interface
element (Input or Output port) in each of the subsystem models. The global
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Fig. 4. An Illustrative Distributed TFPG Example

model is not aware of the internal detailed TFPG model in each subsystem.
This model illustrates how failure-effects from Area1 (FailureMode - FM11) and
Area3 (FailureMode-FM31) propagate out (through Output Ports OP11, OP31
respectively), enter the failure propagation graph in the global model, and fi-
nally reach into Area2 (through InputPorts IP21, IP22). It shows that there are
portions of the TFPG model in some subsystems that do not participate in the
cascading failure effects across subsystem boundaries.

The above example illustrates a simple Distributed TFPG model with 1
global model, 3 subsystem (Area) models, with one or two input and output
ports in each of the Areas, 1-3 Failure Modes per subsystem, 2-5 Discrepancies,
3-10 failure propagation links. The next examples are distributed TFPG model
developed for a small portion of real-life systems. Due to proprietary restrictions,
these models can be presented only in an abstract format.

Example 3. Distributed System 1 The first example is a distributed TFPG model
that includes a global (Global model) with 2 subsystems (AREA 1, AREA 2) .
Here, the failure propagation across subsystem boundaries is strictly from AREA 2
to AREA 1. Table 1 describes the properties of the three TFPG models (Global,
AREA 1, AREA 2). Offline analysis revealed that there were total 9 failure am-
biguity groups in the global model, 11 failure ambiguity groups in AREA1 and
87 failure ambiguity groups in AREA2. This includes the ambiguities introduced
by the secondary failures modes (the ports that carry in failure effects from other
subsystems). The estimated worst case memory usage for global was around 30
MB, AREA1 is 7.5 MB and AREA2 is 25.4 MB.
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The tests with this example were run with the 3 reasoners (2 subsystem
reasoners and 1 global reasoner) hosted on a separate processes. The average
time to update the hypothesis in the subsystem reasoners was 0.01 seconds in
AREA1, 0.08 seconds in AREA2, while in the global reasoner it took about
0.11 seconds. This time includes the reasoning time as well as time to compute
system-wide results assimilated from the set of local and global hypotheses. It
was found that the latter took a significant share of the total update time. The
average reasoning time was around 0.065 seconds.

Example 4. Distributed System 2 The next example of distributed TFPG model
(again of a portion of a realistic system) is much richer in the failure propagation
cascades across the subsystem model boundaries. Again, since the names or the
exact nature of the system cannot be revealed these subsystems would be referred
to as AREA 1, AREA 2,AREA 3,AREA 4. The symmetric nature of the system
introduces two sets of subsystem models that are similar to one another. The
global model has 4 subsystem models. The TFPG models of subsystem AREA 1
resembles that of subsystem AREA 2; AREA 3 model is similar to AREA 4.

Table 1 describes the properties of the five TFPG models (Global, AREA 1/
AREA 2, AREA 3/ AREA 4) Offline analysis revealed that there were a total of
38 failure ambiguity groups in the global model, 54 failure ambiguity groups in
AREA1 (and AREA2) and 24 failure ambiguity groups in AREA3 (and AREA4),
in each case including the ambiguities introduced by the secondary failures modes
(the ports that carry in failure effects from other subsystems). The estimated
worst case memory usage for global is around 74.5 MB, AREA 1/ AREA 2 is
47.5 MB and AREA 3/ AREA 4 is 24.5 MB. The tests were conducted in the
same fashion as the previous example on the distributed reasoner. The difference
is that in this example there were 2 more processes to account for the two addi-
tional subsystem reasoners. The time to update the hypothesis in the subsystem
reasoners was 0.096-0.14 seconds, while in the global reasoner it took about 0.3
seconds. As stated in the previous example, this time includes the reasoning
time, 0.18 seconds, as well as time taken to compute final system-wide results.

Discussion The experimental results for the centralized and distributed reason-
ers were presented. While it was found that in general the reasoner performed
quite well, it could certainly be improved. As it can be expected, the update
time was more when the event could not be explained consistently with existing
hypotheses and new explanations (multiple failures) had to be found that were
consistent with the current event as well as the past events.

In both distributed examples, the tests revealed that the update time was
almost the same in both synchronous and asynchronous modes of processing. The
difference was that in the asynchronous mode of operation, the transient result
was available with the same rate as the average update time for a subsystem
reasoner. Some other interesting observations were made regarding the update
times in the global reasoner. The global reasoner (in the current setup) performs
two tasks. The first task deals with reasoning on events and updating global
hypotheses to keep a consistent state across all subsystem reasoners. The second
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task involves computing the detailed results from all the local reasoners for
reporting purposes, which involves the assimilation of global hypotheses and all
local hypotheses. From our results, we infer that significant time is spent on the
second task during each update. It is our opinion that this task is more relevant
to report generation than reasoning. Hence, the table 1 shows two times for the
global reasoner update, one that includes the total time of the two tasks and the
other in parentheses that includes just the reasoning time (first task).

Another aspect that should be mentioned is that the total time spent in
reasoning (in a global or local model) was influenced by local-events as well
as the hypothetical updates received from the input and output ports. It was
observed that the distributed reasoners (global and subsystem) had an average
update time that was longer than a centralized reasoner operating on a model of
similar size. This can be attributed to the issue that the global and subsystem
reasoners have an extra load associated with the fault-cascades coming into the
subsystem (from other subsystems). Whenever there is significant traffic of fault-
cascades across the system boundaries, more time is spent in updating the local
hypothesis relative to the boundary events. It should be noted that enough care
and offline analysis should be performed while designing the boundaries of these
subsystems such that they have low coupling across the subsystem boundary
and heavy cohesion within the subsystem.

4 Application of TFPG for Diagnosing Software Failures

Modern cyber-physical systems, such as aircrafts, are increasingly becoming re-
liant on software for core functions and system integration [31, 2]. Increase in
the scope of functions covered by software tends to increase the complexity of
software, which often tends to increase the potential of latent software defects.
These latent defects can escape the existing rigorous testing and verification
techniques but manifest under exceptional circumstances. These circumstances
may include faults in the hardware system, including both the computing and
non-computing hardware. Often, systems are not prepared for such faults. Such
problems have led to number of failure incidents in the past, including but not
limited to those referred to in these reports: [5, 33, 7, 8, 20].

One way to counter these challenges is to systematically extend classical soft-
ware fault tolerance techniques and apply the system health management for
complex engineering systems to software systems. System health management
typically includes anomaly detection, fault source identification (diagnosis), fault
effect mitigation (in operation), maintenance (offline), and fault prognostics (on-
line or offline) [36, 25].

Our research has focused on extending our diagnosis techniques described
earlier in this chapter and apply it to software systems. It is essential to iden-
tify the boundaries of fault propagation in software systems in order to apply
systematic diagnostic techniques such as TFPG. One approach is to ensure that
software systems are built from software components, where each component is
a reusable unit. Components, see figure 5, encapsulate (and generalize) objects
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Fig. 5. The ARINC Component Model.

that provide functionality, and have well-defined ports for communication. We
expect that these components are well-specified, independently developed, ver-
ified, and tested. Furthermore, all communication and synchronization among
components is facilitated by a component framework that provides services for
all component interactions with well-defined semantics, and no component inter-
actions happen through ’out-of-band’ channels. This component framework acts
as a middleware, provides composition services, and facilitates all messaging and
synchronization among components, and is used to support fault management.

Having well-specified interactions enable deduction of behavioral dependen-
cies and failure propagation across a component assembly. Similar approaches
exist in [14, 52]. The key differences between those and this work are that we ap-
ply an online diagnosis engine. Next section briefly describes an implementation
of such a component framework and uses it to describe the application of online
diagnosis to software systems.

4.1 ARINC Component Framework

The ARINC Component Framework (ACF) is a runtime software layer that im-
plements the ARINC-653 component model (ACM) [15]. ACM borrows concepts
from other software component frameworks, notably from the CORBA Compo-
nent Model (CCM) [53], and is built upon the capabilities of ARINC-653 [1], the
state-of-the-art operating system standard used in Integrated Modular Avion-
ics. Key to ARINC-653 is the principle of spatial and temporal isolation among
partitions. Discussion of abilities of ARINC-653 is out of scope of this chapter.
However, interested readers are suggested to refer to [1].

In ACM, a component can have four kinds of external ports for interac-
tions: publishers, consumers, facets (provided interfaces2) and receptacles
(required interfaces), see fig 5. Each port has an interface type (a named col-
lection of methods) or an event type (a structure). The component can interact
with other components through synchronous interfaces (assigned to provided
or required ports) and/or asynchronous event (assigned to event publisher or
consumer ports). Additionally, a component can host internal methods that are
periodically triggered. Each port can be periodic (i.e. time triggered) or aperi-
odic (i.e. event triggered). It is statically bound to a unique ARINC-653 process.

2 An interface is a collection of related methods.
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Fig. 6. Example for component interactions. Each interface is annotated with its (pe-
riodicity, deadline) in seconds.

This binding is defined and configured during initialization. Given that a pro-
vided interface can have more than one method, every method is allocated to a
separate process.

Figure 6 shows a simple example assembly of components. The Sensor compo-
nent contains an asynchronous publisher interface (source port) that is triggered
periodically (every 4 sec). The event published by this interface is consumed by a
periodically triggered asynchronous consumer/event sink port on the GPS com-
ponent (every 4 sec). Note that the event sink process is periodically released,
and each such invocation reads the last event published by the Sensor. The con-
sumer process in the GPS, in turn, produces an event that is published through
the GPS’s event publisher port. This event triggers the aperiodic consumer /
event sink port on the Navigation Display component. Upon activation, the dis-
play component uses an interface provided by the GPS to retrieve the position
data via a synchronous method invocation call into the GPS component.

4.2 Health Management in ACM

With this framework, there are various levels at which health management tech-
niques can be applied, ranging from the level of individual components to the
whole system.

Component-level health management. (CLHM) provides localized and
limited functionality for managing the health of one component by detecting
anomalies, mitigating its effects using a reactive timed state machine, on the
level of individual components. It also reports to higher-level health manager(s):
the system health manager.

System-Level Health Manager. (SLHM) manages the overall health of
the system i.e. assembly of all components. The CLHM processes hosted inside
each of the components report their input (monitored alarms) and output (miti-
gation actions) to the SLHM. It is important to know the local mitigation action
because it could affect how the faults cascade through the system. Thereafter,
the SLHM is responsible for the identification of root failure source(s) - mul-
tiple failure mode hypotheses are allowed. Once the fault source is identified,
appropriate mitigation strategy is employed.

Component Level Detection. The ACM framework allows the system de-
signer to deploy monitors which can be configured to detect deviations from ex-
pected behavior, violations in properties, constraints, and contracts of an interac-
tion port or component. Figure 7 summarizes various places where a component’s
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Fig. 7. Approach to component monitoring.

behavior can be monitored. These monitors check properties associated with the
resource utilization (locks, deadline violation), data (validity, pre-condition and
post-condition violation) and user-code (exception or user-code violation). The
placement of a monitor is dependent on the property violation that it monitors.
The monitors associated with resource usage, data validity, and deadline viola-
tion are implicitly handled and triggered by the framework. All other monitors
have to be configured and enabled at design time. For all ports, exceptions in
the user provided functional code are abstracted by the framework as an error
triggered by a monitor associated with user-code. The monitors checking the
pre-condition and post-condition violation on method calls are evaluated be-
fore and after the user provided functional code. These conditions are expressed
over the current value or the historical change in the value, or rate of change of
value of variables such as (a) the event-data of asynchronous calls, (b) function-
parameters of synchronous calls, and (c) state variables of the component. Table
2 summarizes these monitors. While the monitors associated with resource us-
age are run in parallel by framework, other monitors are evaluated in the same
thread executing the component port. When any monitor reports a violation,
the status is communicated to its Component Level Health Manager (CLHM)
and then possibly to the System Level Health Manager (SLHM).

Component Level Mitigation. Once a local discrepancy is detected, the
framework reports the problem to the CLHM. CLHM for each component is
deployed on a high-priority ARINC process that is triggered when any of the
associated ARINC processes (hosting the Component ports) or the underlying
ACM framework report any violations detected by monitors. In a blocking call,
the reporting process waits for a response/mitigation action from the CLHM.
It is important to note that a local reactive action changes the state of the
system and is therefore important information that is required to ascertain the
diagnosis. Table 3 summarizes all possible local mitigation actions.

Example 5. CLHM Example In this scenario, we inject a fault in the functional
code written by us for the GPS example (see 6) such that between 10 and 20
seconds since its first launch, the GPS get data process sends out bad data when
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<PreCondition>::=<Condition>

<PostCondition>::=<Condition>

<Deadline>::=<double value> /* from the start of the process associated with
the port to the end of that method */

<Data Validity>::=<double value> /* Max age from time of publication of
data to the time when data is consumed*/

<Lock Time Out>::=<double value> /* from start of obtaining lock*/

<Condition>::=<Primitive Clause><op><Primitive
Clause>|<Condition><logical op><Condition>| !<Condition> | True| False

<Primitive Clause>::=<double value>| Delta(Var)| Rate(Var)|Var
/* A Var can be either the component State Variable, or the data received by the
publisher, or the argument of the method defined in the facet or the receptacle*/

<op>::= < | > | <= | >= | == | !=

<logical op>::=&& | ||
Table 2. Monitoring Specification. Comments are shown in italics.

CLHM Action Semantics

IGNORE Continue as if nothing has happened

ABORT Discontinue current operation, but operation can run
again

USE PAST DATA Use most recent data (only for operations that expect
fresh data)

STOP Discontinue current operation

START Re-enable a STOP-ped periodic operation

RESTART STOP followed by a START for the current operation
Table 3. CLHM Mitigation Actions.

queried by the navigation display. The bad data is defined as the rate of change
of GPS data being greater than a threshold. This fault simulates an error in the
filtering algorithm in the GPS such that it loses track of the actual position.

Figure 8 shows a snapshot of the sequence of events in the experiment. The
fault is injected approximately 18 seconds after the start of experiment. The
navigation display component retrieves the current GPS data using the remote
procedure call. Then, the post condition check of the remote procedure call is
violated. This violation is defined by a threshold on the delta change of current
GPS data compared to past data (last sample). The navigation display compo-
nent raises an error, which is received by the local health manger. Consequently,
it receives an ABORT response from the health manager. Notice that the execu-
tion of navigation display process is preempted till it receives a response from the
health manager. The ABORT response means that the process that detected the
fault should immediately stop processing and return. The effect of this action is
that the navigation’s GPS coordinates are not updated as the remote procedure
call finished with an error.
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Fig. 8. Example of a component level health management action. The fault was injected
in the GPS component to publish bad data. This was detected via the post condition of
the Navigation component’s required method. The specified reactive action is to abort
the call. Note the time scale is non-linear.

Having described the local monitors and component level reactive action, we
can discuss the TFPG model for a given software assembly. This model is used
by the SLHM to diagnose failures. To facilitate this diagnosis, all component
level managers are required to report their input (alarm/monitor) and output
(response/ mitigation action) to the SLHM. As more information (alarms or
alarms plus responses) becomes available, the SLHM (using the diagnosis engine)
improves its fault-hypothesis, which can then be potentially used to drive the
mitigation strategy at the system level.

4.3 Software Fault Propagation Model

As described in previous sections, in this framework the software assemblies are
composed of components which are in turn composed of specific kinds of ports -
Publisher, Consumer, Provides Interface, and Requires Interface. While these in-
teraction ports can be customized by the event-data-types published/consumed,
interfaces/methods exposed, periodicity, deadline etc., their fundamental behav-
iors and interaction patterns are well defined. This implies that it should be pos-
sible to identify specific faults and fault propagation pattern that are common to
each kind of interaction pattern, which could result in a generic TFPG model for
each interaction pattern (connection between two ports of different components).
Thus, the failure propagation across the component boundaries can be captured
from the assembly model. The generic TFPG model for a specific interaction
port captures the following information:

1. Health Monitor Alarms and the Component Health Manager’s Response to
these alarms are captured as observable discrepancies

2. Failures originating from within the interaction port and the effect of their
propagation as failure modes

3. Effect of failures originating from other entities as discrepancies
4. Cascading effects of failures within the interaction port as discrepancies
5. Effect of failures propagating to other entities as cascades
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Additionally, a data and control flow model about the component internals
(between the component processes), assists in capturing the failure propaga-
tion within the component. In principle, this approach is similar to the failure
propagation and transformation calculus described by Wallace [52]. That paper
showed how architectural wiring of components and failure behavior of individual
components can be used to compute failure properties for the entire system.

Example 6. Generic TFPG for a Periodic Consumer
Figure 9 shows a generic TFPG model for a periodic consumer port. The list

below explains the failure effects that are captured in a generic TFPG model
through the example of the consumer TFPG model. The Consumer’s TFPG
model 9, is presented in terms of the failure propagations captured in the con-
text of the observed alarms - LOCK TIMEOUT, VALIDITY FAILURE, PRE-
CONDITION Violation, USER-CODE Failure, Deadline Violation. Each of these
sub-graphs covers most of the points described above.

1. LOCK TIMEOUT - This is caused by problems in obtaining the Component
Lock. Being a real-time system, any attempt to obtain a lock is bounded by a
maximum deadline. In case of timeout the fault is observed as a discrepancy
with an anomaly of LOCK TIMEOUT, resulting in a CLHM response of
either IGNORE or REFUSE/ABORT. Based on the response, its failure
effect can lead to an invalid or a missing state update and affect entities
downstream.

2. VALIDITY FAILURE - This is caused when the “age” of the data fed to the
consumer is not valid. It is observed as a discrepancy with an anomaly of VA-
LIDITY FAILURE, resulting in a CLHM response of either USE PAST DATA
or REFUSE/ABORT. Based on the response, its failure effect can lead to an
invalid or a missing state update and effect entities downstream. The failure
effect could also cascade into one or more of the anomalies described below.

3. PRE-CONDITION FAILURE - This is caused when the pre-condition to the
consumer process is not satisfied. This anomaly could also be observed as a
result of a VALIDITY FAILURE followed by a response to USE PAST DATA.
It is observed as a discrepancy with an anomaly of PRE-CONDITION FAILURE,
resulting in a CLHM response of either IGNORE or REFUSE/ABORT.
Based on the response, its failure effect can lead to an invalid or a missing
state update and affect entities downstream. The failure effect could also
cascade into user-code and/or deadline violation.

4. USER-CODE FAILURE - This is caused when there is a failure in the user-
code (e.g. exception ). This anomaly could be observed as a result of a USER-
CODE failure (captured as a failure mode) or a cascading failure effect prop-
agation from VALIDITY FAILURE and subsequent health management re-
sponse of USE PAST DATA or PRE-CONDITION violation followed by an
IGNORE response. Once observed, depending on the local CLHM response
its failure effect can lead to an invalid or a missing state update and affect
entities downstream. The failure effect could also cascade into a deadline
violation.
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Fig. 9. TFPG template showing five (out of six possible) fault propagation patterns
for a periodic consumer.
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Fig. 10. TFPG model for publisher-consumer interaction.

5. DEADLINE FAILURE - This is caused when the process deadline is vi-
olated. This anomaly could be observed as a result of a deadline failure
(captured as a failure mode) or a cascading failure effect propagation from
VALIDITY FAILURE followed with a local health management response of
USE PAST DATA or PRE-CONDITION violation with a local CLHM re-
sponse of IGNORE or USER CODE. It is observed as a discrepancy with an
anomaly of DEADLINE FAILURE, resulting in a CLHM response of either
STOP (stopping the process in case of hard-deadline violation) or IGNORE
(in case of soft-deadline violation) or RESTART. Based on the response, its
failure effect can lead to an invalid / missing / late state update and affect
entities downstream.

It should be noted that sometimes it might not be possible to monitor some of
the failures / alarms mentioned above. In such cases, these observed discrepancies
would turn into unobserved discrepancies and the fault effect would propagate
through the discrepancy without raising any observation (alarm).

Example 7. TFPG for the GPS Assembly Figure 10 shows the failure propaga-
tion link created for interaction between a publisher and a periodic consumer.
The publisher and consumer boxes encapsulate the detailed TFPG model of
the publisher and the consumer entities. The failure propagation in-to or out-
of the ports captures the failure effect propagation across the entity boundary.
Any failure in the Publisher entity that could lead to a discrepancy of NoDat-
aPublished / LateDataPublished could possibly cascade to the consumer entity
through a VALIDITY FAILURE in its input data. Likewise, a failure in the pub-
lisher leading to InvalidDataPublished discrepancy could produce anomalies in
the consumer through the triggering of Bad-Data-Input discrepancy. The model
also captures the possibility that a Failure-Mode of a problem in the Component
lock could lead to discrepancies associated with Lock Timeout in the Compo-
nent’s processes/ interaction ports.

Once we can create the models to capture the failure propagation across
all interactions, we can essentially create TFPG model for the full assembly.
In practice, the assembly level TFPG model is generated by instantiating the
appropriate TFPG-model for the Component interaction ports and connecting
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#FM = #Comp+ #Interactions ∗ 3−#ReqPorts (1)

#Alarm = #Interactions ∗ 2 + #Cons ∗ 2 + #Post ∗ 2 + #Pre ∗ 2 (2)

Table 4. Metrics for automatically generated TFPG from ACM component assembly.
FM - Failure Modes, Comp - Components, Interactions - All Intra Component and Inter
Component Interactions, ReqPorts - Required Interface Ports, Alarms - All observable
TFPG discrepancies, Cons- Consumer Ports (Validity Monitors), Pre - Pre Conditions,
Post - Post Conditions.

the failure propagation links between the discrepancy ports. The data and con-
trol flow within and across the component can be used to generate the failure
propagation links across the instantiated TFPG models. This information can
either be obtained by static analysis of the user-level code for the component or
relying on the designer to provide this information. Currently, we take the latter
approach.

Complexity of the generated model Table 4 describes the formulae for cal-
culating the metrics for the size and complexity of failure propagation graphs
generated from a given software assembly. These metrics are based on the tem-
plates of generic fault propagation across all possible inter and intra component
interactions in the ACM framework.

Figure 11 shows the high-level TFPG model for the system/assembly de-
scribed in figure 6. In this assembly, there were 3 components, 6 methods, 2
consumer ports, 1 requires port, and 2 post conditions. Hence, the number of
failure modes totaled 20 and the number of alarms also totaled 20. The de-
tailed TFPG-model specific to each interaction pattern is contained inside the
respective TFPG component model (brown box). The figure shows failure prop-
agation between the Sensor publisher3 and GPS consumer4, the GPS publisher
5 and NavDisplay consumer 6, the ’requires’ method in NavDisplay7 and the
’provides’ method in GPS 8, the effect of the bad updates on state variables
and the entities updating or reading the state-variables. Table 1 summarizes the
worst case memory consumed by the reasoner and average time taken to update
the hypothesis.

It should be noted that while the interaction pattern between a publisher
port and a consumer port produces a fault propagation in the direction of data
and event flow i.e. from the publisher to the consumer, the interaction pattern
between a Requires interface and its corresponding Provides interface involves

3 (Sensor data out)
4 (GPS data in)
5 (GPS data out)
6 (NavDisplay data in)
7 (NavDisplay gps data src getGPSData)
8 (GPS gps data src getGPSData)
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Fig. 11. TFPG model for the component assembly.
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fault propagation in both directions. The fault propagation within a compo-
nent is captured through the propagations across the bad updates on the state
variables within the component. Currently, in the framework there is no instru-
mentation to deploy a monitor to specifically observe violations in state variable
updates. These could be captured indirectly as pre-condition or post-condition
monitors on the interfaces/interactions ports that update or read from these
state variables.

4.4 The Diagnosis Process

The TFPG diagnosis engine is hosted inside a separate component.An alarm
aggregator component is responsible for aggregating all the alarms and passing
it to the diagnosis engine. These two components are hosted in a separated
ARINC-653 partition. When the diagnosis engine receives the first alarm from
a fault scenario, it generates all hypotheses that could have possibly triggered
the alarm. Each hypothesis lists its possible failure modes and their possible
timing interval, the triggered-alarms that are supportive of the hypothesis, the
triggered alarms that are inconsistent with the hypothesis, the missing alarms
that should have triggered and the alarms that are expected to trigger in future.
Additionally, the reasoner computes hypothesis metrics such as Plausibility and
Robustness that provide a means of comparison. The higher the metrics the more
reasonable it is to expect the hypothesis to be the real cause of the problem. As
more alarms are produced, the hypothesis are further refined. If the new alarms
are supportive of existing set of hypotheses, they are updated to reflect the
refinement in their metrics and alarm list. If the new alarms are not supportive
of any of the existing hypotheses with the highest plausibility, then the reasoner
refines these hypotheses such that hypotheses can explain these alarms.

Figure 12 shows the diagnosis results for a specific scenario wherein the Sen-
sor (figure 6) stops publishing data. This results in failure effect that cascades
across component boundaries. The initial alarm is generated because of data
validity violations in the consumer of the GPS component. When this alarm was
reported to the local Component Health manager, it issued a response direct-
ing the GPS component to use past data (USE PAST DATA). While the issue
was resolved local to the GPS component, the combined effect of the failure
and mitigation action propagated to the Navigation Display component. In the
Navigation Display component, a monitor observing the post-condition viola-
tion on a Required interface was triggered because the GPS data validated its
constraints. These two alarms where sent to the System Level Health Manager
and processed by the TFPG diagnoser.

As can be seen from the results, the system correctly generated two hy-
potheses. The first hypothesis blamed the sensor component lock to be the root
problem. The second hypothesis blamed the user level code in the sensor pub-
lisher process to be the root failure mode. In this situation the second hypothesis
was the true cause. However, because we current treat the lock time out mon-
itors as unmonitored discrepancies the diagnoser was not able to reasonably
disambiguate between the two possibilities.
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28916:Partition3|1273281809.360706622|HME|RECEIVED Monitor: Error Code 2, Component 2, Process 7, Partition 1, Local HM Action 5, time 1273281808760746705
28916:Partition3|1273281809.360952393|HME|RECEIVED Monitor: Error Code 5, Component 3, Process 11, Partition 1, Local HM Action 0, time 1273281808761494007
28916:Partition3|1273281813.360637128|HME|RECEIVED Monitor: Error Code 2, Component 2, Process 7, Partition 1, Local HM Action 5, time 1273281812760731758
28916:Partition3|1273281813.360889186|HME|RECEIVED Monitor: Error Code 5, Component 3, Process 11, Partition 1, Local HM Action 0, time 1273281812761455453
28916:Partition3|1273281821.360642647|HME|RECEIVED Monitor: Error Code 5, Component 3, Process 11, Partition 1, Local HM Action 0, time 1273281820761304597

====[ Hypothesis Group 1 ]=====
Fault: FM Sensor data out USER CODE time: [0.000000,24.341104]
Supporting Alarms : VALIDITY FAILURE (GPS DataIn),
POSTCONDITION FAILURE (NavDisplay GetGPSData)
Plausibility: 100.000000 Robustness: 100.000000 FRMetric: 0

====[ Hypothesis Group 2 ]=======
Fault: Sensor LOCK PROBLEM time: [0.000000, 24.341104]
Supporting Alarms : VALIDITY FAILURE (GPS DataIn),
POSTCONDITION FAILURE (NavDisplay GetGPSData)
Plausibility: 100.000000 Robustness: 100.000000 FRMetric: 0

Fig. 12. Diagnosis results from the TFPG reasoner.

5 Application of TFPG For Prognostics of Impending
Faults

In general, the aim of failure prognosis is to estimate the system reliability, given
a set of conditions and observations, by assessing how close the system is to a
critical manifestation of current failures. The reliability estimation can then be
used to reconfigure the system, change the operating settings, or schedule specific
maintenance procedures targeting the faulty components. In the TFPG model-
ing and reasoning settings, the prognosis problem and the associated reliability
measure can be defined based on three main factors; failure criticality levels, di-
agnosis or hypothesis plausibility, and the time distance from the current state
to the critical failure.

The first factor addresses the common situation in which different sections
of the system may correspond to different levels of criticality with respect to
system functionality. These sections can be identified using a measure of criti-
cality assigned to all discrepancies in the systems. The second factor addresses
the current estimated (diagnosed) condition of the system and the plausibility of
the corresponding hypothesis. The third factor addresses the timing proximity
of the current estimated state relative to a given critical region of the system.
All these factors directly contribute to the reliability of the system at a given
time. We will discuss them in details in the rest of this section.

5.1 Failure Criticality

In typical practical situations, failure progresses starting from the initial failure
modes into several stages with increasing level of criticality. To capture this
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Fig. 13. TFPG model with assigned criticality levels and the corresponding criticality
fronts.

situation, we define the map CL : D → N that assign to each discrepancy, d ∈ D,
a criticality level CL(d). The lowest criticality level, 0, is reserved for non-critical
discrepancies and all failure modes. To capture the increasing criticality with
respect to propagation depth, we assume that

(∀d′, d ∈ D) (d′, d) ∈ E −→ CL(d′) ≤ CL(d)

The above condition states that if d′ is a parent of d in a TFPG model then the
criticality level of d′ should be less than or equal to that of d. As a consequence,
the criticality levels along any given path in a TFPG model form a monotonically
increasing sequence. Note that we only assign a criticality level to all monitored
and non-monitored discrepancies D. Failure modes are assigned a criticality level
of 0 by default.

Based on the definition of criticality levels, we can define criticality fronts
associated with a given TFPG model by the map, CF : N→ P(D), where,

(∀d ∈ D) d ∈ CF(n) ←→ CL(d) ≥ n and (∀(d′, d) ∈ E) CL(d′) ≤ n

The set of criticality fronts are essentially the codomain of the above map, and
the set of criticality front levels CFL are the set {n ∈ N | CF(n) 6= ∅}. It can
be shown that CFL corresponds bijectively to the codomain of CL. Based on the
above definitions, a criticality front level, n ∈ N, corresponds to a graph cut of
the TFPG model in which the nodes on one side of the cut have criticality levels
less than n and the remaining nodes have criticality level greater than or equal
to n. Figure 13 shows an example TFPG model with assigned criticality levels
and the corresponding criticality fronts.

Criticality levels are typically assessed based on the requirements for system
operation and functionality. In particular, the criticality value for a given dis-
crepancy depends on the operation cost associated with the fault reaching and
progressing from this discrepancy. This will include the cost of maintenance,
reconfiguration, and recovery when applicable. However, in some situations, it
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is not possible to have a precise value for the criticality of a sensor. In such
situations, an enumeration of criticality levels (ex. low, medium, and high) can
be used to distinguish between sensors with respect to fault severity. Such enu-
meration can be assigned an approximate integer value, that reflects its relative
importance, which can be used later in this section to compute a reliability mea-
sure for the system, in terms of the remaining useful life (RUL) or the time to
criticality.

5.2 State Estimation Plausibility

As discussed in the previous section, the TFPG reasoning algorithms relies on
sensor signals (alarms) and the TFPG model structure to identify the most
plausible estimates of the current system condition as a set of state hypotheses.
The plausibility of each hypothesis is defined based on the number of supporting
sensor signals (alarms) versus the inconsistent and missing ones. We will write
A(H) for the set of discrepancies that are presumed active (ON) according to H
and I(H) for the set of discrepancies that are presumed inactive (OFF) according
to H. That is,

A(H) = {d ∈ D | H(d).state = OFF

The state front of a hypothesis H is denoted SFH and is defined as a set of
discrepancies D′ ⊆ D such that (∀d ∈ SFH)

d ∈ A(H) and (∃(d, d′) ∈ E) d′ ∈ I(H)

Accordingly, the state front SFH is the set of discrepancies that are currently
active as estimated by H but some of their children discrepancies are not active
according to H. Given that any discrepancy in D can either be in A(H) or I(A)
but not both. The set SFH is well-defined and the boundary line between D′

and D −D′ forms a graph cut for the underlying TFPG model.
The intuitive meaning of the state front for a hypothesis, is that all the

discrepancies on this front have the same likelihood of being active at the current
time and they are forming the front of fault propagation in the sense that they
are the discrepancies that could become active based on the next set of alarms
as the fault propagation continues to progress.

The plausibility of a state front is equal to the plausibility of the underlying
hypothesis. It is possible that several hypotheses can have the same plausibility
level and therefore several state fronts may have the same plausibility level.

5.3 Time Proximity

The time proximity factor measures how close the current state of the system
is to a future failure. As discussed earlier, future failures are identified by their
criticality level front as defined by the map CF. Each front is defined as a set
of discrepancies at the boundary of a graph cut for the TFPG model. Similarly,
a state estimation is defined by a hypothesis (with its plausibility level) and
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Fig. 14. Example for time to criticality.

is identified by the discrepancies at the boundaries of the cut formed by the
underlying hypothesis level state front. Accordingly, the time proximity factor
is a measure for the temporal distance between two fronts (graph cuts) each
corresponding to a set of discrepancies in the TFPG model.

To define such distance, consider two sets of discrepancies D1, D2 ⊆ D such
that all discrepancies in D1 are either ancestors of some discrepancies in D2 or
not connected to any discrepancy in D2. In this case, we write D1 ≺ D2. We
define the propagation time between D1 and D2 with respect to a hypothesis
H, denoted tH(D1, D2), as the minimum time to trigger discrepancy in D2 as a
result of failure propagation from discrepancies in D1.

To compute t̂H(D1, D2), we first consider the set of all discrepancies that are
children of D1. We then compute the earlier propagation time to these discrep-
ancies based on the activation times of their parent nodes according to H. The
computation of the earliest propagation time for all subsequent nodes is done
based on the earliest propagation times available for their parents. This incre-
mental computation continues until the earliest propagation time is computed
for all the nodes in D2. The minimum time is selected as the output. Algorithm
2 outlines the computation procedure.

In algorithm 2, for a given subset of nodes X in the TFPG model, RSet(X)
is the set of discrepancies outside of X where all their parents belong to X. The
function terl(TNodes, d) computes the earliest time for d to become activated
based on the earliest time the parents of d are activated. This function can
be directly computed based on the semantics of failure propagation in TFPG
models.

5.4 Time to Criticality

Given a set of criticality levels, the associated criticality fronts are computed
directly from the earlier definition. The state front for a given hypothesis can be
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Algorithm 2 The propagation time procedure t̂H(D1, D2)

assumption: D1 ≺ D2

if D1 ∩D2 6= ∅ then
return 0

end if
define RSet(X) := {d ∈ D −X|(∀d′ ∈ D) (d′, d) ∈ E → d′ ∈ X}
TNodes = {(d,H(d).terl) | d ∈ A(H)}
tmin =∞
while D2 6⊂ TNodes.nodes do

select d from RSet(D1)
compute terl(TNodes, d)
if d ∈ D2 then
tmin = min(tmin, terl(d))

end if
end while
return tmin

directly computed based on the given definition. Let Y be the set of hypothesis
with the highest plausibility value at a time t. We define the time to criticality
level n at a given time t, denoted TTC(Y, n), as follows

TTC(Y, n) = min{t̂H(SFH ,CF(n)) | H ∈ Y }

That is, the time to criticality level n is the minimum of all (earliest) propaga-
tion times for all hypotheses with the maximum plausibility. In practice, there
are typically few enumerated criticality levels. The time to criticality, therefore,
follows the increasing order of the criticality. That is, the time to reach a high
criticality level is usually longer than the time to reach a lower criticality level,
as expected. However, this is not always the case as shown the in Figure 14. In
this example, there are three different paths from the state (estimation) front
SFH to the criticality front level 1 (CFL=1), where H is the most plausible hy-
pothesis in which D2, D3, D4 are assumed active and D1 is assumed faulty. In
this example, the time to criticality to the first level is 3 (time units) while the
time to criticality for the next higher level is 1.

6 Relation to Machine Learning and Data Mining

The TFPG model for a specific physical system, as described above, is the re-
sult of an engineering process that is based on the engineer’s knowledge of the
system, first principles, and system connectivity. For large systems this model
construction can be quite complex, and will rarely be perfect on the first try.
Hence, a model maturation process is needed where the TFPG model is refined
over time, based on operational experience. Arguably, machine learning and/or
data mining techniques can be used to assist in this maturation, as discussed
below.
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Imperfections in TFPG models come in two main forms: (1) a failure prop-
agation edge is missing, and (2) a failure propagation edge is present where
it should not exist. Assume that we operate the reasoner using such degraded
model. If the input and the output of the reasoner are logged, one can apply data
mining techniques to the input, with the goal of discovering the weak points in
the model. For validation, we will also need the result of the maintenance ac-
tivity that repaired the system, i.e. the knowledge of the real, physical failure
mode.

If a failure propagation edge is missing from the model then the reasoner will
likely produce degraded results and mark the downstream alarms as false alarms,
indicating that they are not on a valid propagation path. However, if the data
mining algorithm tells that there is a strong correlation between the two alarms,
and such correlation can be supported because of a physical connection in the
system, then it is likely that an edge is missing, and adding it would improve
the performance of the reasoner.

If a failure propagation edge is present but it should not be, then the reasoner
will again produce degraded results because it will misidentify failure modes
as fault sources. Again, if the data mining indicates that there is very little
correlation between the two alarms, and this can be corroborated by the lack
(or the weakness) of physical connections between the components, then it is
likely that the edge is superfluous and its removal would improve the diagnostic
reasoning.

In either case, the change on the model shall be validated with the real
physical failure mode. This can be done by supplying the same input sequence
to the reasoner but now with the changed model, and observing if it is able to
correctly produce the real failure mode. Once this validation is performed, the
model can be fielded and used.

7 Summary

We described a discrete-event based, graph-oriented approach to fault source
isolation that is applicable in the context of system level health management.
We presented the modeling approach, the algorithms for the centralized rea-
soner, the algorithms for a distributed, master-slaves reasoner architecture. We
have also illustrated how the same approach can be used for software health
management, and potentially integrating reasoners about the physical and the
software components of a system. The modeling approach and the reasoner have
been applied in various example systems, and were found to provide satisfactory
performance. The software health management application has been recently
developed and tested only on small examples. The full, system-level integration
and application of the reasoner approach are the subject of active research and
development.
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