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Abstract

In Partially Observable Markov Decision Processes (POMDPs), maintaining and
updating belief distributions over possible underlying states provides a principled
way to summarize action-observation history for effective decision-making un-
der uncertainty. As environments grow more realistic, belief distributions develop
complexity that standard mathematical models cannot accurately capture, creat-
ing a fundamental challenge in maintaining representational accuracy. Despite
advances in deep learning and probabilistic modeling, existing POMDP belief
approximation methods fail to accurately represent complex uncertainty struc-
tures such as high-dimensional, multi-modal belief distributions, resulting in es-
timation errors that lead to suboptimal agent behaviors. To address this chal-
lenge, we present ESCORT (Efficient Stein-variational and sliced Consistency-
Optimized Representation for Temporal beliefs), a particle-based framework for
capturing complex, multi-modal distributions in high-dimensional belief spaces.
ESCORT extends SVGD with two key innovations: correlation-aware projections
that model dependencies between state dimensions, and temporal consistency con-
straints that stabilize updates while preserving correlation structures. This ap-
proach retains SVGD’s attractive-repulsive particle dynamics while enabling ac-
curate modeling of intricate correlation patterns. Unlike particle filters prone to
degeneracy or parametric methods with fixed representational capacity, ESCORT
dynamically adapts to belief landscape complexity without resampling or restric-
tive distributional assumptions. We demonstrate ESCORT’s effectiveness through
extensive evaluations on both POMDP domains and synthetic multi-modal distri-
butions of varying dimensionality, where it consistently outperforms state-of-the-
art methods in terms of belief approximation accuracy and downstream decision
quality. Our code is available at https://github.com/scope-lab-vu/ESCORT.
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1 Introduction

Partially Observable Markov Decision Processes (POMDPs) [Astrom, 1965] provide a powerful
mathematical framework for sequential decision-making under uncertainty, enabling agents to make
optimal decisions despite having only partial information about their environment [Kaelbling et al.,
1998]. At the core of POMDP solutions lies the concept of belief states: probability distributions
over possible underlying states conditioned on the history of actions and observations [Kaelbling
et al., 1998]. As POMDPs are applied to increasingly complex real-world domains [Lauri et al.,
2023, Kurniawati, 2022, Zhang et al., 2024], the underlying belief distributions develop sophis-
ticated characteristics that standard mathematical models struggle to accurately capture [Roy and
Gordon, 2002, Brooks et al., 2006, Zhang et al., 2025]. Specifically, realistic belief distributions
in POMDPs often exhibit a challenging combination of high dimensionality (due to complex state
spaces) [Roy and Gordon, 2002] and multi-modality (from ambiguous observations creating multi-
ple distinct hypotheses) [Chen et al., 2022, Zhang et al., 2025], which traditional approaches struggle
to model efficiently. The inability to efficiently represent and update these complex belief distribu-
tions creates a fundamental bottleneck in developing practical POMDP solutions, as even small
errors in belief approximation can propagate and significantly degrade decision quality over time.

Existing approaches to belief approximation in POMDPs face significant limitations with complex
distributions. Parametric methods using neural representations struggle with uncertainty structures:
DRQN [Hausknecht and Stone, 2015] and ADRQN [Zhu et al., 2018] compress histories into vec-
tors that poorly capture multi-modal uncertainty, while even DVRL [Ig] et al., 2018], despite using
particle-based VAEs [Kingma and Welling, 2013], fails to maintain multiple distinct hypotheses
simultaneously. These parametric approaches efficiently process high-dimensional data but sac-
rifice representational expressiveness—despite theoretical universal approximation power, neural
networks face computational inefficiency and generalization challenges [Zhang et al., 2016]. Their
fixed parametric nature prevents adaptation to varying uncertainty complexity, causing cumulative
belief estimation errors over time.

On the other hand, particle-based methods offer flexibility in representing arbitrary distributions
but face critical limitations. SIR filters [Gordon et al., 1993], which underpin leading POMDP
solvers like POMCP [Silver and Veness, 2010], POMCPOW [Sunberg and Kochenderfer, 2018],
ARDESPOT [Somani et al., 2013], and AdaOPS [Wu et al., 2021], struggle with the curse of di-
mensionality and particle degeneracy in high-dimensional spaces. Their stochastic resampling leads
to mode collapse, failing to maintain coverage across multi-modal distributions, especially with am-
biguous observations [Zhang et al., 2025]. These methods also inefficiently capture dependencies
between state dimensions—either making oversimplified independence assumptions or requiring
exponentially more particles to model joint distributions accurately, significantly limiting their ap-
plicability to complex POMDPs.

Inspired by the effectiveness of Stein Variational Gradient Descent (SVGD) [Liu, 2017] in Bayesian
inference, we explore deterministic particle evolution as a principled alternative. SVGD avoids
resampling-induced degeneracy through continuous gradient-based updates: particles move deter-
ministically via V log p(z) with kernel repulsion Vk(z, 2") maintaining multi-modal coverage with-
out discarding hypotheses [Liu, 2017]. Unlike fixed parametric architectures, SVGD dynamically
adapts its particle distribution—concentrating particles in high-uncertainty regions while provid-
ing sparse coverage elsewhere—aligning representational capacity with belief complexity without
architectural changes. However, standard SVGD itself suffers from kernel degeneracy in high-
dimensional spaces [Zhuo et al., 2017, Chen and Ghattas, 2020]—weakening both attractive and
repulsive forces—and cannot preserve complex correlation structures between state dimensions,
leading to mode collapse in multi-modal distributions. Recent extensions like MP-SVGD [Zhuo
etal.,2017] and SVMP [Wang et al., 2018] have demonstrated success in high-dimensional Bayesian
inference by leveraging graphical model structures to guide particle evolution. However, these meth-
ods require fixed structures that cannot adapt to observation-dependent correlations in POMDPs,
where belief correlation patterns change dynamically with observation history [Boyen and Koller,
1998].

ESCORT addresses these fundamental limitations through a novel belief update mechanism that ex-
tends SVGD with two key regularization components. Drawing insights from sliced optimal trans-
port theory [Kolouri et al., 2019], we introduce: (1) a correlation-aware regularization that preserves
dimensional dependencies during particle updates, mitigating kernel degeneracy while maintain-



ing multi-modal representational flexibility, and (2) a temporal consistency constraint that prevents
unrealistic belief jumps between timesteps while preserving learned correlation structures. This de-
terministic update framework with targeted regularization prevents the accumulation of estimation
errors that propagate through sequential decision-making. Our contributions are:

* We extend SVGD to overcome particle degeneracy in traditional filters and fixed representational
capacity in parametric approaches for complex POMDP belief approximation.

* We introduce correlation-aware regularization inspired by optimal transport theory that preserves
dimensional dependencies and mitigates kernel degeneracy in high-dimensional spaces.

* We develop temporal consistency regularization that prevents unrealistic belief jumps while pre-
serving correlation structures, ensuring stable belief evolution.

* While future work will address computational overhead from correlation matrix computation and
projection optimization, ESCORT provides a modular belief representation that seamlessly inte-
grates with existing POMDP solvers for broader practical impact.

* We demonstrate ESCORT’s effectiveness through extensive experiments on Light-Dark Naviga-
tion [Platt et al., 2010, Silver and Veness, 2010], Kidnapped Robot [Choset et al., 2005], and
Multi-Target Tracking [Rong Li and Jilkov, 2003] benchmarks, as well as synthetic multi-modal
distributions, showing consistent improvements in belief fidelity and decision quality.

2 Background

2.1 Partially Observable Markov Decision Processes (POMDPs)

A partially observable Markov decision process (POMDP) [Astrom, 1965] is formalized as a tuple
(S,A,T,R,Q,0,~): states S, actions A, transition function T'(s’|s, a) (probability of transition-
ing to s’ from state s via action a), reward function R(s, a), observations (2, observation function
O(o|¢’, a) (probability of observing o after reaching s’ via action a), and discount factor v € [0, 1).
Unlike MDPs, agents cannot directly observe states, fundamentally increasing problem complexity.

Agents maintain belief states b(s) - probability distributions over possible states. After action a and
observation o, beliefs update via Bayes’ rule: t'(s") =7 - O(o|s’,a) > .4 T(s'|s,a)b(s), where 1
normalizes to ensure ), b'(s’) = 1. This update encapsulates the agent’s knowledge given their
action-observation history.

2.2 Stein Variational Gradient Descent (SVGD)

SVGD [Liu, 2017] is a deterministic sampling algorithm that iteratively transports particles {z; }?_;
to approximate a target distribution p(x) by minimizing KL divergence through functional gradient
descent. Particles update via z; < x; + e@(x;), where € is step size and the optimal velocity field
¢*(z) = L Z;l:l[k(a:j, x)Vy, logp(x;) + Va,k(x;, z)] belongs to a reproducing kernel Hilbert
space with kernel k(x, 2") [Liu, 2017].

The update balances exploitation (k(z;,2)V,, logp(x;) driving particles toward high-density re-
gions) and exploration (V. k(x;, ) creating repulsive forces preventing collapse). The RBF kernel

k(z,2") = exp(—+||z — 2’||*) with bandwidth h controls inter-particle interactions [Garreau et al.,
2017, Liu, 2017], offering theoretical convergence guarantees with computational efficiency.

However, SVGD struggles in high-dimensional POMDPs where correlation structures Cj; =
i
Standard isotropic RBF kernels create uniform repulsive forces [Zhuo et al., 2017], failing to pre-
serve anisotropic belief distributions’ correlation patterns. This causes kernel degeneracy in high
dimensions [Chen and Ghattas, 2020]—Xkernel values become nearly constant—preventing particles
from aligning along principal correlation directions, degrading belief approximation and POMDP

performance.

(with ¢, 7 indexing state dimensions) capture statistical dependencies [Chen et al., 2022].



2.3 Projection Methods in Optimal Transport

Optimal Transport (OT) provides a geometric framework for comparing probability distribu-
tions via minimal transformation cost [Villani, 2008]. The Wasserstein distance Wp(u,y) =

(infyerquw) [ Iz = ylPdy(z,y)) Y captures both probability mass differences and geometric re-
lationships, where I'(, v) denotes joint distributions with marginals y and v.

To reduce computational expense in high dimensions, Sliced Wasserstein Distance (SWD) [Ra-
bin et al., 2011] projects distributions onto one-dimensional subspaces: SW,(u,v) =

(fgar Wg’(R[u}g,R[V]g)da(e))l/p, where R[-]p denotes the Radon transform along direction 6.
Generalized Sliced Wasserstein (GSW) Distance [Kolouri et al., 2019] extends this with nonlinear
transformations: GSW, (11, v) = (o WE(Rulule, R [V]g)d)\(é))l/ P using parameterized function
he (), with max-GSW Distance variant: max-GSW,, (11, ) = maxgee W, (Ri[ple, Ru[v]s)-

ESCORT integrates these projection principles as regularization mechanisms within SVGD’s up-
date process rather than as distance metrics. This enables learning transformation matrices that
identify significant correlation directions while mitigating kernel degeneracy, allowing particles to
align along principal correlation directions while maintaining multi-modal diversity—addressing
fundamental challenges in complex POMDP belief representation.
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Figure 1: Overview of the ESCORT framework. The diagram illustrates the iterative process of
maintaining accurate belief representations in POMDPs through deterministic particle evolution.
Purple dots represent particles, yellow regions show distribution modes, and colored arrows indicate
different force types. In the Temporal Consistency component, green arrows represent permissible
belief transitions while red crossed arrows indicate prevented unrealistic jumps.

We present ESCORT (Efficient Stein-variational and sliced Consistency-Optimized Representation
for Temporal beliefs), a particle-based framework addressing the challenges of belief approxima-
tion in complex POMDPs, as illustrated in Figure 1. ESCORT extends SVGD with correlation-
aware projections and temporal consistency constraints, enabling effective representation of high-
dimensional, multi-modal belief distributions with intricate correlation structures. Through deter-
ministic particle evolution and strategic regularization, our approach maintains particle diversity
while preserving dimensional dependencies, overcoming limitations of both parametric methods
and traditional particle filters.



3.1 Correlation-Aware Deterministic Belief Update Mechanism

As established in Section 2.2, SVGD addresses particle degeneracy through deterministic evolu-
tion that theoretically converges to the target distribution without resampling. SVGD applies the

perturbation:
n

N 1
o (x) = - Z[k(mj, x)Vy, logp(z;) + Vo, k(x), )] (1)
j=1
In the POMDP context, p(-) represents the belief given by Bayes’ rule: p(s’) « O(o|s’,a) -
> s T'(s'|s,a)b(s), with the score function V, log p(x;) approximated numerically using finite dif-

ferences.

This formulation balances attractive forces toward high-density regions with repulsive interactions
that maintain particle diversity. However, standard SVGD faces critical limitations in POMDP set-
tings. First, it suffers from kernel degeneracy in high-dimensional state spaces, where the RBF
kernel k(z,2’) = exp(—+||z — 2’||?) produces nearly uniform values, weakening repulsive forces
and leading to mode collapse [Zhuo et al., 2017, Chen and Ghattas, 2020]. More fundamen-
tally, standard SVGD’s isotropic RBF kernel creates uniform repulsive forces that fail to preserve
the anisotropic correlation patterns inherent in POMDP belief distributions [Wang et al., 2017].
In POMDPs, these correlation structures are captured by the correlation matrix C with elements
Cij = Xij/+/2ii - Xj;, where 3 is the covariance matrix. These off-diagonal elements C;; encode
critical statistical dependencies between state dimensions—information essential for accurate belief
representation and downstream decision quality.

Recent extensions like MP-SVGD [Zhuo et al., 2017] and SVMP [Wang et al., 2018] attempt to
address high-dimensional challenges through fixed graphical structures that decompose the kernel
into localized interactions. However, these approaches remain insufficient for POMDPs, which
require adaptive correlation modeling that dynamically responds to observation-dependent belief
changes [Boyen and Koller, 1998]. To address these fundamental limitations, we introduce ES-
CORT, which implements a complete belief update mechanism that combines deterministic particle
evolution with model-based state estimation. The update for each particle is formulated as:

l‘?—l = J): + €¢:eg(x§) + Update(0t+1’ at) @)

where z! represents the i-th particle at time step ¢, € is the step size, Preq 18 our correlation-aware
regularized particle evolution function that maintains particle diversity while preserving dimensional
dependencies, and Update(os4 1, a;) incorporates new evidence by shifting particles based on obser-
vation likelihoods and transition dynamics. We detail the formulation of both the regularized particle
evolution and observation-action update components in the following subsections.

Having established the complete belief update mechanism combining deterministic particle evolu-
tion with model-based state estimation, we now detail the correlation-aware regularization term ¢y,
that addresses SVGD’s limitations in high-dimensional spaces.

3.2 Correlation-Aware Regularization

Drawing inspiration from optimal transport theory, particularly the Generalized Sliced Wasserstein
(GSW) distance [Kolouri et al., 2019], we construct our correlation-aware regularization term to
address the limitations of standard SVGD discussed before. The key insight from GSW is that
projecting high-dimensional distributions onto carefully selected lower-dimensional subspaces can
efficiently capture correlation structures while remaining computationally tractable [Kolouri et al.,
2019]. By integrating this projection-based approach, ESCORT addresses both critical SVGD lim-
itations: kernel degeneracy is mitigated through dimensionality reduction of distance calculations,
while complex correlation structures are preserved by learning projection matrices aligned with di-
mensional dependencies.

Our correlation-aware regularization term is formulated as:

Reon(6) = Eang | 3 i |AT (0(2) = Byl 6(w))I° ®

where the expectation averages over all particles in the current distribution ¢, and the summation ag-
gregates contributions from m different projection matrices. Here, ¢ is the particle movement vector



field, A; € R?*%i are projection matrices identifying key correlation directions, w; are importance
weights, and |- |? is squared Euclidean norm. This approach adapts to the anisotropic nature of belief
distributions, unlike standard SVGD’s isotropic kernel.

The effectiveness of this regularization term depends on identifying projection matrices that capture
meaningful correlation structures relative to the target distribution. In the POMDP context, the target
distribution p(x) in our SVGD formulation represents the unnormalized posterior belief distribution:

p(x) o< O(opsale,ar) - > T(xls, ar)by(s) )

seS

where O(o¢4 1|, a;) is the observation likelihood, . ¢ T'(x|s,a;)bs(s) is the predicted belief
after transition, and b:(s) is the previous timestep’s belief. This corresponds to the standard
POMDP belief update before normalization. Crucially, SVGD directly works with this unnormal-
ized distribution—the normalization constant in the standard Bayes update b'(s") = 7 - O(o|s’,a) -
> T'(s'|s,a)b(s) is handled implicitly through gradient-based particle evolution, eliminating the
computational overhead of explicit normalization while naturally preserving the correlation struc-
tures present in the posterior.

To identify and preserve these correlation structures through our regularization term, the projec-
tion matrices A; are initialized using eigenvectors derived from the difference between correlation
matrices of the current particle distribution and target distribution: AC = corr(X,) — corr(X,,).
The eigenvectors corresponding to the largest eigenvalues of this correlation difference matrix pro-
vide initial projection directions that highlight dimensions with significant correlation differences.
These initial projections are then optimized to maximize the distance between distributions when
projected:

A = arg n}fxE(I’y)N(q,p) [|AZ(I - Zl)m (5)

where A} denotes the optimal projection matrix, g represents the current particle distribution, p
represents the target distribution, (z,y) ~ (g, p) indicates sampling pairs with 2 drawn from ¢ and
y drawn from p, and | A7 (z — y)|? measures the squared Euclidean norm of the projected difference
between samples.

This optimization process ensures that for any belief distribution b(s) with correlation matrix ¥, the
regularization term Ro(¢) with optimized projection matrices A; preserves the principal correla-
tion directions of 3 under the SVGD update. This theoretical guarantee means that as we increase
the number of projection matrices, we can more accurately preserve the correlation structure of
complex belief distributions.

Incorporating this correlation-aware regularization into the SVGD framework yields our complete
regularized update:

n

¢:eg($) o Z[k(zj, 2)Va, logp(z;) + Vi, k(x;, )] = AV Reorr () (6)

j=1
where A controls the regularization strength. In our practical implementation, both the projection
matrices A; and their importance weights w; are updated iteratively alongside the particle positions,
ensuring that they adapt to the evolving belief distribution throughout the POMDP planning process.

3.3 Model-Based Belief Update

The Model-Based Belief Update component Update(o;1,a:) in our belief update equation inte-
grates new observations and actions into the belief distribution. While ¢y, maintains represen-
tational properties, this component leverages the POMDP model’s dynamics to shift particles ac-
cording to actual environment behavior. Unlike DVRL which learns transition and observation
models [Igl et al., 2018], ESCORT assumes known POMDP models with state transition function
T(s'|s, a) and observation function O(o|s’, a). This model-based design is essential for two reasons:
first, accurate likelihood gradients from known dynamics enable SVGD’s deterministic evolution,
correlation-aware regularization, and temporal consistency to function correctly through precise dis-
placement vectors that specify how each particle should move; second, it enables fair comparison



with existing particle-based methods by isolating our belief representation innovations from model
learning errors.

Given a particle set {x!}"_; representing the belief at time ¢, an action a;, and observation oy 1,
the model-based update proceeds in three steps. First, each particle is propagated through the tran-
sition model: 55?1 = T(xt,a;) + n; where n; ~ N(0, Xyqns) represents transition noise. Next,
the observation likelihood w; = O(0p41 \:Zf“, at) is computed for each predicted particle, quanti-
fying how well it explains the received observation. The final update combines these components
as Update(o41,a;) = (271 — ot) + Ax;(w;), where the first term represents the state change
due to the transition model and the displacement term Ax;(w;) = « - w; - (uobs — &;) provides

likelihood-weighted adjustment. Here, s = (3_;w;%;)/(3_; w;) is the observation-weighted

mean and « € (0, 1) controls correction strength. Unlike the standard Bayes filter’s analytical up-
date b'(s") = n - O(ols’,a) - >, T(s'|s,a)b(s), this particle-based formulation provides a Monte
Carlo approximation without requiring analytical tractability. By incorporating observation informa-
tion through local adjustments that pull particles toward high-likelihood regions rather than global
resampling, this deterministic approach avoids particle degeneracy while maintaining multi-modal
coverage and preserving the correlation structures that stochastic resampling destroys.

3.4 Temporal Consistency Regularization

While the correlation-aware regularization term focuses on preserving dimensional dependencies
within individual belief states, ESCORT introduces an additional temporal dimension requiring con-
sistency across consecutive belief updates. In POMDPs, beliefs can change dramatically between
timesteps, especially when observations are noisy or ambiguous, leading to abrupt and potentially
unrealistic belief jumps that compromise decision quality [Li et al., 2014]. These sudden belief
jumps not only lead to erratic policy behavior but also destroy previously learned correlation struc-
tures between state variables, causing the belief representation to lose critical dimensional depen-
dencies that were carefully preserved by the correlation-aware regularization mechanism.

To address this critical challenge, we introduce a temporal consistency regularization mechanism
that complements our correlation-aware regularized particle evolution. This mechanism ensures that
belief updates respect the underlying temporal dynamics of the environment while still incorporating
new evidence from observations. Mathematically, we define temporal consistency as the expected
transport cost between consecutive belief distributions when projected onto informative subspaces.
The temporal consistency constraint is formulated as:

Liemp = /e W1 ((Ag) "biy1, (Ag) Tbe)dA(0) (7

where b, represents the current belief after applying all updates (transition model, observation
update, and SVGD), b; represents the previous timestep’s belief, W7 is the 1-Wasserstein distance
measuring minimum transport cost between beliefs, and Ay € R?** are learned projection matrices
identifying subspaces where temporal changes are most informative.

Here, \(6) is a probability distribution over the projection parameter space ©. Together with the pro-
jection matrices Ay, this mechanism identifies temporal patterns between timesteps—Ay provides
the projection directions while A(6) assigns importance weights to each direction, quantifying which
dimensions should evolve smoothly (high weight on projections revealing problematic jumps) ver-
sus which can change rapidly (low weight on naturally variable dimensions). This direction-specific
regularization constrains belief updates heavily along projections that reveal unrealistic jumps while
allowing natural evolution where temporal variation is expected. In contrast, the A; matrices in our
correlation-aware regularization (Section 3.2) serve a fundamentally different purpose: they pre-
serve spatial correlations within each timestep, capturing how dimensions relate to each other at a
single moment rather than across time.

In practice, this integral is approximated as a weighted sum over a finite set of optimized projection
directions, with weights representing their relative importance. By regularizing the distance between
consecutive belief states, we prevent unrealistically large belief jumps while still allowing the belief
to adapt to new information. Detailed implementation is provided in Appendix.



3.5 Particle-Based Policy Network

After establishing our particle-based belief representation that accurately captures complex uncer-
tainty structures, we leverage these beliefs directly for decision-making through a specialized policy
network architecture—the only learned component in ESCORT. The network processes particles
through two key stages: a per-particle encoder fparicle independently processes each particle x; into
feature representations h; = fparicie (€;) using a multi-layer neural network, then these features are
aggregated using a permutation-invariant operation (mean pooling) followed by further processing:
bencoded = fbelief(% Z?:l h;). This two-stage approach accounts for both individual particle states
and their collective distribution properties, enabling effective reasoning about multi-modal uncer-
tainties.

The policy is optimized using policy gradient methods. Given experience tuples (b¢, a;, r¢, byy1), the
objective function is £(0) = —E, q, ) [log mo(as|b:) - Ry], where R; is the discounted return. For
continuous actions, entropy regularization is applied: £(6) = —E[log mg(a:|b:)- Re+aH (7o (:|b4))]-
This approach directly optimizes the policy to maximize expected returns based on the particle
representation of beliefs.

For action selection, ESCORT supports both discrete and continuous spaces. With discrete
actions, the network outputs a probability distribution 7(a|b) = softmax(gacton(bencoded))-
For continuous actions, it parameterizes a Gaussian distribution with (u(b),logo(b)) =
(gmean (Dencoded ), std (Dencoded ) ) Actions can be selected either deterministically (most probable ac-
tion or mean) or stochastically (sampling from the output distribution).

4 Experiments

We designed our experiments to evaluate ESCORT’s effectiveness in two key aspects: (1) maintain-
ing accurate belief representations in challenging POMDP domains and (2) approximating complex,
multi-modal distributions with correlated state variables across various dimensionalities. This com-
prehensive evaluation aims to validate ESCORT’s ability to address the complex belief distribution
we identified earlier.

Baselines: We compare against state-of-the-art methods from different POMDP belief approxi-
mation categories: Particle-based methods including SIR (Sequential Importance Resampling) and
POMCPOW [Sunberg and Kochenderfer, 2018] that use stochastic resampling, leading to particle
degeneracy and mode collapse in high-dimensional correlated spaces; Parametric belief represen-
tations like DVRL [Igl et al., 2018] that encode beliefs into fixed-dimensional VAE representations,
sacrificing expressiveness for multi-modal distributions; and Deterministic sampling via SVGD [Liu,
2017] offering gradient-based particle evolution but suffering from kernel degeneracy without cor-
relation preservation. Additional comparative methods are discussed in the Appendix.

Evaluation Metrics: We assess ESCORT using two metric groups: POMDP-specific metrics mea-
suring policy performance and distribution approximation metrics evaluating belief representation
quality. For POMDP tasks, we report Average Return (position error, lower is better) reflecting
navigation/localization accuracy across environments. For distribution approximation, we track
Maximum Mean Discrepancy and Sliced Wasserstein Distance (statistical similarity between dis-
tributions), Mode Coverage Ratio (proportion of maintained hypotheses), and Correlation Error (ac-
curacy of captured dimensional relationships). Detailed metric specifications, computation methods,
and interpretations are provided in the Appendix.

Experimental Setup: We evaluate ESCORT against baselines across three POMDP domains:
Light-Dark Navigation, Kidnapped Robot, and Multi-Target Tracking. We additionally test on syn-
thetic multi-modal distributions (1D-20D). All methods use consistent configurations: 1000 par-
ticles, step size €=0.01 with adaptive decay, kernel bandwidth via median heuristic. DVRL uses
latent dimensions matching state space; SIR/POMCPOW receive equivalent computational bud-
gets. Experiments span 30 independent runs on Intel i19-13900K CPU. Our computational analysis
(Appendix D) shows ESCORT scales as O(d!-57) with correlation-aware term dominating at high
dimensions, yielding 40% correlation error improvement. Full specifications in Appendix.



Table 1: Performance comparison across POMDP environments including ablation study. Values
represent average position error (with standard error) after task completion—lower values indicate
better performance. ESCORT variants demonstrate the contribution of each component to the over-
all framework effectiveness, while the full ESCORT method consistently outperforms all baselines
across environments, with increasing advantages as dimensionality grows. Detailed environment
specifications, experimental protocols, and additional analyses are provided in the Appendix.

Method Light-Dark (10D) Kidnapped Robot (20D) Target Tracking (20D)
ESCORT Variants

Full 0.347 + 0.03 9.063 + 0.51 3.665 + 0.31
NoCorr 0.381 4+ 0.07 10.246 + 0.35 4213 £ 0.59
NoTemp 0.321 + 0.03 10.859 £ 0.51 3.874 £0.43
NoProj 0.359 4+ 0.09 9.654 £+ 0.32 3.90 + 0.42
Baselines

SVGD 0.379 £ 0.03 10.906 + 0.49 4.295 +0.22
DVRL 1.557 £ 0.10 14.309 + 0.60 4.33 +0.09
POMCPOW 2.12 +0.24 12.023 + 0.55 4.611 +£0.09

4.1 Domains

Light-Dark Navigation: Our 10D implementation (5D position, 5D velocity) extends the tradi-
tional POMDP testbed [Platt et al., 2010, Silver and Veness, 2010] with varying observation quality
tied to spatial “light level”—precise in well-lit areas but noisy in dark regions. This environment
tests belief tracking under nonuniform observation noise, generating distributions ranging from pre-
cise unimodal to complex multimodal patterns with inherent correlations. Performance is measured
by Euclidean distance to goal (lower is better), reflecting how accurately the agent navigates despite
uncertain observations.

Kidnapped Robot Problem: This classical robotics challenge [Choset et al., 2005] is scaled to
20 dimensions (position, orientation, steering, sensor calibration, and feature descriptors). A robot
must localize within a map containing perceptually similar landmark patterns, creating multi-modal
beliefs due to ambiguous observations. Performance is evaluated by position error after fixed time
steps, quantifying localization accuracy despite ambiguous landmarks.

Multiple Target Tracking: Our 20D tracking environment [Rong Li and Jilkov, 2003] challenges
an agent (4D) to track four targets (16D) under visibility zones with varying noise, occlusion re-
gions, and identity confusion areas. This domain tests simultaneous handling of high dimensionality,
multi-modality, and correlation preservation. Performance is measured by the mean position error
across all targets, indicating tracking accuracy despite occlusions and identity ambiguities. Detailed
specifications for all environments are provided in the Appendix.

4.2 Results

Table 1 demonstrates ESCORT’s superior performance across POMDP domains of varying dimen-
sionality. In the 10D Light-Dark environment, ESCORT achieves 8.5% improvement over SVGD
and 83.6% over POMCPOW, with advantages increasing in the 20D domains—achieving 16.9% and
24.7% improvements over SVGD in Kidnapped Robot and Target Tracking respectively. This con-
firms that ESCORT’s advantages become more pronounced as dimensionality grows. The ablation
study reveals how each component contributes to ESCORT’s success. Correlation-aware regulariza-
tion emerges as the most critical component, with ESCORT-NoCorr showing 9.8-15% performance
degradation that scales with dimensionality, confirming its importance in preserving belief struc-
ture. Temporal consistency exhibits domain-dependent effects: while ESCORT-NoTemp surpris-
ingly outperforms the full method in Light-Dark (0.321 vs 0.347)—suggesting symmetric patterns
may benefit from unrestricted mode transitions—it proves essential in complex 20D environments
with 19.8% degradation in Kidnapped Robot where maintaining hypothesis continuity is crucial.
Projection matrices (ESCORT-NoProj) provide consistent moderate benefits that scale from 3.5% in
Light-Dark to 6.5% in Kidnapped Robot, demonstrating their role in efficient correlation capture.

Table 2 reveals ESCORT’s specific advantages in maintaining accurate belief distributions. While
SVGD performs comparably in lower dimensions, where projection regularization offers limited



Table 2: Comparison of belief approximation methods across different dimensional spaces. MMD
and Wasserstein/Sliced Wasserstein measure distribution similarity (lower is better); Correlation
Error quantifies dimensional dependency accuracy (lower is better); Mode Coverage indicates suc-
cessful mode representation (higher is better). Results show mean + standard error across multiple
random initializations. Correlation error is not applicable for 1D. Detailed environment specifica-
tions, distribution characteristics, and metric calculations are provided in the Appendix.

Metric ESCORT SVGD DVRL SIR
1D Experiment
Maximum Mean Discrepancy 0.057 £ 0.01 0.012 £+ 0.01 0.216 £+ 0.05 0.116 + 0.07
Wasserstein 0.549 £ 0.04 0.305 £ 0.02 1.967 + 0.07 0.811 £0.22
Mode Coverage Ratio 1.0 + 0.0 1.0 + 0.0 0.867 £ 0.13 1.0 £ 0.0
2D Experiment
Maximum Mean Discrepancy 0.052 + 0.02 0.062 £ 0.01 0.071 £0.01  0.2288 £ 0.04
Sliced Wasserstein 0.263 + 0.01 0.383 £+ 0.01 0.749 £ 0.14 1.397 £ 0.11
Correlation Error 0.491 £ 0.16 0.5178 £0.04  0.6594 £0.09 0.8285 £ 0.28
Mode Coverage 1.0 + 0.0 1.0 = 0.0 1.0 + 0.0 1.0 £ 0.0
3D Experiment
Maximum Mean Discrepancy  0.002 £ 0.002 0.008 £ 0.009 0.361 £ 0.01 0.414 £+ 0.06
Sliced Wasserstein 0.305 + 0.01 0.481 £ 0.02 1442 £0.04  2.656 £0.34
Correlation Error 0.761 £ 0.004 0.819 + 0.02 0.882 + 0.01 1.003 £ 0.01
Mode Coverage 1.0 £ 0.0 1.0 £ 0.0 1.0 £ 0.0 1.0 + 0.0
5D Experiment
Maximum Mean Discrepancy 0.05 £ 0.003 0.09 £ 0.07 0.263 £ 0.004  0.394 £ 0.009
Sliced Wasserstein 0.301 + 0.01 0.3987 £0.02  1.0838 £0.01  2.939 £ 0.26
Correlation Error 0.7224 £ 0.006 0.7401 +0.014  0.823 £0.011  0.997 £ 0.003
Mode Coverage 1.0 £ 0.0 1.0 £ 0.0 1.0 £ 0.0 0.125 £ 0.0
20D Experiment
Maximum Mean Discrepancy  0.005 £+ 0.0008  0.006 + 0.0006  0.264 £ 0.005  0.584 £ 0.008
Sliced Wasserstein 0.326 = 0.007 0393 £0.005 1.117 £0.025 2.854 +0.187
Correlation Error 0.556 + 0.03 0.589 + 0.05 0.708 + 0.03 0.640 + 0.01
Mode Coverage 1.0 + 0.0 1.0 £+ 0.0 0.58 £ 0.04 0.12 £ 0.04

benefits and kernel degeneracy is less severe, ESCORT consistently outperforms all methods at
higher dimensionality, with up to 37.5% lower correlation error than traditional particle filters. Most
striking is mode coverage in high dimensions—ESCORT maintains perfect coverage in 20D spaces
where SIR experiences catastrophic mode collapse (0.12 coverage) and DVRL significant degrada-
tion (0.58 coverage). This validates our approach’s ability to preserve dimensional dependencies
while preventing particle degeneracy across all relevant modes. A comprehensive interpretation of
these results, including detailed ablation studies and statistical significance analyses, is provided in
the Appendix.

5 Conclusion

We presented ESCORT, a particle-based framework extending SVGD with correlation-aware projec-
tions and temporal consistency constraints to address the challenge of representing complex beliefs
in high-dimensional POMDPs. Our approach overcomes key limitations in existing methods by
mitigating kernel degeneracy, maintaining expressiveness without parametric compression, and pre-
venting particle collapse through deterministic evolution. Evaluations across POMDP domains and
synthetic distributions demonstrate significant improvements in both belief accuracy and decision
quality.

Despite these advances, ESCORT faces practical limitations. The computational overhead of cor-
relation matrix computation and projection optimization increases with dimensionality, potentially
limiting real-time deployment. More fundamentally, our reliance on known transition and observa-
tion models restricts applicability to domains where accurate models are unavailable. Future work
will address these limitations through GPU-accelerated implementations for real-time performance,
adaptive projection techniques that reduce computational burden, and integration with model learn-
ing approaches to enable deployment in unknown environments.

10



6 Acknowledgements

This material is based upon work supported by the National Science Foundation (NSF) under Grant
CNS-2238815 and by the Defense Advanced Research Projects Agency (DARPA) and US Air Force
Research Lab (AFRL) under the Assured Neuro Symbolic Learning and Reasoning program. Re-
sults presented in this paper were obtained using the Chameleon testbed supported by the National
Science Foundation. Any opinions, findings, conclusions, or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the NSF, DARPA, or
AFRL.

References

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning envi-
ronment: an evaluation platform for general agents. J. Artif. Int. Res., 47(1):253-279, May 2013.
ISSN 1076-9757.

Xavier Boyen and Daphne Koller. Tractable inference for complex stochastic processes. ArXiv,
abs/1301.7362, 1998. URL https://api.semanticscholar.org/CorpusID:5556701.

Alex Brooks, Alexei Makarenko, Stefan Williams, and Hugh Durrant-Whyte. Parametric pomdps
for planning in continuous state spaces. Robotics and Autonomous Systems, 54(11):887-897,
2006. ISSN 0921-8890. doi: https://doi.org/10.1016/j.robot.2006.05.007. URL https://wuw.
sciencedirect.com/science/article/pii/S0921889006000960. Planning Under Uncer-
tainty in Robotics.

Peng Chen and Omar Ghattas. Projected stein variational gradient descent. In Proceedings of the
34th International Conference on Neural Information Processing Systems, NIPS *20, Red Hook,
NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

Xiaoyu Chen, Yao Mu, Ping Luo, Sheng Li, and Jianyu Chen. Flow-based recurrent belief state
learning for pomdps. In International Conference on Machine Learning, 2022. URL https:
//api.semanticscholar.org/CorpusID:248986064.

Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia E.
Kavraki, and Sebastian Thrun. Principles of Robot Motion: Theory, Algorithms, and Imple-
mentation, chapter 13, pages 249-253. MIT Press, Cambridge, MA, 2005.

Damien Garreau, Wittawat Jitkrittum, and Motonobu Kanagawa. Large sample analysis of the
median heuristic. arXiv: Statistics Theory, 2017. URL https://api.semanticscholar.org/
CorpusID:88514908.

Neil J. Gordon, David Salmond, and Adrian F. M. Smith. Novel approach to nonlinear/non-gaussian
bayesian state estimation. In IEE Proceedings F Radar and Signal Processing,, 1993.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti
Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Ferndndez
del Rio, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy,
Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array pro-
gramming with numpy. Nature, 585(7825):357-362, September 2020. ISSN 1476-4687. doi:
10.1038/s41586-020-2649-2. URL http://dx.doi.org/10.1038/s41586-020-2649-2.

Matthew J. Hausknecht and Peter Stone. Deep recurrent g-learning for partially observable
mdps. ArXiv, abs/1507.06527,2015. URL https://api.semanticscholar.org/CorpusID:
8696662.

Maximilian Igl, Luisa Zintgraf, Tuan Anh Le, Frank Wood, and Shimon Whiteson. Deep variational
reinforcement learning for POMDPs. In Jennifer Dy and Andreas Krause, editors, Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 2117-2126. PMLR, 10-15 Jul 2018. URL https://proceedings.
mlr.press/v80/igli8a.html.

11



Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and act-
ing in partially observable stochastic domains. Artificial Intelligence, 101(1):99-134, 1998.
ISSN 0004-3702. doi: https://doi.org/10.1016/S0004-3702(98)00023-X. URL https://www.
sciencedirect.com/science/article/pii/S000437029800023X.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. CoRR, abs/1312.6114,
2013. URL https://api.semanticscholar.org/CorpusID:216078090.

Soheil Kolouri, Kimia Nadjahi, Umut Simsekli, Roland Badeau, and Gustavo Rohde. Generalized
sliced wasserstein distances. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

Solomon Kullback and R. A. Leibler. On information and sufficiency. Annals of Mathe-
matical Statistics, 22:79-86, 1951. URL https://api.semanticscholar.org/CorpusID:
120349231.

Hanna Kurniawati. Partially observable markov decision processes and robotics. Annual Review of
Control, Robotics, and Autonomous Systems, 5:253-277, 2022. ISSN 2573-5144. doi: 10.1146/
annurev-control-042920-092451. Publisher Copyright: Copyright © 2022 by Annual Reviews.

Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: a llvm-based python jit compiler. In
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, LLVM 15,
New York, NY, USA, 2015. Association for Computing Machinery. ISBN 9781450340052. doi:
10.1145/2833157.2833162. URL https://doi.org/10.1145/2833157.2833162.

Mikko Lauri, David Hsu, and Joni Pajarinen. Partially observable markov decision processes in
robotics: A survey. IEEE Transactions on Robotics, 39(1):21-40, 2023. doi: 10.1109/TRO.2022.
3200138.

Tiancheng Li, Shudong Sun, Tariq Pervez Sattar, and Juan Manuel Corchado. Fight sample de-
generacy and impoverishment in particle filters: A review of intelligent approaches. Expert
Systems with Applications, 41(8):3944-3954, 2014. ISSN 0957-4174. doi: https://doi.org/
10.1016/j.eswa.2013.12.031. URL https://www.sciencedirect.com/science/article/
pii/S0957417413010063.

Qiang Liu. Stein variational gradient descent as gradient flow. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Xiao Ma, Peter Karkus, David Hsu, Wee Sun Lee, and Nan Ye. Discriminative particle filter
reinforcement learning for complex partial observations. ArXiv, abs/2002.09884, 2020. URL
https://api.semanticscholar.org/CorpusID:211259464.

Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and
Michael Bowling. Revisiting the arcade learning environment: evaluation protocols and open
problems for general agents. J. Artif. Int. Res., 61(1):523-562, January 2018. ISSN 1076-9757.

Robert Platt, Russ Tedrake, Leslie Pack Kaelbling, and Tomas Lozano-Perez. Belief space planning
assuming maximum likelihood observations. In Robotics: Science and Systems, 2010. URL
https://api.semanticscholar.org/CorpusID:2693863.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John
Wiley & Sons, 1994.

J. Rabin, G. Peyre, J. Delon, and M. Bernot. Wasserstein barycenter and its application to texture
mixing. Scale Space and Variational Methods in Computer Vision, 2011. pp. 435-446.

X. Rong Li and V.P. Jilkov. Survey of maneuvering target tracking. part i. dynamic models. /EEE

Transactions on Aerospace and Electronic Systems, 39(4):1333-1364, 2003. doi: 10.1109/TAES.
2003.1261132.

12



Nicholas Roy and Geoffrey J Gordon. Exponential family pca for belief compression in pomdps.
In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing
Systems, volume 15. MIT Press, 2002.

David Silver and Joel Veness. Monte-carlo planning in large pomdps. In J. Lafferty, C. Williams,
J. Shawe-Taylor, R. Zemel, and A. Culotta, editors, Advances in Neural Information Processing
Systems, volume 23. Curran Associates, Inc., 2010.

Adhiraj Somani, Nan Ye, David Hsu, and Wee Sun Lee. Despot: Online pomdp planning with
regularization. In C.J. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger,
editors, Advances in Neural Information Processing Systems, volume 26. Curran Associates, Inc.,
2013.

Zachary Sunberg and Mykel Kochenderfer. Online algorithms for pomdps with continuous state,
action, and observation spaces, 2018. URL https://arxiv.org/abs/1709.06196.

Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics. MIT Press, Cambridge,
MA, 2005. ISBN 0-262-20162-3.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U. Balis, Gianluca De Cola, Tristan Deleu,
Manuel Gouldo, Andreas Kallinteris, Markus Krimmel, Arjun KG, Rodrigo Perez-Vicente, An-
drea Pierré, Sander Schulhoff, Jun Jet Tai, Hannah Tan, and Omar G. Younis. Gymnasium: A
standard interface for reinforcement learning environments, 2024. URL https://arxiv.org/
abs/2407.17032.

Cédric Villani. Optimal transport — Old and new, volume 338, pages xxii+973. Springer-Verlag, 01
2008. doi: 10.1007/978-3-540-71050-9.

Dilin Wang, Zhe Zeng, and Qiang Liu. Structured stein variational inference for continuous graph-
ical models. ArXiv, abs/1711.07168, 2017. URL https://api.semanticscholar.org/
CorpusID:28924187.

Dilin Wang, Zhe Zeng, and Qiang Liu. Stein variational message passing for continuous graphi-
cal models. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pages 5219-5227. PMLR, 10-15 Jul 2018. URL https://proceedings.mlr.press/v80/
wangl8l.html.

Wei Wei, Lijun Zhang, Lin Li, Huizhong Song, and Jiye Liang. Set-membership belief state-based
reinforcement learning for POMDPs. In Andreas Krause, Emma Brunskill, Kyunghyun Cho,
Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceedings of the 40th In-
ternational Conference on Machine Learning, volume 202 of Proceedings of Machine Learning
Research, pages 36856-36867. PMLR, 23-29 Jul 2023.

Chenyang Wu, Guoyu Yang, Zongzhang Zhang, Yang Yu, Dong Li, Wulong Liu, and Jianye Hao.
Adaptive online packing-guided search for pomdps. In M. Ranzato, A. Beygelzimer, Y. Dauphin,
P.S. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing Sys-
tems, volume 34, pages 28419-28430. Curran Associates, Inc., 2021.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. ArXiv, abs/1611.03530, 2016. URL https:
//api.semanticscholar.org/CorpusID:6212000.

Yunuo Zhang, Baiting Luo, Ayan Mukhopadhyay, Daniel Stojcsics, Daniel Elenius, Anirban Roy,
Susmit Jha, Miklos Maroti, Xenofon Koutsoukos, Gabor Karsai, and Abhishek Dubey. Shrinking
pomcep: A framework for real-time uav search and rescue. In 2024 International Conference on
Assured Autonomy (ICAA), pages 48-57, 2024. doi: 10.1109/ICAA64256.2024.00016.

Yunuo Zhang, Baiting Luo, Ayan Mukhopadhyay, and Abhishek Dubey. Observation adaptation via
annealed importance resampling for partially observable markov decision processes. Proceedings
of the International Conference on Automated Planning and Scheduling, 35(1):306-314, Sep.
2025. doi: 10.1609/icaps.v35i1.36132. URL https://ojs.aaai.org/index.php/ICAPS/
article/view/36132.

13



Pengfei Zhu, Xin Li, Pascal Poupart, and Guanghui Miao. On improving deep reinforcement learn-
ing for pomdps, 2018. URL https://arxiv.org/abs/1704.07978.

Jingwei Zhuo, Chang Liu, Jiaxin Shi, Jun Zhu, Ning Chen, and Bo Zhang. Message passing stein
variational gradient descent. In International Conference on Machine Learning, 2017. URL
https://api.semanticscholar.org/CorpusID:51877948.

K.J Astrém. Optimal control of markov processes with incomplete state information. Journal
of Mathematical Analysis and Applications, 10(1):174-205, 1965. ISSN 0022-247X. doi:
https://doi.org/10.1016/0022-247X(65)90154-X. URL https://www.sciencedirect.com/
science/article/pii/0022247X6590154X.

14



Algorithm 1: ESCORT
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A List of Abbreviations

This section provides a comprehensive list of abbreviations and acronyms used throughout this pa-
per. The abbreviations are organized by category for easy reference, with their corresponding full
forms to assist readers in understanding the technical terminology.

Mathematical Foundations and Concepts

Abbreviation  Full Form
GSW Distance  Generalized Sliced Wasserstein Distance [Kolouri et al., 2019]
KL Divergence Kullback-Leibler Divergence [Kullback and Leibler, 1951]

MDP Markov Decision Process [Puterman, 1994]

oT Optimal Transport [Villani, 2008]

POMDP Partially Observable Markov Decision Process [Astrom, 1965]
RBF Radial Basis Function [Garreau et al., 2017]

SWD Sliced Wasserstein Distance [Rabin et al., 2011]

Approaches and Algorithms

Abbreviation Full Form

AdaOPS Adaptive Online Packing-guided Search [Wu et al., 2021]

ADRQN Action-specific Deep Recurrent Q-Network [Zhu et al., 2018]

ARDESPOT  Anytime Regularized DEterminized Sparse Partially Observable Tree [Somani et al., 2013]
DROQN Deep Recurrent Q-Network [Hausknecht and Stone, 2015]

DVRL Deep Variational Reinforcement Learning [Ig] et al., 2018]

ESCORT Efficient Stein-variational and sliced Consistency-Optimized

Representation for Temporal beliefs
MP-SVGD Message Passing Stein Variational Gradient Descent [Zhuo et al., 2017]

POMCP Partially Observable Monte Carlo Planning [Silver and Veness, 2010]

POMCPOW  Partially Observable Monte Carlo Planning with Observation Widening [Sunberg and Kochenderfer, 2018]
SIR Sequential Importance Resampling [Gordon et al., 1993]

SVGD Stein Variational Gradient Descent [Liu, 2017]

VAE Variational Autoencoder [Kingma and Welling, 2013]

B Theoretical Foundations

We begin by stating the core assumptions motivating our approach:

Assumption 1 (Belief Distribution Properties) POMDP belief distributions in realistic environ-
ments exhibit:

(Al.1) High dimensionality (state space dimension d > 1)
(Al.2) Multi-modality (multiple distinct hypotheses with non-zero probability mass)

(Al.3) Complex correlation structures between state dimensions

Remark 1 This assumption characterizes the fundamental challenges in practical POMDP appli-
cations that motivate our approach. High dimensionality reflects the complexity of real-world state
spaces (e.g., robotic configuration, environmental features); multi-modality emerges naturally from
ambiguous observations creating multiple plausible hypotheses; and importantly, we assume that
the complex shape of multi-modal, high-dimensional belief distributions can be effectively approx-
imated by capturing the dependencies and causal relationships between state variables. This last
property is critical to our approach—while the raw dimensionality might be high, the intrinsic struc-
ture of realistic belief distributions is governed by these inter-dimensional dependencies, creating a
lower-dimensional manifold on which belief evolution primarily occurs. While simplified POMDPs
may lack some of these properties, our focus is on complex domains where traditional methods
struggle precisely because these properties co-occur.

16



Assumption 2 (Regularity Conditions) The frue belief distribution p(s) has bounded derivatives
up to second order, ensuring the score function ¥V log p(s) is Lipschitz continuous with constant L.

Remark 2 This standard mathematical assumption ensures well-behaved gradients during particle
evolution, providing necessary conditions for convergence guarantees. The Lipschitz condition en-
ables us to establish convergence rates for ESCORT’s deterministic updates and ensures stability by
preventing arbitrarily large update steps. Given this Lipschitz score function combined with positive
definite kernel properties (Assumption 3), ESCORT inherits SVGD’s convergence guarantees with
modifications accounting for our regularization. As particle count n — oo and step size € — 0 fol-
lowing Y ;2 ey = coand y =, €2 < oo, the empirical distribution converges to the true belief p(s)
in Wasserstein distance: W (% Z?:l 0z, s p) — 0. Our regularization terms Ron and Loy, are
designed to vanish as convergence is achieved, ensuring they guide but don’t prevent convergence
while maintaining correlation structure throughout the optimization process.

Assumption 3 (Kernel Properties) The kernel function k(x,y) is positive definite, symmetric, and
has bounded derivatives up to second order.

Remark 3 These kernel properties are essential for ESCORT'’s theoretical guarantees and are sat-
isfied by commonly used kernels such as the RBF kernel. The positive definiteness ensures the kernel
induces a valid reproducing kernel Hilbert space in which gradient flow operates; symmetry main-
tains balanced particle interactions; and bounded derivatives prevent numerical instabilities in high
dimensions. While our implementation uses the RBF kernel, any kernel satisfying these properties
can be substituted, allowing domain-specific adaptation when prior knowledge suggests alternative
similarity measures.

Assumption 4 (Projection Representation) There exists a finite set of projection matrices
{A; Y| such that for any belief distribution p with correlation matrix ¥,, and any € > 0, there
exists weights {w; }* ; where:

(A4.1) |2, — 7 wiA; AT || F < e for m sufficiently large
(A4.2) The projection matrices identify principal correlation directions

Remark 4 This assumption formalizes the capacity of our projection-based approach to capture
correlation structures with arbitrary precision. It draws on results from matrix approximation the-
ory, specifically that any positive semi-definite matrix can be approximated by a weighted sum of
rank-one projections. In practice, with sufficiently many projection matrices, ESCORT can pre-
serve complex correlation patterns between state dimensions. Under this assumption, for any be-
lief distribution b(s) with correlation matrix X, our learned projection matrices {A;}*, satisfy
15, — S wiA; AT ||p < e for sufficiently large m. This guarantee ensures that as we increase
the number of projections, ESCORT captures the complete correlation structure of complex belief
distributions. The correlation-aware regularization term Ry (¢) = Epg[> i, w; - |Al (¢(z) —
Ey~q[¢(y)])|?] enforces this preservation during particle updates, preventing the loss of dimensional
dependencies that plagues standard SVGD in high-dimensional spaces.

Assumption 5 (Bounded Transition Dynamics) For any state s, action a, and the resulting state
s', the POMDP transition dynamics satisfy ||s' — s|| < dmax with probability 1, where dmax repre-
sents the maximum possible state change in a single timestep.

Remark 5 This assumption reflects physical constraints present in most real-world systems where
state transitions occur continuously rather than through arbitrarily large jumps. It enables our tem-
poral consistency constraints by establishing a natural scale for reasonable belief updates between
timesteps. Most physical systems, robotics applications, and natural processes exhibit bounded
changes per timestep, allowing ESCORT to distinguish between realistic belief evolution and erro-
neous jumps caused by particle degeneracy or observation ambiguity. Under this assumption, the
temporal regularization Ly, = f® W1((Ag) Tbei1, (Ag) Tbs)dN(0) ensures that consecutive belief
updates remain bounded: W1 (by11,b:) < C - (Omax + Oobs) Where C depends on the Lipschitz con-
stants of transition and observation models, and o,ps captures observation noise. This guarantee
prevents catastrophic belief jumps that occur in particle filters during resampling while allowing
necessary adaptation to new evidence.
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C Practical Implementation of Correlation-Aware Deterministic Belief
Update Mechanism

The practical implementation of ESCORT’s belief update mechanism combines deterministic par-
ticle evolution through modified SVGD with model-based state estimation to maintain accurate
belief representations in high-dimensional POMDPs. At each timestep, the belief update pro-
ceeds through three key stages: first, particles are propagated through the transition model jf-“ =
T(xﬁ, ay)+n; where n; ~ N (0, Xyans ) TEpresents transition noise; second, the observation likelihood

w; = O(0p41 |5:f+1, at) is computed for each predicted particle; and finally, the correlation-aware
SVGD update is applied. The complete update takes the form zi* = i+ 4 epr (#171), where

. i, reg\i
(req incorporates both the standard SVGD forces and our correlation-aware regularization. To pre-

vent particle degeneracy in high-dimensional spaces, we add small Gaussian noise with variance
o2..=0.01 x (1+ 0.1d) that scales with the state dimensionality d.

The score function V log p(x), which drives particles toward high-probability regions, cannot be

computed analytically in most POMDP settings. Our implementation employs adaptive finite dif-

ferences to numerically approximate these gradients with enhanced stability. For each particle z;
log O(z;+€jej,0)—log O(x;—eje;,0)

5 , Where
-J

and dimension j, we compute the score as [V log p(z;)]; =

e; is the j-th unit vector and €; = max(107%,107 - |z; ;|) is an adaptive step size that scales
with the magnitude of the state component. To handle numerical instabilities, we enforce a min-
imum likelihood threshold of 10~'° before taking logarithms and clip the resulting scores to the
range [—100, 100]. For extremely large state differences where || Az ||« > 105, we employ the log-
sum-exp trick: ||z]|2 = exp(2m) >_;exp(2(log |z;| — m)) where m = max; log |z;|, preventing
overflow in distance computations.

The correlation-aware regularization term modifies the standard SVGD update by incorporating
learned projection matrices that capture dimensional dependencies. In practice, the regularized
update for particle i becomes ¢y, (i) = %Z?zl[k:(o:j,xi)vmj logp(zj) + Vo, k(zj,2;)] —
Acorr Yoy Wi A AT (z; — Z), where z = %ZJ x; is the particle mean and {Aj,wy}7 | are
the projection matrices and weights. The kernel bandwidth adapts to the data scale as h =
ho - median(||z; — 2;|) - V/d/2, where hg is the base bandwidth, accounting for the curse of
dimensionality. To enhance multi-modal coverage, we scale the repulsive forces by a factor of
(14 0.1d) in high-dimensional spaces, preventing mode collapse when kernel values become nearly
uniform. The projection matrices are initialized using eigenvectors of the correlation difference ma-
trix AC' = corr(X,) — corr(X,) between current and target distributions, then optimized through
gradient ascent on the projected Wasserstein distance to maximize sensitivity to correlation changes.

D Practical Implementation of Temporal Consistency Regularization

Temporal consistency regularization in ESCORT prevents unrealistic belief jumps between
timesteps using an efficient approximation of the Generalized Sliced Wasserstein Distance (GSWD),
as shown in Figure 2. We discretize Equation 6 as GSWD(p, ¢) ~ >, w; W1 ((A46;) "p, (46;) T q),
where 6; are projection directions and w; are importance weights. These projections capture the
most informative dimensions along which consecutive belief distributions differ.

Our implementation optimizes these projections using finite difference gradient estimation. For
each direction 6;, we compute the gradient by perturbing each dimension by e (typically 10~°) and
measuring the change in the projected 1D Wasserstein distance. These gradients drive a momentum-
based update: v;1 = 0.9v; + 1, VoW;. For better performance in correlated spaces like the Light-
Dark environment, we weight gradients by eigenvalues of the covariance matrix, helping capture the
coupled dynamics between position and velocity dimensions.

The 1D Wasserstein distance along each projection is computed efficiently by sorting projected
particles: Wy = £ 377" | | Xored; — ysored;| This sorting also produces a matching between par-
ticles across timesteps, creating the transport plan seen in Figure 2. Unlike finite difference meth-
ods, the actual regularization term computes forces directly from this optimal transport matching:
regi = Atemp Y j = 1"w;(zo;(i)™" — x;), where o;(i) is the index of the particle matched to i
under projection ;.

18



Ltemp = GSWD(Tat70t+1 (bt)> bt+1) Invalid Jump

Belief at ¢ A><

° [ ]
.. ° ..
[ ]
[} [}
[ ]
[} [}
.‘.
"V-aIid" Belief at ¢t + 1
Projection matricés Ay
Wasserstein distance W
e Belief Particles Belief Distributions
— — Invalid Update — Constrained Update

Figure 2: The figure illustrates how GSWD regularization prevents invalid belief jumps between
consecutive timesteps. The left shows the belief state at time t, while the crossed-out distribution
(top right) represents an invalid belief update that would occur without regularization. The bottom
right shows the valid belief at t+1 after applying temporal consistency constraints.

In the Light-Dark environment, this approach is particularly effective in high-uncertainty regions
where observations provide minimal information. When multiple states have similar observa-
tion likelihoods, temporal consistency rejects physically implausible belief jumps (as illustrated
by the crossed-out path in Figure 2) and enforces coherent belief evolution. Our implementation
includes safeguards for numerical stability: normalized projections, clipped regularization terms
(clip(reg;, —10, 10)), and adaptive bandwidth scaling (h = median(|z; — 2;|) - 0.5 - \/d/2). For
robustness, we implement a fallback mechanism that uses nearest-neighbor matching when numer-
ical issues arise. In practice, this regularization reduced position error by 37% in the Light-Dark
environment by preventing particle degeneracy in high-noise regions.

E Computational Cost Analysis

We conducted a detailed FLOPs (Floating Point Operations) analysis of ESCORT to address com-
putational scalability across dimensions. Table 3 presents the breakdown of computational costs per
belief update. Note that all experimental results reported in the main paper use equivalent computa-
tional budgets—fixing the same wall-clock time (100ms) per decision for all methods to ensure fair
comparison.

Our empirical analysis shows ESCORT scales as O(d'®7), which aligns with theoretical expecta-
tions. The algorithm’s complexity is dominated by kernel computation O(n?d) for pairwise dis-
tances and gradients, SVGD forces O(n?d) for attractive/repulsive particle interactions, GSWD
regularization O(nmd?) for m projections in d dimensions, and temporal consistency O(n?) inde-
pendent of dimension.
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Table 3: ESCORT Computational Cost Breakdown (GFLOPs per belief update)

Dimension GFLOPs Kernel % SVGD % GSWD % Temp %

10 6.72 62.5 29.8 6.3 1.5
20 15.60 52.6 25.7 21.1 0.6
50 81.06 24.9 12.3 62.6 0.1
100 262.31 15.3 7.6 77.0 0.0
200 926.32 8.7 43 87.0 0.0

As dimensionality increases, the correlation-aware GSWD term (O(md?)) becomes the dominant
cost, accounting for 87% of computation at 200D. However, this computational investment yields
substantial returns—as shown in previous results, ESCORT achieves over 40% improvement in cor-
relation error compared to standard SVGD at high dimensions, with the performance gap widening
as dimensionality increases.

Our implementation already incorporates several optimizations including Numba JIT compila-
tion [Lam et al., 2015] for kernel computations providing 5-10x speedup, vectorized operations in
GSWD using batched matrix multiplications [Harris et al., 2020], adaptive subsampling for distance
computations in high dimensions, and caching of score functions and transition models in belief
updates.

To further improve scalability, we propose GPU acceleration for the O(md?) projection operations,
sparse projection matrices that exploit correlation structure reducing O(d?) to O(d - k) for k-sparse
projections, and hierarchical approximations that group correlated dimensions. These optimizations
could reduce the effective complexity closer to O(d!-?) while preserving the critical correlation-
aware benefits that make ESCORT superior in high-dimensional POMDPs.

F Hyperparameters

This section details the hyperparameters used in our experimental evaluation. Table 4 summarizes
the key hyperparameters used for each method across the three evaluation domains. The experimen-
tal configuration maintains a consistent set of core algorithm parameters across all domains while
strategically adjusting specific parameters to accommodate domain complexity. For all ESCORT
variants, fundamental parameters including kernel bandwidth (h = 0.1), step size (¢ = 0.01),
and regularization strengths (Acorr = 0.1, Aemp = 0.1 when enabled) remain constant, establish-
ing algorithmic stability across environments of varying dimensionality. The primary adaptation
to increased complexity is seen in the state dimension scaling from 10D in Light-Dark to 20D in
both Kidnapped Robot and Target Tracking domains, with corresponding adjustments to projection
counts (nprj = 10 for Kidnapped Robot versus n,; = 5 for others).

ESCORT’s architectural design naturally constrains hyperparameter choices based on theoretical
principles. The correlation-aware regularization weight (A\.) and temporal consistency weight
(Memp) Tepresent the relative importance of preserving dimensional dependencies versus temporal
stability against the base SVGD forces. We initialized both at A = 0.1 as a starting point, though
our analysis reveals optimal values are domain-dependent—particularly Aimp, Which varies with
environment dynamics. The kernel bandwidth follows the median heuristic, a principled parameter-
free approach standard in kernel methods. Hyperparameter selection followed established practices:
regularization weights initialized at A = 0.1 as baseline values, step size (¢ = 0.01) follows SVGD
convergence theory, kernel bandwidth uses median heuristic, and projection counts scale with state
dimensionality. This principled approach ensures reproducibility while minimizing domain-specific
tuning.

Notable domain-specific adjustments appear in the comparative methods, revealing insights into
their computational strategies. DVRL’s belief dimension scales proportionally with state complexity,
using half the state dimension in Light-Dark (5) and Kidnapped Robot (10), but matching the full
dimension in Target Tracking (20), suggesting a more expressive belief representation is needed
for the complex multi-target environment. Similarly, POMCPOW employs deeper search depths
(dmax = 5) and more simulations (ngy, = 100) with higher exploration constants (cexpt = 50.0) in
the challenging Kidnapped Robot environment compared to the other domains (diax = 3, Tsim = 50,

20



Table 4: Hyperparameters for different algorithms across domains

Method Parameter Light-Dark 10D | Kidnapped Robot | Target Tracking
Nparticles 100 100 100
state 10 20 20
0.1 0.1 0.1
ESCORT € 0.01 0.01 0.01
Acorr 0.1 0.1 0.1
Atemp 0.1 0.1 0.1
Nproj 5 10 5
Nparticles 100 100 100
dstate 10 20 20
0.1 0.1 0.1
ESCORT-NoCorr | ¢ 0.01 0.01 0.01
Acorr 0.0 0.0 0.0
temp 0.1 0.1 0.1
Mproj 5 10 5
Tparticles 100 100 100
state 10 20 20
0.1 0.1 0.1
ESCORT-NoTemp | ¢ 0.01 0.01 0.01
Acorr 0.1 0.1 0.1
Atemp 0.0 0.0 0.0
Mproj 5 10 5
Tparticles 100 100 100
state 10 20 20
0.1 0.1 0.1
. € 0.01 0.01 0.01
ESCORT-NoProj Ao 01 01 0.1
Atemp 0.1 0.1 0.1
Mproj 5 10 5
projection_method ‘random’ ‘random’ ‘random’
Nparticles 100 100 100
dstate 10 20 20
h 0.1 0.1 0.1
SVGD e 0.01 0.01 0.01
adaptive_bandwidth True True True
enhanced _repulsion True True True
dstate 10 20 20
dvelief 5 10 20
DVRL Nparticles 100 100 100
dy, 64 64 64
Tparticles 100 100 100
max 3 5 3
Ngim 50 100 50
Cexpl 10.0 50.0 10.0
POMCPOW Qlaction 0.5 0.5 0.5
Kaction 4.0 4.0 4.0
Qlobs 0.5 0.5 0.5
Kobs 4.0 4.0 4.0
5y 0.95 0.95 0.95
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Cexpt = 10.0), indicating increased computational budget allocation for the perceptually ambiguous
scenario with multiple similar landmarks. These systematic hyperparameter adjustments reflect a
deliberate balance between maintaining algorithmic consistency and adapting to domain-specific
challenges.

G Analysis of Baseline Methods

This section provides a detailed analysis of existing belief approximation methods and their fun-
damental limitations in addressing the challenges of high-dimensional, multi-modal belief distribu-
tions with complex correlation structures in POMDPs. We examine three categories of approaches:
deterministic variational methods (SVGD), particle-based sampling methods (SIR filters [Gordon
et al., 1993] and their POMDP extensions like POMCPOW [Sunberg and Kochenderfer, 2018],
POMCEP [Silver and Veness, 2010], ARDESPOT [Somani et al., 2013]), and parametric neural rep-
resentations (DVRL [Igl et al., 2018], DRQN [Hausknecht and Stone, 2015], ADRQN [Zhu et al.,
2018]). While each category offers unique advantages—SVGD’s deterministic particle evolution,
particle filters’ theoretical convergence guarantees, and neural methods’ computational efficiency—
we demonstrate how their core assumptions and algorithmic choices prevent them from simultane-
ously maintaining multi-modal coverage, preserving dimensional correlations, and scaling to high-
dimensional belief spaces. Understanding these limitations not only motivates the design choices in
ESCORT but also clarifies why a fundamentally new approach combining correlation-aware projec-
tions with temporal consistency constraints is necessary for accurate belief representation in complex
POMDPs.

Stein Variational Gradient Descent (SVGD) [Liu, 2017] represents a significant advancement in
Bayesian inference by providing a deterministic particle-based approach that bridges the gap be-
tween variational inference and sampling methods. The key insight of SVGD lies in its ele-
gant formulation of particle updates through functional gradient descent in a reproducing ker-
nel Hilbert space (RKHS), where particles evolve according to X§+1 = x! 4 ep*(x!) with
P (x) = %Z;.L:l[k(xj,x)vxj log p(x;) + Vx,k(x;,x)]. This update mechanism ingeniously
balances two forces: an attractive term k(x;,x)Vy; logp(x;) that drives particles toward high-
probability regions, and a repulsive term V, k(x;, X) that maintains particle diversity. While SVGD
successfully addresses several limitations of traditional MCMC methods—particularly avoiding
stochastic resampling and providing deterministic updates—it faces critical challenges when ap-
plied to high-dimensional POMDPs with complex belief distributions. The standard RBF kernel
k(x,x') = exp(—+||x — x'[|?) suffers from kernel degeneracy as dimensionality increases, caus-
ing kernel values to become nearly uniform and weakening the essential repulsive forces needed to
prevent mode collapse. Moreover, SVGD’s isotropic kernel treats all dimensions uniformly, failing
to capture the anisotropic nature of belief distributions where correlation strengths vary significantly
across dimension pairs—a critical limitation when representing beliefs about interdependent state
variables in realistic POMDP scenarios.

Deep Variational Reinforcement Learning (DVRL) Igl et al. [2018] represents a sophisticated in-
tegration of variational inference with deep reinforcement learning, introducing an important in-
ductive bias that enables agents to learn generative models of the environment and perform in-
ference within those models. The key innovation of DVRL lies in its particle-based belief rep-
resentation b, = {(h¥,2F wF)}I |, where each particle consists of a deterministic RNN hid-
den state hf, a stochastic latent variable z¥, and an importance weight w¥. This approach ele-
gantly combines the expressiveness of neural networks with the flexibility of particle filters, using
a variational autoencoder framework to jointly optimize an evidence lower bound (ELBO) along-
side the reinforcement learning objective: LPVRL = £A4 + Ay LH + A\ L)V + ApLEBO. While
DVRL successfully demonstrates that learning internal generative models improves performance
over pure RNN-based approaches, it faces limitations when confronted with the specific chal-
lenges of high-dimensional belief spaces with complex correlation structures. The particle updates
in DVRL follow standard importance sampling with resampling, where weights are computed as

k Pe(zf\hﬁl7at—1)Pe(Ot\hﬁl7257%—1) . . . . .
wy = , treating all state dimensions uniformly without mecha-

uk
(Id>(zf ‘h’tilvat—l 70t)
nisms to capture or preserve dimensional dependencies. Furthermore, while the resampling step
helps maintain particle diversity, it can disrupt correlation structures between state variables, and the
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lack of explicit temporal consistency constraints allows for potentially unrealistic belief transitions
between timesteps—limitations that become particularly pronounced in environments where state
variables exhibit strong interdependencies and beliefs must evolve smoothly over time.

POMCPOW (Partially Observable Monte Carlo Planning with Observation Widening) [Sunberg
and Kochenderfer, 2018] extends POMCP to handle continuous observation spaces through dou-
ble progressive widening (DPW) and weighted particle filtering. While standard POMCP suffers
from belief collapse to single particles in continuous spaces—leading to QMDP-like policies that
ignore information value—POMCPOW maintains weighted particle collections where each parti-
cle’s weight is proportional to the observation likelihood Z(0ls, a, s’). This weighting mechanism
prevents complete belief degeneracy and enables some information-gathering behavior. However,
POMCPOW still faces critical limitations in representing complex belief distributions. First, it lacks
explicit mechanisms to model correlation structures between state dimensions, treating particles in-
dependently without capturing the interdependencies crucial for realistic POMDPs. Second, the
approach provides no temporal consistency constraints, allowing abrupt belief transitions that can
destroy previously learned structures. Third, despite the weighting scheme, POMCPOW remains
vulnerable to particle degeneracy in high-dimensional spaces where the effective sample size di-
minishes rapidly. These limitations mean that while POMCPOW improves upon basic POMCP for
continuous observations, it cannot adequately represent the high-dimensional, multi-modal, corre-
lated belief distributions that characterize complex POMDP domains.

Beyond the methods discussed above, several other approaches have been proposed for belief ap-
proximation in POMDPs. ARDESPOT (Anytime Regularized DEterminized Sparse Partially Ob-
servable Tree) [Somani et al., 2013] uses determinized sparse sampling with regularization to scale
POMCP to larger problems but still relies on unweighted particles that cannot capture complex cor-
relation structures. AdaOPS (Adaptive Online Packing-guided Search) [Wu et al., 2021] improves
upon POMCP by adaptively selecting action and observation branches using packing constraints,
though it remains limited by particle degeneracy in high-dimensional continuous spaces. DRQN
(Deep Recurrent Q-Learning) [Hausknecht and Stone, 2015] uses recurrent neural networks to com-
press observation histories into fixed-dimensional vectors but struggles to maintain distinct hypothe-
ses for multi-modal beliefs. ADRQN [Zhu et al., 2018] augments DRQN with auxiliary tasks and
attention mechanisms to better capture uncertainty, yet the fixed-size representation still cannot adapt
to varying belief complexity. FORBES (Flow-based Recurrent Belief State Learning) [Chen et al.,
2022] employs normalizing flows to learn more expressive belief representations but requires exten-
sive offline training and may not generalize well to novel scenarios. SBRL (Set-membership Belief
State-based Reinforcement Learning) [Wei et al., 2023] maintains set-based belief representations
that can capture some uncertainty structure but lacks the flexibility to model arbitrary multi-modal
distributions with complex correlations. While each of these methods addresses specific aspects of
belief representation, none provides a comprehensive solution for maintaining accurate, multi-modal
beliefs with intricate correlation structures in high-dimensional continuous POMDPs.

H Domains

H.1 Light Dark 10D

The Light-Dark Navigation environment extends the classical POMDP testbed to a high-dimensional
setting that exhibits the fundamental challenges addressed by ESCORT. The environment operates
in a 10-dimensional continuous state space S C R'°, decomposed into position coordinates x =
(w1, 2,23, 24,75) € [0,10]° and velocity components v = (v1, v2, v3,v4,v5) € R5. The agent
can apply forces through 10 discrete actions A = {0, 1,...,9}, where action a = 2i applies positive
force in dimension 7 and a = 27 4 1 applies negative force. The agent receives noisy 5-dimensional
position observations o € R® with noise variance 02 (x) = o, - (1 — L(x)) + 02,,, where L(x) €
[0, 1] represents the light intensity at position X, opase = 0.5, and omin = 0.01. As illustrated in
Figure 3, the four 2D projections reveal the complex spatial structure, with light regions (blue-to-
white gradient) providing precise observations and dark regions inducing high uncertainty.

The environment contains seven strategically placed light regions that create complex belief land-
scapes and perceptual aliasing. The Primary Corridor (centered at (5,0, 0, 0,0) with radius 2.0 and
intensity 0.9) and Mirror Corridor (centered at (0, 5,0, 0, 0) with identical parameters) create sym-
metric patterns that induce multi-modal beliefs, as demonstrated by the orange belief particles in
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Figure 3: Light Dark 10D POMDP Environment. Four 2D projections of the 10D state space (5D
position + 5D velocity) showing: (Top-left) Symmetric corridors creating perceptual aliasing with
multi-modal belief particles (orange) splitting in dark regions; (Top-right) Z-shaped navigation
path with sequential waypoints; (Bottom-left) Start-to-goal trajectory from dark region (red cir-
cle) to goal beacon (green star); (Bottom-right) Cross-dimensional correlations. Light intensity
maps (blue-to-white) encode observation noise 0?(x) = 0.52 x (1 — L(x)) + 0.012, with con-
tour lines marking light boundaries. The environment challenges belief approximation through high
dimensionality, multi-modality from symmetric patterns, and strong position-velocity correlations

(p = 0.8).

Figure 3 (top-left). Three connected Z-path segments in dimensions 3-4 provide sequential way-
points: Start at (0,0,2.5,2.5,0), Middle at (0,0,5.0,5.0,0), and End at (0,0,7.5,7.5,0), each
with radius 1.5 and intensity 0.8. A Goal Beacon near the target at (0,0, 0,0, 7.0) provides high-
precision observations (intensity 1.0), while an Ambiguous Region at (3.33,3.33,3.33,0,0) with
low intensity (0.4) further complicates belief maintenance. The light intensity function is computed
as L(x) = max(0.05, max; {I;(1 — (d;(x)/r;)?) - I[d;(x) < r;]}), where I}, 7;, and d;(x) are the
intensity, radius, and distance to the j-th light region center.

The state evolution incorporates complex correlation structures that challenge standard belief ap-
proximation methods. The transition model follows x;11 = x¢ + At - vi + 1 and vy =
vy + fi — v + m,, where f; is the applied force (magnitude 0.1), v = 0.1 is the damping
coefficient, At = 0.1 is the time step, and [n,;n,] ~ N(0,X.o) represents correlated pro-
cess noise. The correlation matrix Xy € R?*1Y encodes strong position-velocity coupling
(p(x;,v;) = 0.8), adjacent position correlations (p(x;, z;+1) = 0.5), adjacent velocity correlations
(p(vi,vi+1) = 0.6), cross-dimensional dependencies (p(x1,x3) = p(x2,z4) = 0.4), and velocity
interactions (p(vy,v2) = 0.7, p(vy,vs) = 0.5). Additionally, in very dark regions (L(x) < 0.1),
the observation model introduces dimensional identity confusion with probability 0.2, randomly
swapping dimensions 1-2 or 3-4 to create further observational ambiguity.
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Performance evaluation focuses on navigation from a random starting position in the dark region
[0, 2]° to the goal position (8,8, 8, 8, 8), with success defined as reaching within 0.5 units Euclidean
distance. The primary metric is position error ||X — Xyuye||2, Where X represents the belief mean
estimate and Xy is the true agent position. The reward function combines navigation progress
with a step penalty: 7; = —0.1 - [|X; — Xgoal||2 — 0.1, encouraging both goal-directed behavior and
efficient planning. This environment provides a rigorous testbed for evaluating ESCORT’s ability
to maintain accurate, multi-modal belief representations in high-dimensional spaces with complex
correlation structures, directly addressing the fundamental challenges that motivate our approach.

H.2 Kidnapped Robot Problem
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Figure 4: Kidnapped Robot Problem visualization showing domain. The robot icon (blue eyes with
red antenna) indicates the true robot position and orientation. Various landmark types are distributed
across the map: houses (red roofs), shops (red and white striped awnings), and warehouses (with
forklift symbols), creating perceptually similar patterns that cause aliasing. The green dashed circle
shows the sensor range (radius = 5), and green dashed lines indicate the 90° field of view. Orange
dots represent belief particles from ESCORT, with particle density shown as a yellow-red heatmap
overlay. The robot must localize itself despite ambiguous observations from these visually similar
landmark configurations.

The Kidnapped Robot Problem (present in Figure 4) represents a classical robotics localization
challenge scaled to high dimensionality with complex correlation structures. The robot operates
within a 20x20 map containing various landmarks of different types—houses, shops, and ware-
houses—arranged in perceptually similar patterns that create fundamental ambiguity in observa-
tions. The state space is 20-dimensional, comprising 2D position (z,y) € [0,20]?, orientation
6 € [0,2), velocity and steering parameters (v, s) € R?, sensor calibration parameters ¢ € R5,
and environmental feature descriptors f € R with ||f||2 = 1. The robot’s sensor has a limited range
of 5 units and a 90° field of view, generating observations consisting of distance measurements and
feature similarity scores for visible landmarks.

The environment incorporates strong correlation structures that reflect realistic robotic systems. Po-
sition and orientation exhibit correlation coefficients of 0.6, while position-velocity correlations
reach 0.8, representing coupled dynamics typical in mobile robotics. Sensor calibration parame-
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Figure 5: Multiple Target Tracking Environment. An agent (drone) with limited field of view (cyan
wedge) must navigate to the goal (star) while tracking multiple independently moving targets (cars
with velocity arrows) across zones with varying observability: Clear View (full visibility), Limited
Sensing (30% visibility), Confusion Zone (identity swaps possible), and Blind Spot (no visibility).
The 20D continuous state space and partial observability create multi-modal belief distributions.

ters maintain internal correlations of 0.4 and influence feature descriptors with coefficients of 0.3,
modeling sensor drift and environmental perception coupling. The transition dynamics follow the
update equations: xy11 = Xy + v cos(0y) AL, yp11 = yp + vy sin(6)At, and 0,11 = 6 + Abyctions
where actions modify orientation (A9 = £0.1) or maintain position. Correlated noise is applied us-
ing the full correlation matrix C € R20%2% generating realistic multi-variate updates that preserve
dimensional dependencies.

The fundamental challenge arises from perceptual aliasing where multiple landmark configurations
produce nearly identical observations, creating multi-modal belief distributions. The map contains
repeating patterns such as clusters of houses, shops, and warehouses at different locations that gen-
erate similar feature vectors with small perturbations (¢ = 0.1). When the robot observes these
patterns, the belief distribution develops multiple modes corresponding to each plausible location,
with correlation structures linking position hypotheses to consistent orientation and velocity esti-
mates. This multi-modality, combined with the high-dimensional correlated state space, creates
the precise challenge that ESCORT addresses through its correlation-aware particle evolution and
temporal consistency constraints.

Performance evaluation focuses on localization accuracy measured as position error €pos = ||Ptruc —
E[DPbeliet] ||2, Where pyye € R? represents the true robot position and E[pbelief] denotes the expected
position from the belief distribution. The reward structure implements r, = —1 per timestep to
encourage efficient localization, with episode termination based on convergence criteria or maxi-
mum step limits, ensuring that methods must balance exploration of multiple hypotheses with rapid
convergence to the true robot location.
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H.3 Multiple Target Tracking

The Multiple Target Tracking domain extends classical pursuit-evasion scenarios to test belief ap-
proximation under high dimensionality, multi-modality, and complex correlations. An agent must
navigate to a goal position while maintaining awareness of four independently moving targets de-
spite varying observability conditions that create ambiguous, multi-modal belief distributions.

The environment consists of a continuous 10 x 10 space with state s € R?? comprising the agent’s
position and velocity s, = [a; Ya, Vs, , Vy,]" and four targets states s;, = [t,, Y, Va,, , Vy,,]" for
i € {1,2,3,4}. The agent receives partial observations o € R1? containing noisy position measure-
ments of itself and targets: 0 = [xq + €4, Yo + €qy Tt + €1y, Y2, + €1y, - - .]T, where observation noise
€ varies based on spatial zones. As illustrated in Figure 5, four distinct visibility zones create vary-
ing observation conditions: Clear View (green zone, visibility v = 1.0, full observations), Limited
Sensing (orange zone, v = 0.3, high noise), Confusion Zone (yellow zone, v = 0.7 but 30% chance
of identity swaps between targets), and Blind Spot (red zone, v = 0.0, no target observations).

The system dynamics exhibit strong correlations through physical constraints and environmental
influences. State transitions follow s;4+1 = f(s¢, at) + 1., where f incorporates velocity damping
(A = 0.1), agent acceleration from discrete actions a; € {4+, —z, +y, —y}, and environmental flow
fields F(x) that create correlated target movements. The correlation matrix C € R29%29 captures
position-velocity couplings within entities (Cy.,, = C,,, = 0.8) and inter-target dependencies
from flocking behavior (Cy, ¢, = 0.4 for positions, 0.6 for velocities). The red arrows in Figure 5
indicate the current velocity directions of each target, which are influenced by both individual dy-
namics and collective flow patterns. Collision avoidance introduces additional correlations through
repulsive forces when [|x;, —xy, || < 1.0.

The combination of limited sensing and zone-dependent observability creates severe challenges for
belief representation. When targets enter the Blind Spot (as shown for one target in Figure 5), the be-
lief must maintain hypotheses about their possible locations, creating multi-modal distributions. The
Confusion Zone induces additional modes when identity swaps occur—if the agent observes a target
at position X, the belief must consider it could be any of the targets whose last known positions
were nearby. This ambiguity compounds over time as P(o|s;) = H?:l P(oy,;|st,i,zone(ss ;)),
where zone-dependent likelihoods create sharp discontinuities. The agent’s limited field of view
(60° cone shown in cyan in Figure 5) further exacerbates partial observability, as targets outside the
FOV receive no updates regardless of zone visibility.

The reward function balances navigation and safety objectives: r: = —a||X, — Xgoat|]| — 8 —

Zle H(||lxq — x¢,]| < d], where o = 0.1 weights distance to goal (marked by the star in Figure 5),
B = 0.05 provides step penalty, and collision penalty is triggered when agent-target distance falls
below § = 0.5. Episode success requires reaching ||x, — Xgoa:|| < 0.5. Performance is evaluated
by the mean position error between true and estimated agent position across belief particles: error =
||xime — Ep[x,]]|, where the belief mean is computed from particle representation.

H.4 Visual Observation Environments: Flickering Atari

To evaluate ESCORT’s effectiveness with high-dimensional visual observations under severe partial
observability, we conducted experiments on Flickering Atari environments [Towers et al., 2024,
Bellemare et al., 2013, Machado et al., 2018]. These environments use a flickering mechanism with
50% probability of blank screen observations and single-frame inputs [Igl et al., 2018, Ma et al.,
2020], creating substantial uncertainty about the current state. We compare against DVRL on four
standard Atari games with different complexity characteristics, following the experimental protocol
from the DVRL paper for fair comparison. Table 5 presents the performance results.

Table 5: Performance on Flickering Atari Environments (Higher is Better)

Environment ESCORT DVRL
Pong 17.97 £ 3.74 18.17 + 2.67
IceHockey —4.63 +£0.19 —4.88£0.17
MsPacman 3179.7 + 356.7 2221 4+ 199
Asteroids 1787.7 + 239.6 1539 + 73
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The results demonstrate ESCORT’s effectiveness with raw visual observations under severe partial
observability. In simple reactive environments (Pong, IceHockey), ESCORT achieves compara-
ble performance to DVRL despite temporal consistency potentially over-constraining fast reactive
dynamics. However, ESCORT significantly outperforms DVRL in complex multi-object tracking
environments (MsPacman, Asteroids) where multiple ghosts/asteroids create multi-modal beliefs
with crucial position-velocity correlations. ESCORT’s deterministic particle evolution maintains
these multiple hypotheses and dimensional dependencies effectively, while DVRL’s VAE compres-
sion struggles to preserve the multi-modal structure necessary for accurate tracking under flickering
observations.

I Synthetic multi-modal distributions

To systematically evaluate ESCORT’s capability in addressing the fundamental challenges of belief
representation—high dimensionality, multi-modality, and complex correlation structures—we de-
signed a comprehensive suite of synthetic benchmark distributions. These controlled experiments
allow us to isolate and measure specific aspects of belief approximation performance that are difficult
to disentangle in real POMDP environments. By progressively increasing dimensionality from 1D
to 20D while maintaining consistent multi-modal characteristics, we can observe how each method’s
performance degrades with the curse of dimensionality and assess their ability to preserve critical
distributional properties such as mode coverage and correlation structures. This systematic eval-
uation complements our POMDP experiments by providing precise quantitative metrics for belief
representation fidelity.

I.1 Evaluation Metrics

To quantitatively assess the quality of belief approximation across different dimensionalities, we
employ a comprehensive set of metrics that capture complementary aspects of distributional fidelity
(results presented in Table 2):

Maximum Mean Discrepancy (MMD) measures the distance between two distributions in a repro-
ducing kernel Hilbert space. For samples {z;}; ~ p and {y;}7; ~ ¢, the empirical MMD with

RBF kernel k(z, y) = exp(—v||z — y||?) is computed as:

n m n m
MMD*(p, q) = Z (i, 25) + — Z k(i ;) ZZk ziy) (8
j=1 7,7=1 =1 j=1

This metric captures overall distributional similarity, with lower values indicating better approxima-
tion quality. The kernel parameter v = 0.5 provides sensitivity to both local and global distribution
differences.

Wasserstein Distance (1-Wasserstein or Earth Mover’s Distance) quantifies the minimum “cost” of
transforming one distribution into another:

Wi(p,q) = elrrbfa /le—ylhdv(ﬂ: Y) ©)

where I'(p, ¢) denotes the set of all joint distributions with marginals p and ¢. For 1D distributions,
this reduces to the L; distance between inverse cumulative distribution functions, efficiently com-
puted via sorting. Unlike MMD, Wasserstein distance explicitly accounts for the metric structure of
the space, making it particularly sensitive to mode locations.

Sliced Wasserstein Distance extends Wasserstein distance to high dimensions by projecting distri-
butions onto one-dimensional subspaces:

SWi(p,q) = Wi(Rep, Roq) do(6) (10)
Sd—l

where Ry denotes the Radon transform (projection) along direction # € S~1. This approach main-
tains computational efficiency while preserving geometric properties, computed via Monte Carlo
approximation over random projections.
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Mode Coverage Ratio specifically evaluates multi-modal representation quality. Given target mode
locations {114}, and approximating samples {x;}? ;, a mode k is considered “covered” if:

P - P — < 1
o o= pallz < 7H 0. L an
n K
where 7 = 1.0 is the coverage threshold. The metric returns the fraction of modes satisfying this
criterion, directly measuring whether methods maintain all hypotheses or suffer from mode collapse.

Correlation Error (for dimensions > 2) measures how well methods preserve inter-dimensional
dependencies. Given true correlation matrix Cir,. and approximated correlation matrix Cypprox cOm-
puted from samples:

Correlation Error = ||Cirue — Capprox||F (12)

where || - ||r denotes the Frobenius norm. This metric is crucial for evaluating ESCORT’s
correlation-aware regularization mechanism, as preserving dimensional dependencies is essential
for accurate belief representation in POMDPs.

These metrics collectively provide a comprehensive evaluation framework: MMD and Wasser-
stein/Sliced Wasserstein capture global distributional fidelity, Mode Coverage Ratio explicitly quan-
tifies multi-modal representation capability, and Correlation Error measures the preservation of di-
mensional dependencies critical for complex belief structures.

1.2 1D Multi-modal Gaussian Mixture Model

1D Gaussian Mixture Model Test Case
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Figure 6: Visualization of the 1D Gaussian Mixture Model test case. The top panel shows the overall
GMM density (black line) decomposed into three weighted components with different means and
variances. Vertical dashed lines indicate component means, with annotations showing the precise
locations. The bottom panel displays the component weights and variances, highlighting the asym-
metric nature of the distribution that challenges belief approximation methods.

Our 1D test case consists of a carefully designed Gaussian Mixture Model (GMM) that encapsulates
the multi-modality challenge in its simplest form while remaining non-trivial for approximation
methods. The target distribution is defined as:

3
p(x) =Y wiN (; i, o7) (13)

k=1
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where the component parameters are p; = —3.0, uo = 0.0, uz = 3.0 for the means, o% = 0.8,
o3 = 0.5, 03 = 0.5 for the variances, and w; = 0.3, we = 0.4, w3 = 0.3 for the mixture weights.

This configuration presents several challenges that mirror those encountered in POMDP belief repre-
sentation. First, the unequal weights create an asymmetric distribution where methods must balance
between accurately representing the dominant central mode (wy = 0.4) while maintaining sufficient
particles at the less probable side modes. Second, the different variances, with the first component
having larger spread (02 = 0.8), test whether methods can adapt their particle density to match
the local uncertainty structure. Third, the well-separated modes (6 units apart) ensure that meth-
ods cannot rely on a single concentrated particle cloud but must actively maintain multiple distinct
hypotheses.

As shown in Figure 6, the resulting distribution exhibits clear separation between modes while
maintaining smooth probability gradients that allow gradient-based methods like SVGD and ES-
CORT to navigate the landscape effectively. The asymmetric weights and variances create a more
realistic test case than uniform mixtures, as real POMDP beliefs often exhibit similar heterogeneity
due to varying observation quality across the state space. This 1D case serves as the foundation
for understanding each method’s behavior before examining how their performance scales to higher
dimensions where additional challenges of correlation preservation and exponential volume growth
emerge.

1.3 2D Correlated Gaussian Mixture Model

2D Correlated Gaussian Mixture Model Test Case
6 0.112

Mode 1: Positive correlation
Mode 2: Zero correlation
Mode 3: Negative correlation

0.096

4 p=-08 W=0.35

0.080

N —— 0.064

X2
o

0.048

Aysuaq Ayfiqeqoid

0.032

w=0.35 p=+038
0.016

Key challenges:

* Varying correlation structures

+ Asymmetric weights

+ Well-separated modes

+ Different covariance shapes

-6 - L—0.000
26 ~a -2 0 2 4 6

Figure 7: Visualization of the 2D Correlated Gaussian Mixture Model test case. The filled con-
tours represent the overall probability density, while the three components are shown with their 95%
confidence ellipses. Arrows indicate the principal axes of each covariance matrix, illustrating the
positive correlation (Mode 1, bottom-left), zero correlation (Mode 2, center), and negative correla-
tion (Mode 3, top-right). The correlation coefficients p and mixture weights wy, are annotated for
each component.

Building upon the 1D evaluation, our 2D test case introduces the critical challenge of correlation
structures between state dimensions. The target distribution is a three-component GMM designed
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to test each method’s ability to preserve diverse correlation patterns:

3
p(x) = > wiN(x; sy, i) (14)

k=1

where x = [z, 75]7 and the component parameters are carefully chosen to create distinct correla-
tion challenges.

The three modes are positioned at p; = [—2, —2]T, py = [0,0]7, and p; = [2,2]7 with weights
wy = 0.35, wy = 0.30, and w3 = 0.35. The critical distinguishing feature lies in their covariance
structures:

[1.0 08 . ‘
= _0.8 1.0] (positive correlation, p = 0.8) (15)
3o = 8(5) gg] (no correlation, p = 0) (16)
i3 = —1608 _10(')8} (negative correlation, p = —0.8) a7

This configuration presents several interrelated challenges that directly test ESCORT’s correlation-
aware mechanisms. First, the varying correlation structures—from strong positive through zero
to strong negative correlation—require methods to adapt their particle dynamics to match the lo-
cal covariance geometry rather than applying uniform, isotropic updates. Second, the asymmetric
weights create a subtle imbalance where methods must allocate appropriate computational resources
to each mode while respecting their different shapes. Third, the well-separated modes (distance of
44/2 units between adjacent modes) ensure that simple diffusion-based approaches cannot bridge
the modes without explicit multi-modal handling.

As illustrated in Figure 7, the distribution creates a challenging landscape where each mode requires
different treatment. The elliptical contours reveal how correlation structures fundamentally alter the
shape of uncertainty regions: Mode 1’s positive correlation creates an elongated ellipse along the
diagonal, Mode 2’s spherical shape reflects independent dimensions, while Mode 3’s negative cor-
relation produces an ellipse oriented perpendicular to the diagonal. These geometric differences are
not merely aesthetic—they represent fundamentally different relationships between state variables
that must be preserved during belief updates.

The 2D case serves as a critical bridge between the simplicity of 1D and the complexity of high-
dimensional spaces. While maintaining computational tractability for detailed analysis, it introduces
the essential challenge of correlation preservation that becomes increasingly important in higher
dimensions. Methods that fail to account for these correlation structures will either oversample
along incorrect directions (wasting particles) or undersample critical regions (missing important
probability mass), leading to poor belief approximation and suboptimal decision-making in POMDP
applications.

1.3.1 3D Correlated Gaussian Mixture Model

Building upon the correlation preservation challenges introduced in the 2D case, our 3D test extends
the evaluation to capture the full complexity of belief distributions encountered in realistic POMDP
scenarios. The target distribution is a six-component GMM specifically designed to test ESCORT’s
ability to preserve diverse three-dimensional correlation structures:

6
px) =Y wpN (x; py, Zie) (18)

k=1

where X = |11, 22, 23] and the component parameters create distinct correlation challenges that
directly correspond to belief structures in 3D state spaces.

The six modes are positioned at p; = [-2.5,—2.5,—2.5]7, u, = [2.5,-2.5,2.5]7, p; =
[-2.5,2.5,2.5]T, pu, = [2.5,2.5,-2.5]7, ps = [0,0,4]7, and pg = [0,0,—4]7 with weights
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Figure 8: Three-dimensional Gaussian Mixture Model test distribution with complex correlation
structures. Left: 3D visualization showing six modes with distinct correlation patterns, where el-
lipsoids represent 95% confidence regions and colors indicate component membership. Mode 6’s
extreme elongation along the Z-axis and the planar correlations of Modes 1-3 are clearly visible.
Right: Three 2D projections onto coordinate planes (XY, XZ, YZ) reveal the correlation patterns
with a summary of correlation structures. The XY projection shows Mode 1’s strong correlation;
XZ projection highlights Mode 2’s correlation; YZ projection displays Mode 3’s structure. The cor-
relation matrix for each mode determines the ellipsoid orientation and eccentricity.

w = [0.2,0.15,0.15,0.2,0.15,0.15]7. Each mode exhibits a unique correlation pattern designed to
challenge specific aspects of belief approximation:

* Mode 1: Extreme z1-z5 plane correlation (p12 = 0.95) with minimal x3 variance, rep-
resenting beliefs where two state variables are tightly coupled while the third remains
independent—common in robotic systems where position coordinates are correlated but
orientation varies freely.

* Mode 2: Extreme z1-z3 plane correlation (p13 = 0.95) with minimal x5 variance, testing
the ability to capture correlations across non-adjacent dimensions.

* Mode 3: Extreme x2-x3 plane correlation (p23 = 0.95) with minimal z; variance, com-
pleting the set of planar correlations.

* Mode 4: Complex mixed correlations with both positive (p = 0.7) and negative (p = —0.7)
dependencies:

0.7 1.0 -0.7
-0.7 -0.7 1.0

This mode represents belief states where increasing confidence in one dimension simulta-
neously increases confidence in another while decreasing it in the third—a pattern observed
in constrained optimization problems.

Y= 19)

1.0 0.7 —0.7]

* Mode 5: Hierarchical correlations with varying magnitudes, where the correlation strength
decreases with dimensional distance, modeling cascading uncertainty propagation in se-
quential state estimation.

» Mode 6: Highly elongated distribution along the z3-axis (05 = 4.0 while 07 = 03 =

0.2), testing the ability to maintain particles in extremely anisotropic distributions without
collapse.

This 3D configuration presents compounded challenges beyond the 2D case. The curse of dimen-

sionality begins to manifest more severely—while maintaining coverage of six modes in 3D re-
quires only 6/3 ~ 1.8 x more particles per dimension than in 2D, the variety of correlation patterns
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demands sophisticated particle dynamics. Methods must simultaneously: (1) maintain sufficient
particles in each mode despite the increased volume, (2) preserve three distinct types of planar
correlations, (3) handle mixed positive-negative correlations that create saddle-shaped uncertainty
regions, and (4) prevent particle collapse in the highly elongated Mode 6.

As shown in Figure 8, the distribution creates a challenging landscape where each mode requires
fundamentally different treatment. The planar correlations in Modes 1-3 require particles to align
along specific 2D subspaces within the 3D space, while Mode 4’s mixed correlations create a com-
plex saddle structure that naive isotropic updates cannot capture. Mode 5’s hierarchical structure
tests whether methods can model correlations of varying strength, while Mode 6’s extreme elonga-
tion along the z3-axis challenges particle filters that typically assume roughly isotropic uncertainty.

The results in Table 2 for the 3D experiment reveal ESCORT’s advantages in this intermediate-
dimensional space. While all methods maintain perfect mode coverage (1.0), indicating sufficient
exploration capabilities in 3D, the correlation error metric reveals significant performance differ-
ences: ESCORT achieves 0.761 correlation error compared to SVGD’s 0.819, DVRL’s 0.882, and
SIR’s 1.003. This 7% improvement over SVGD and 24% over SIR demonstrates that ESCORT’s
correlation-aware projections effectively preserve the complex interdependencies between state vari-
ables. The MMD and Sliced Wasserstein metrics further confirm ESCORT’s superior distributional
approximation, with particularly strong performance in capturing the extreme anisotropy of Mode
6 and the mixed correlations of Mode 4—structural features that standard SVGD’s isotropic kernel
struggles to maintain.

1.4 5D Correlated Gaussian Mixture Model

©  Mode1 . Mode 5
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6 Mode 3 Mode 7
Mode 4 Mode 8

PC2 (28.7% variance)
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Figure 9: Five-dimensional Gaussian Mixture Model test distribution with eight modes exhibit-
ing diverse correlation structures. Left: PCA projection onto the first two principal components
(explaining 34.2% and 28.7% of variance respectively) shows clear mode separation. Each color
represents samples assigned to one of the eight modes, with black stars marking the projected mode
centers. The distinct clustering demonstrates the challenge of maintaining all eight hypotheses in
high-dimensional space. Right: Selected 2D projections revealing correlation patterns across di-
mension pairs. Red circles mark mode centers with numbers, blue ellipses show 95% confidence
regions. The projections highlight: strong positive correlations (e.g., x1-x2 for Mode 1), negative
correlations (e.g., z1-x3 for Mode 4), and varying ellipsoid orientations. The text panel summarizes
each mode’s correlation structure, from hierarchical patterns to block structures.

Advancing to 5-dimensional space introduces exponentially greater complexity in correlation mod-
eling, testing each method’s ability to handle the curse of dimensionality while preserving intricate
inter-dimensional relationships. Our 5D test case consists of an 8-component GMM that pushes the
boundaries of correlation preservation:

8
p(x) =Y wpN (x; py, Zie) (20)

k=1
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where X = [21,Za, T3, X4, ms]T and the eight modes are strategically positioned to create diverse
correlation challenges.

The mode locations are: p; = [-2,-2,-2,-2, 2|7, p, = [2,-2,2,-2,2]T, p; =
[_27232a27_2}T’ Ky = [2727_232»2]T’ Hs = [ana?’aOvO]T’ He = [07 70707 ]T, M7 =
[0,3,0,3,0]7, and pg = [-3,-3,-3,3,3]7, with weights w; = wy = wy = wg = 0.15 and

w3 = ws = wg = wy = 0.10.

Each mode exhibits a distinct correlation structure designed to challenge specific aspects of belief
approximation:

* Mode 1: Strong correlations between dimensions 1-2 (p = 0.85) and chained correlations
among dimensions 3-4-5

* Mode 2: Alternating correlation pattern linking dimensions 1-3-5 (p = 0.8)

* Mode 3: Strong correlation between dimensions 1-5 (p = 0.85) with middle dimensions
2-3-4 interconnected

* Mode 4: Negative correlations between dimensions 1-3 and 3-5 (p = —0.7)

* Mode 5: Hierarchical correlation structure cascading from dimensions 1-2-3

* Mode 6: Extended variance in dimension 5 with weak correlations to other dimensions
* Mode 7: Block structure focusing on even dimensions 2-4 with increased variance

* Mode 8: Split correlation pattern with dimensions 1-3 forming one correlated block and
dimensions 4-5 forming another

As illustrated in Figure 9 (left), the PCA projection reveals how these eight modes separate in the first
two principal components, which together explain 62.9% of the total variance. The clear separation
between modes in this reduced space demonstrates the challenge: methods must maintain distinct
hypotheses while preserving the complex correlation structures within each mode. Figure 9 (right)
shows selected 2D projections that highlight different correlation patterns—the elliptical contours
reveal how correlation structures fundamentally alter uncertainty regions across different dimension
pairs.

This 5D configuration presents several compounding challenges that directly test ESCORT’s scal-
ability. First, the exponential growth in volume requires methods to efficiently allocate particles
across an increasingly sparse space. Second, the diverse correlation patterns—from strong positive
through negative to hierarchical structures—demand adaptive mechanisms that can model different
dependency types simultaneously. Third, the presence of eight distinct modes with varying weights
creates a complex probability landscape where methods must balance exploration across all modes
while accurately representing their relative importance. The increased dimensionality amplifies the
kernel degeneracy problem for SVGD-based methods, as the RBF kernel values become increas-
ingly uniform, weakening the repulsive forces essential for maintaining multi-modal coverage.

1.5 20D Correlated Gaussian Mixture Model

Scaling to 20-dimensional space represents the ultimate test of belief approximation methods, where
the curse of dimensionality becomes severe and correlation structures reach unprecedented complex-
ity. Our 20D test case consists of a 10-component GMM that systematically explores different types
of high-dimensional correlation patterns:

10
() = Y wrN(x: pry, B) 21)

k=1
where x = [z1,29,...,720]" and the ten modes are strategically designed to challenge different

aspects of correlation modeling at scale.

The mode locations exhibit diverse patterns: g, splits between negative values in dimensions 1-
10 and positive in 11-20; p, alternates between positive and negative values; w5 follows a linear
gradient from -3 to 3; u, through p., concentrate activity in specific 5-dimensional subspaces; fig
follows a sinusoidal pattern; pq exhibits a quadratic pattern; and pt;, maintains uniform negative
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PCA Projection of 20D GMM with 10 Components
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Figure 10: PCA projection of the 20D Gaussian Mixture Model onto the first two principal com-
ponents. The ten modes are clearly separated in this reduced space, with samples colored by mode
assignment and black stars marking the projected mode centers. Critically, these two components
capture only 40% of the total variance (PC1: 34.2%, PC2: 28.7%), demonstrating that no sim-
ple low-dimensional representation can adequately capture the distribution’s structure. This limited
variance explanation indicates that the remaining 60% of the distribution’s complexity lies in the
higher-dimensional subspace, making accurate belief approximation exceptionally challenging. The
clear mode separation in PCA space masks the intricate correlation patterns within each mode that
exist in the full 20D space.

values. The weights are set as w; = wy = wg = wg = 0.12, w3 = wyo = 0.10, and wy = w5 =
We = W7 = 0.08.

Each mode implements a distinct correlation structure that tests specific capabilities:
* Mode 1: Block diagonal structure with four 5x5 blocks, each containing alternating posi-
tive (p = 0.7) and negative (p = —0.7) correlations

* Mode 2: Checkerboard pattern between odd and even dimensions with correlations alter-
nating between p = 0.75 and p = —0.75

* Mode 3: Band diagonal structure with correlation strength decaying exponentially (p =
0.9!"=71) for dimension pairs within 5 steps

* Modes 4-7: Localized strong correlations (p = 0.85) within specific 5-dimensional sub-
spaces, testing methods’ ability to handle sparse correlation structures

* Mode 8: Hierarchical correlation with strong intra-group correlations (p = 0.7) within
four 5-dimensional groups and weak inter-group correlations (p = 0.3)

* Mode 9: Long-range correlations between opposite ends of the dimension space, with
p(x;, x19—;) = 0.7 for even i and —0.7 for odd i

* Mode 10: Near-independent dimensions with sparse, weak correlations (|p| < 0.1) ran-
domly distributed

As illustrated in Figure 10, the PCA projection reveals a fundamental challenge: despite clear mode
separation in the first two principal components, these dimensions capture only 40% of the total
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variance. This indicates that 60% of the distribution’s structure—including the complex correla-
tion patterns within each mode—remains hidden in the 18-dimensional orthogonal subspace. This
visualization underscores why methods that rely on low-dimensional projections or isotropic as-
sumptions fail catastrophically in such high-dimensional spaces.

The 20D configuration presents compounding challenges that push all methods to their limits. First,
with volume scaling as O(22°), particles become exponentially sparse, making mode coverage ex-
traordinarily difficult—a particle cloud that seems dense in projection may leave vast regions un-
explored. Second, the diverse correlation patterns require methods to simultaneously model block
structures, long-range dependencies, band-diagonal patterns, and sparse correlations without impos-
ing a single global assumption. Third, the presence of ten distinct modes with complex internal
structures creates 10 x 220 distinct regions of interest, far exceeding the capacity of any practical
particle count. Fourth, kernel-based methods face severe degeneracy as pairwise distances become
nearly uniform in 20D, causing SVGD’s repulsive forces to vanish precisely when they are most
needed. These challenges make the 20D test case a definitive benchmark for assessing whether
belief approximation methods can scale to the high-dimensional spaces encountered in real-world
POMDP applications.

L.6 Scalability Analysis: Impact of Correlation-Aware Regularization

To comprehensively demonstrate ESCORT’s scalability, we conducted extensive experiments on
synthetic multi-modal distributions extending from 1D to 200D, far beyond the 20D environ-
ments in our main results. These experiments used 5-mode Gaussian Mixture Models with di-
verse correlation structures—including block-diagonal, banded, long-range, and sparse correlation
patterns—to simulate the complex dimensional dependencies found in real-world POMDPs. We
evaluated performance using Root Mean Square Error (RMSE) [Thrun et al., 2005], defined as

RMSE = \/ + Zi\il ls; — 8;]|> where s; is the ground-truth state and §; is the posterior mean
estimate, providing a direct measure of belief approximation accuracy.

To isolate the impact of our correlation-aware regularization—one of ESCORT’s core contribu-
tions—we compared full ESCORT against ESCORT-NoCorr (which disables the correlation-aware
regularization term R.). This ablation directly demonstrates how our regularization mechanism
scales with dimensionality. Table 6 presents these results.

Table 6: RMSE for synthetic multi-modal approximation: Impact of correlation-aware regulariza-
tion across dimensions (Lower is Better)

Dimension ESCORT ESCORT-NoCorr

1D 0.15+£0.02 0.14 £0.02
5D 0.35+0.04 0.45 £ 0.05
20D 0.65 + 0.07 0.88 £0.10
50D 0.95 + 0.09 1.42 4+ 0.09
100D 1.35+0.18 2.15+£0.28
200D 1.90+£0.23 3.35 £0.57

The results reveal a clear scaling pattern: while both variants perform comparably in low dimensions,
the performance gap widens dramatically as dimensionality increases. This exponential divergence
confirms our theoretical framework—in high-dimensional spaces, correlation manifolds occupy neg-
ligible volume, causing unregularized particles to drift away through accumulated random move-
ments. Our correlation-aware regularization, through learned projection matrices A;, constrains par-
ticles to these critical manifolds, preventing the catastrophic degradation seen in ESCORT-NoCorr
and demonstrating that our approach becomes increasingly essential as dimensionality grows.

36



