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Average ridership per vehicle per route

Average boarding events per census track

Key challenge : provide good coverage while ensuring the service is economical and efficient



Our Approach

Challenges: System operational efficiency and management

Approach: Integrating the fixed-line service with on-demand service
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Challenges: community outreach, lack of success in prior microtransit efforts, non-rational behavior

Approach: Relational models of change that assume people are complex, democratic citizens as opposed 
to rational consumers may help address existing microtransit challenges

We plan to conduct 
surveys leveraging the 
relational network -
understand the 
attitudes, behaviors, 
barriers to taking public 
transportation, and 
alternative modes of 
transit, in order to 
distinguish between 
regular public transit 
users and dedicated 
private vehicle users. Initial Analysis
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Community-Driven Design



Integrated On-demand Transit and Fixed Line Scheduling
Approach: Design efficient algorithms for allocating, dispatching and scheduling on-demand transit 
fleet while ensuring it is optimally integrated with the fixed line schedule in the city.

- Extend scalable new Dynamic Dial-A-Ride Problem (DARP)  formulations to advanced bookings and 
integration of traditional bus service.
- Design new solution methods and anytime algorithms

Challenges: computation complexity, operational uncertainty and real-time requests.
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Related paper: Alonso Mora et al. High-capacity vehicle pooling and ride assignment. PNAS 2017
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Addressing Online Requests through Anytime Algorithms

Approach: Introduce new resources only when necessary. Restrict search space. Separate allocation 
from dispatch – dynamically reallocate periodically. We plan to use Monte-Carlo based anytime algorithms. 
Grow tree asymmetrically and Use fast (online), simulated playouts to estimate value of node

Challenges: computation complexity, operational uncertainty and real-time requests.

Monte Carlo Tree Search: Game theoretic tree representation of process. 
Nodes ➞ states , Edges ➞ actions. The tree grows asymmetrically and uses fast 
(online), simulated playouts to estimate value of node

Related paper: Pettet et al. Hierarchical Planning for Resource Allocation in Emergency Response Systems. ICCPS 2021
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Demand Estimation (boarding events, origin-destination events)
Approach: Use the automated passenger counter data, fare box data and camera data to create models 
for learning the distribution of commuters across bus stops and develop statistical models for prediction 
the future demand

Challenges: privacy, robustness of prediction, understanding and responding to distribution shifts

Occupancy is a composition of two 
random processes: boarding and 
alighting. 

• Board counts: 𝛾! 𝑠" ~ 𝑃𝑜(λ#
(!))

• Alight counts: α! 𝑠" ~ 𝑃𝑜(λ&
(!))

We need to learn distributions: 𝐹#(𝛾!(𝑠")|𝑤)
and 𝐹&(α!(𝑠")|𝑤). These can be used to 
seed a generative model that can be used 
to predict the likely demand at any bus stop 
at any time in the future given the nearby 
events, weather and information about that 
day.

• Automated Passenger Counter (APC Data)
• Farebox Data
• Travel Demand Model Data

• Correction Factor

Models for 
predicting 
demand 
per route, 
per stop

Related Paper : Juan et al. Occupancy Estimation for Bus Transit Systems. (submitted) SmartComp 2021
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Performance Evaluation and Hyper-Parameter Selection
Approach: design active learning algorithms using tools from multi-armed bandits, where contextual 
side information is available to address three key problems:

Hyperparameter Selection: explore a suite of parameter configurations (e.g., fleet size, vehicle 
capacity, risk tolerances) for a class of algorithms (e.g., routing algorithms) in a principled manner

Model Estimation: determining the most 
informative ground truth samples for improving 
model accuracy (e.g., origin-destination pairs)

Performance Evaluation: determining if an implemented policy (e.g., routing policy) is failing to meet its 
desired local behavior target (e.g., travel time)

Challenges: sparse and biased data; partial view of system operations; non-stationary environment 
Related paper: Fiez et al. Sequential Experimental Design for Transductive Linear Bandits. NeurIPS 2019
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Addressing Computational, Privacy, and Data Challenges

Approach: Use custom data architecture with parallel view and structures to optimize both graph-based 
and time-based queries. We are also investigating distributing outsourced computation to provide 
cheaper and sustainable alternative to cloud computing.

Challenges: privacy of multi-modal data, computation sustainability, fast joins.
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Figure 1: Data architecture overview - real time data is streamed to an Apache Pulsar cluster consisting of 5 broker/bookie
nodes and 5 zookeeper nodes running on-site in VMWare. A MongoDB cluster running in Google Cloud reads from the Pulsar
cluster, continuously updating its data view and adding spatial indexing for monitoring and dashboard applications.

Table 1: Data sources.

Data Source Frequency Scope Features Schema/Format

Diesel vehicles ViriCiti and Clever Devices 1 Hz 50 vehicles GPS, fuel-level, fuel rate,
odometer, trip ID, driver ID Viriciti SDK and Clever API

Electric vehicles ViriCiti and Clever Devices 1 Hz 3 vehicles GPS, charging status, battery current,
voltage, state of charge, odometer Viriciti SDK and Clever API

Hybrid vehicles Viriciti and Clever Devices 1 Hz 7 vehicles GPS, fuel-level, fuel rate, odometer,
trip ID, driver ID Viriciti SDK and Clever API

Traffic HERE and INRIX 1 Hz Chattanooga and Nashville region TMC ID, free-flow speed,
current speed, jam factor, confidence

Traffic Message Channel
(TMC)

Road network OpenStreetMap Static Chattanooga and Nashville region Road network map, network graph OpenStreetMap
(OSM)

Weather DarkSky 0.1 Hz Chattanooga and Nashville region Temperature, wind speed,
precipitation, humidity, visibility Darksky API

Elevation Tennessee
GIC Static Chattanooga region Location, elevation GIS - Digital Elevation Models

Fixed-line transit
schedules CARTA, WeGO Static Chattanooga and Nashville region Scheduled trips and trip times,

routes, stops
General Transit Feed Specification
(GTFS)

Video Feeds CARTA 30 Frames/Second All fixed-line
vehicles Video frames Image

APC Ridership CARTA , Wego Every Stop All fixed-line
vehicles

Passenger boarding count
per stop Transit authority specific

vehicle ID (which corresponds with the vehicle ID from
ViriCiti) and additionally includes a unique driver ID and
the unique trip ID which that vehicle is serving. The unique
vehicle ID maps directly to the GTFS schedule produced by
CARTA.

We also collect weather data from multiple weather sta-
tions in Chattanooga at 5-minute intervals using the Dark-
Sky API. This data includes real-time temperature, humid-
ity, air pressure, wind speed, wind direction, and precipita-
tion. In addition, we collect traffic data at 1-minute intervals
using the HERE API, which provides speed recordings for
segments of major roads, which provides data in the form
of timestamped speed recordings from selected roads. Ev-
ery road segment is identified by a unique Traffic Message
Channel identifier (TMC ID). Each TMC ID is also associ-
ated with a list of latitude and longitude coordinates, which
describe the geometry of the road segment. Lastly, vehicles
are currently being fitted with video equipment that gen-
erates real-time video streams to help monitor capacity re-
quirements.

Static Data Sources
Road network map data was collected from OpenStreetMaps
(Haklay and Weber 2008), which provides road infrastruc-
ture modeled as a graph. In addition, we collect static GIS
elevation data from the Tennessee Geographic Information
Council (Tennessee Department of Finance and Administra-

tion 2019). From this source, we download high-resolution
digital elevation models (DEMs), derived from LIDAR ele-
vation imaging, with a vertical accuracy of approximately 10
cm. We incorporated the elevation data in the OSM network
by adding the elevation from the GIS data to each node in the
OSM network. Lastly, the vehicle scheduling information is
provided by the CARTA in GTFS format.

Data Management
Given the volume and the rate of the data being collected,
we had to design a custom architecture for the project. The
purpose of this architecture is to store the data streams in a
way that provides easy access for offline model training and
updates as well as real-time access for system monitoring
prediction. This architecture consists of a publish-subscribe
cluster implemented with Apache Pulsar, which stores topic-
labeled sensor streams, and a MongoDB database backend.
An overview of the data architecture is provided in figure 1.

This architecture solves two challenges. The first chal-
lenge is the persistent storage of the high-velocity, high-
volume data streams. The second challenge is that the data is
highly unstructured and irregular and different data streams
have to be synchronized and joined efficiently. With this
architecture, we stream each data source to a topic-based
publish-subscribe (pub-sub) layer that persistently stores
each data stream as a separate topic. Further, we used a
three-tiered naming convention for topic labeling. The first

Data Pipeline Sample of the data we are ingesting

• Wilbur et al. Efficient Data Management for Intelligent Urban Mobility Systems. AAAI Workshop for Urban Mobility 2021
• Eisele et al. Mechanisms for Outsourcing Computation via a Decentralized Market. DEBS 2020
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Addressing the Complexity of Developing Algorithms

We need the ability to design different demand scenarios and test the algorithms against 
changing demand and traffic patterns.

Challenges: multi-scale simulation, scenario specification, calibration of simulation models.
Sun et al. Transit-Gym: A Simulation and Evaluation Engine for Analysis and Optimization of Bus Transit Systems. (submitted) SmartComp 2021
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We started this project last year in October and we are working on 
solving this grand challenge and developing an integrated solution 
with a two phased test and evaluation plan by 2024.
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