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Abstract

Partially observable Markov decision processes (POMDPs)
are a general mathematical model for sequential decision-
making in stochastic environments under state uncertainty.
POMDPs are often solved online, which enables the algo-
rithm to adapt to new information in real time. Online solvers
typically use bootstrap particle filters based on importance re-
sampling for updating the belief distribution. Since directly
sampling from the ideal state distribution given the latest
observation and previous state is infeasible, particle filters
approximate the posterior belief distribution by propagating
states and adjusting weights through prediction and resam-
pling steps. However, in practice, the importance resampling
technique often leads to particle degeneracy and sample im-
poverishment when the state transition model poorly aligns
with the posterior belief distribution, especially when the re-
ceived observation is highly informative. We propose an ap-
proach that constructs a sequence of bridge distributions be-
tween the state-transition and optimal distributions through
iterative Monte Carlo steps, better accommodating noisy ob-
servations in online POMDP solvers. Our algorithm demon-
strates significantly superior performance compared to state-
of-the-art methods when evaluated across multiple challeng-
ing POMDP domains.

Introduction
Partially observable Markov decision processes (POMDPs)
(Åström 1965) provide a general mathematical framework
for modeling decision-making problems under uncertainty,
where the true state of the environment is not fully observ-
able and actions have probabilistic outcomes (Kaelbling,
Littman, and Cassandra 1998). These models have been suc-
cessfully applied to various real-world scenarios, including
time-critical UAV search and rescue operations where effi-
cient path planning must balance computational constraints
with effective decision-making (Zhang et al. 2024). How-
ever, POMDPs face challenges to solve exactly due to the
“curse of dimensionality” and the “curse of history”, which
make the computation of optimal policies non-scalable (Pa-
padimitriou and Tsitsiklis 1987). To address these compu-
tational and scalability issues, online planning algorithms
have emerged as a prominent approach. Instead of comput-
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ing a full policy offline, online planning interleaves plan-
ning and execution by focusing computational resources on
the current belief state and the immediate decisions to be
made (Ross et al. 2008).

A critical component of online planning algorithms is
the belief update process where belief denotes a distribu-
tion over the possible states. At each node in the search
tree, the algorithm needs to update the belief state based
on simulated actions and observations. However, performing
exact belief updates is computationally infeasible in large
state spaces due to the high dimensionality of the belief
space (Rodriguez, Parr, and Koller 1999). To manage this,
online planning algorithms approximate the belief state us-
ing sampling-based methods. They represent the belief state
as a collection of sampled states, or particles, rather than as
explicit probability distributions (Silver and Veness 2010).
During the planning process, belief updates are performed
by propagating these particles through the state-transition
and observation models, using methods such as direct sam-
pling and sequential importance sampling (Doucet and Jo-
hansen 2009). However, these approximation methods face
a significant issue: the variance of their estimations increases
exponentially with the search depth. This variance escalation
is primarily due to the accumulation of uncertainty from ob-
servations, which provide imperfect information about the
true current state. As the search depth increases, the diver-
gence between the sampled belief and the target posterior
can grow substantially, potentially limiting the effectiveness
of these planning algorithms, especially in deeper searches
where precise belief representation is crucial.

Annealed Importance Sampling (AIS) (Neal 1998) was
originally developed to address similar challenges in
Bayesian inference, where sampling from complex poste-
rior distributions is often difficult. AIS creates a sequence
of intermediate distributions that gradually transition from
an easy-to-sample proposal distribution to the target poste-
rior, while Annealed Importance Resampling (AIR) extends
AIS by incorporating a resampling step at each temperature
level (Herbst and Schorfheide 2019). AIR helps overcome
the large divergence between proposal and target distribu-
tions by breaking the sampling problem into more manage-
able steps. However, adapting AIR for POMDP planning
faces several challenges. First, it depends on smooth transi-
tion paths which aren’t guaranteed in the highly dynamic be-
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lief spaces of POMDPs. Second, AIR merely directs selec-
tion without addressing the underlying divergence between
proposal and target distributions. Finally, AIR struggles with
large belief spaces due to high computational costs, mak-
ing it impractical for real-time POMDP planning where de-
cisions must be made quickly. These challenges compound
one another to make applying AIR to POMDP Planning Dif-
ficult.

Recognizing this, we propose AIROAS (Annealed
Importance Resampling for Observation Adaptation
Search), a novel approach that maintains the advantages of
AIR while specifically addressing the barriers to its effective
use in POMDP planning. AIROAS combines tree search
with particle-based belief representation and enhanced
annealed importance resampling techniques tailored for
online POMDP planning. Our approach addresses the three
key challenges through: (1) sigmoid-based tempering that
strategically coordinates with tree search by concentrating
computational effort at belief nodes with high uncertainty,
creating smoother transitions precisely where belief updates
are most prone to degeneracy; (2) a target inefficiency ratio
mechanism that dynamically guides tree exploration by
triggering resampling only in belief nodes with degenerate
particle distributions, creating a synergistic relationship
between search selection and particle refinement; (3)
integration of AIR with excess uncertainty criterion (Ye
et al. 2017; Wu et al. 2021) that pinpoints belief nodes
with the highest proposal/target distribution mismatch,
focusing computational effort on uncertain, high-value
regions to overcome the computational cost barrier of
traditional AIR in large belief spaces. These innovations
enable AIROAS to provide more accurate state estimations
at greater search depths while remaining computationally
efficient for real-time decision-making in complex POMDP
environments.

Background
POMDPs
Partially observable Markov decision processes (POMDPs)
are a framework for modeling decision-making under uncer-
tainty, defined by the tuple (S,A, T,R,Ω, O). Here, S is the
set of states, A the set of actions, T (s′|s, a) the transition
function, R(s, a) the reward function, Ω the set of observa-
tions, and O(o|s′, a) the observation function. In POMDPs,
at time t, the agent maintains a belief state bt, a proba-
bility distribution over states. This distribution is updated
after action at and observation ot+1 using the equation:
bt+1(s

′) = ηO(ot+1|s′, at)
∑

s∈S T (s′|s, at)bt(s), where η
is a normalizing factor. This belief update process enables
the agent to estimate its current state despite partial observ-
ability, facilitating informed decision-making in uncertain
environments.

Particle Filters
Particle filters (Arulampalam et al. 2002), also known as se-
quential Monte Carlo (SMC) methods, are computational
algorithms used to estimate the state of a dynamic system
when it is observed through noisy measurements. In the

context of Partially observable Markov decision processes
(POMDPs), particle filters offer an efficient way to approx-
imate the belief state by maintaining a set of weighted sam-
ples (particles) that represent the probability distribution
over possible states. The widely-known bootstrap particle
filter algorithm (Gordon, Salmond, and Smith 1993) works
by recursively propagating these particles through the state
transition model and updating their weights based on new
observations. In POMDPs, at each time step t, the particle
filter aims to approximate the optimal posterior distribution:

p(st|ot, st−1, a) ∝ p(ot|st, a) · p(st|st−1, a) (1)

where st is the current state, ot is the current observation,
st−1 is the previous state, and a is the action taken.

A crucial step in bootstrap particle filter is resam-
pling (Kitagawa 1996), which addresses the problem of
particle degeneracy. Over time, some particles may have
negligible weights, leading to poor representation of the
state space. Resampling involves randomly drawing parti-
cles with replacement from the current set, with probabilities
proportional to their weights, and then resetting all weights
to 1/N , where N is the number of particles. However overly
frequent resampling can lead to sample impoverishment,
where the particle set loses diversity and fails to adequately
represent the full state space. To determine when to resam-
ple, the Effective Sample Size (ESS) (Forthofer, Lee, and
Hernandez 2007) is often used:

ESS =
1∑N

i=1(w
n
i )

2
(2)

where wn
i are the normalized weights. When the ESS falls

below a predefined threshold (typically N/2), resampling is
triggered.

Although the bootstrap particle filter is relatively easy to
implement, its accuracy can be significantly compromised
when there is a substantial discrepancy between the optimal
posterior distribution described in equation (1) and the state-
transition distribution. This limitation becomes particularly
pronounced in scenarios where the one-step received obser-
vation is highly informative about the true state, leading to
a sharply peaked posterior distribution. In such cases, the
bootstrap filter’s reliance on the state-transition model for
proposal generation may lead to particles being proposed in
regions where the posterior has significant mass but the pro-
posal density is low, resulting in many particles having neg-
ligible weights. Consequently, this can exacerbate the prob-
lem of sample degeneracy, necessitating more frequent re-
sampling and potentially leading to sample impoverishment.

Annealed Importance Sampling
Importance Sampling (IS) is a technique for estimating
properties of a target distribution by sampling from a dif-
ferent, easier-to-sample proposal distribution and reweight-
ing the samples (Kloek and van Dijk 1978). However, its
major limitation lies in its inefficiency when the proposal
distribution differs significantly from the target distribution
— in such cases, only a few samples that happen to fall in
the high-probability regions of the target distribution receive
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high importance weights, while most samples have negligi-
ble weights. This leads to high variance in the estimates and
poor sample efficiency.

Annealed Importance Sampling (AIS) constructs a se-
quence of intermediate distributions that gradually bridge
the gap between the proposal and target distributions (Neal
1998). Given a target density p(x) and a proposal density
q(x), AIS defines a sequence of intermediate distributions:

πk(x) = p(x)βkq(x)(1−βk) (3)

where 0 = β0 ≤ · · · ≤ βK = 1 represents a sequence
of inverse temperatures. The method proceeds by first draw-
ing an initial sample x0 ∼ π0(x), then evolving this sample
through a series of transition kernels:

xk ∼ Tk(xk|xk−1) for k = 1, . . . ,K (4)

where each Tk is constructed to leave πk invariant. The fi-
nal importance weight is computed as the product of ratios
between successive distributions:

w =
π1(x1)

π0(x1)
· · · πK(xK)

πK−1(xK)
(5)

This gradual transition through intermediate distributions
helps AIS overcome the limitations of standard importance
sampling by maintaining better overlap between successive
distributions, resulting in more reliable estimates.

Related Work
Monte Carlo tree search (MCTS) has demonstrated success
in solving large POMDPs online. POMCP (Silver and Ve-
ness 2010) pioneered this approach by combining a UCT-
based tree search with particle filtering for belief updates,
but faces challenges with continuous observation spaces.
DESPOT and its variant AR-DESPOT (Ye et al. 2017) im-
prove upon POMCP by focusing the search on a fixed set
of scenarios and using dual bounds to guide exploration,
making it more robust for large discrete problems. POM-
CPOW (Sunberg and Kochenderfer 2018) extends these
ideas to continuous state-action-observation spaces by in-
corporating progressive widening and weighted particle fil-
tering.

A common thread among these approaches is their re-
liance on particle filtering techniques, specifically boot-
strap particle filtering or Sequential Importance Resampling
(SIR), to update belief states. While these filtering methods
are computationally efficient, they can sometimes lead to
particle degeneracy issues, especially in continuous obser-
vation spaces or when observations are unlikely under the
current belief.

Most recently, AdaOPS (Wu et al. 2021) attempts to
address this challenge using KLD-sampling, which dy-
namically adapts the number of particles based on the
Kullback-Leibler divergence between the true and approx-
imated distributions. However, KLD-sampling exhibits two
major limitations: First, it requires discretizing the state
space into bins for divergence calculation, which becomes
computationally prohibitive especially in high-dimensional

spaces (Li, Sun, and Sattar 2013). Second, and more crit-
ically, while it adjusts particle quantities, it does not mod-
ify the particle values themselves, leading to potential un-
derestimation of distribution variance and failure to capture
multimodal aspects of the target distribution. In contrast,
Annealed Importance Sampling (AIS) offers several com-
pelling advantages: it constructs a sequence of intermedi-
ate distributions that gradually bridge the prior and posterior
distributions, effectively maintaining particle diversity while
preventing degeneracy. This annealing process enables par-
ticles to adaptively migrate toward regions of high posterior
probability, making it particularly effective when dealing
with concentrated observation likelihoods or significant dis-
parities between prior and posterior distributions. The grad-
ual transition through intermediate distributions allows AIS
to better capture the full structure of multimodal distribu-
tions and provide more accurate representations of distribu-
tion tails compared to KLD-sampling approaches.

Previous work has explored adding tempering iterations
to particle filters, where the optimal posterior distribution is
constructed adaptively through a sequence of Monte Carlo
steps. For example, M. Johansen (2015) developed a block-
tempered particle filter that uses bridge distributions to grad-
ually adapt particle values, while Herbst and Schorfheide
(2019) proposed a tempered particle filter that sequentially
reduces inflated measurement error variance in Dynamic
Stochastic General Equilibrium (DSGE) models. However,
these tempering approaches have been primarily studied in
the context of state estimation and system identification, but
not yet explored within the POMDP planning literature. To
our knowledge, we are the first to investigate using bridge
distributions to connect target and proposal distributions in
particle filtering specifically for POMDP planning, combin-
ing the strengths of both sequential Monte Carlo methods
and POMDP planning algorithms.

Approach
In this section, we present AIROAS (Annealed Importance
Resampling for Observation Adaptation Search), a novel
approach for POMDP planning that combines tree search
with particle-based belief representation and annealed im-
portance resampling. The complete procedure is detailed
in algorithm 1 and fig. 1. AIROAS constructs a search tree
that alternates between belief nodes and action nodes. Each
belief node approximates the optimal posterior distribution
using a set of weighted particles, as illustrated in fig. 1, and
maintains both upper and lower bounds of the optimal value.
Using a sequence of bridging distributions, the algorithm re-
fines the value bounds and adjusts particle states and weights
to better approximate the optimal posterior distribution de-
scribed in equation (1). At each timestep, starting from the
current belief b0 as the root node, AIROAS expands the be-
lief tree by exploring various paths from the initial states
(Line 3 in algorithm 1). A key characteristic of this structure
is that sibling nodes share identical particle states but main-
tain distinct weight distributions. This configuration persists
until annealed importance resampling is applied to mutate
the particle values, as we will discuss below.
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Algorithm 1: AIROAS

Require: initial belief b̄0, maximum depth MAX DEPTH
1: while Time Allowed and l(b̄0) < u(b̄0) do
2: b̄← b̄0
3: while depth(b̄) < MAX DEPTH do
4: if b̄ is a leaf node then
5: b̄← Annealed Importance Resampling(b̄)
6: ExpandAndBackup(b̄)
7: end if
8: b̄← Selection(b̄)
9: end while

10: if depth(b̄) ≥ MAX DEPTH then
11: u(b̄)← l(b̄)
12: end if
13: end while
14: return argmaxa∈A l(b̄0, a)

Algorithm 2: Selection(b̄)

1: a∗ = argmaxa∈A u(b̄, a)
2: o∗ ← argmaxo∈Ob̄,a

p̂(o|b̄, a)EU(τ(b̄, a∗, o))

3: b̄← τ(b̄, a∗, o∗)

Selection
Similar to Wu et al. (2021); Ye et al. (2017); Smith and Sim-
mons (2004), during online planning, AIROAS maintains
both upper and lower bounds, u(b̄, a) and l(b̄, a), for each
action node a at a belief node b̄. These bounds estimate the
optimal value that can be achieved by taking action a at be-
lief b̄. The action selection follows an optimistic strategy -
at each belief node b̄, AIROAS chooses the action a∗ that
maximizes the upper bound(Line 1 in algorithm 2):

a∗ = argmax
a∈A

u(b̄, a) (6)

After selecting an action, we need to choose which obser-
vation branch to explore next. This choice is guided by the
probability-weighted excess uncertainty (EU) criterion (Ye
et al. 2017; Smith and Simmons 2004) (Line 2 in algo-
rithm 2). For each possible observation o after taking action
a∗, we compute:

p̂(o|b̄, a∗) · EU(τ(b̄, a∗, o)) (7)

where p̂(o|b̄, a∗) is an estimation of the probability
p(o|b̄, a∗) i.e estimates the probability of receiving observa-
tion o after taking action a∗ at belief b̄, τ(b̄, a∗, o) represents
the updated belief after executing a∗ and receiving observa-
tion o, and EU(·) measures the excess uncertainty at a belief
node (Wu et al. 2021). The excess uncertainty quantifies the
degree of value uncertainty at each belief node:

EU(b̄) = [u(b̄)− l(b̄)]− ξ[u(b̄0)− l(b̄0)]

γd(b̄)
(8)

where u(b̄) and l(b̄) are the upper and lower bounds at be-
lief b̄, b̄0 is the root belief, d(b̄) denotes the depth of belief

Algorithm 3: ExpandAndBackup(b̄)

1: for a ∈ A do
2: Create Action Node (b̄, a)
3: b′ ← Empty Particles Set
4: O ← Empty Observation Set
5: for s ∈ b̄ do
6: (s′, o, r) ∼ G(s, a)
7: O ←O ∪ o
8: weight(s′)← 1
9: b′ ← b′ ∪ s′

10: end for
11: for o ∈ O do
12: b̃← DeepCopy(b′)
13: for s ∈ b̃ do
14: weight(s) = p(o|s, a) · weight(s)
15: end for
16: Create Belief Node b̃
17: end for
18: end for
19: BackUp(b̄)

b̄ in the tree, γ is the discount factor, and ξ ∈ (0, 1) con-
trols the target uncertainty reduction at the root. The obser-
vation o∗ that maximizes the weighted excess uncertainty is
selected for exploration, effectively focusing the search on
belief states with high uncertainty and high probability of
being reached (Wu et al. 2021).

Expand And Backup
When encountering a leaf node, we first perform annealed
importance resampling to adjust the particle states and
weights (detailed in the next section). Then, AIROAS ex-
pands this leaf node by creating child nodes for each possi-
ble action a. For each action node, the expansion process in-
volves propagating the parent belief node’s particles forward
using a simulator G that generates state transitions (Line 6 in
algorithm 3):

(s′, o, r) ∼ G(s, a)

The expansion continues by creating new belief nodes for
each unique observation encountered during particle propa-
gation. Specifically, after propagating each particle through
G, we obtain a set of updated particle states, initially assign-
ing each particle a weight of 1. For each observation o gener-
ated during this process, we create a new belief node where
the particle weights are updated according to the observation
likelihood p(o|s, a) — the probability of receiving observa-
tion o given the particle state s and action a. This results in
a tree structure where each action node branches into mul-
tiple belief nodes based on possible observations, with each
belief node containing weighted particles that represent the
updated belief state.

After expanding belief nodes, we perform a backup oper-
ation to update the bounds of their ancestor nodes. As in Ye
et al. (2017); Wu et al. (2021), this backup process is imple-
mented by recursively applying the Bellman equation, which
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Figure 1: Process of AIROAS Tree Search. AIROAS constructs a search tree that alternates between belief nodes and action
nodes. AIR represents Annealed Importance Resampling.

calculates the optimal value of a belief state in two parts.
First, we consider the expected immediate reward for taking
an action in the current belief state, calculated by looking at
each possible state, weighing its reward by how likely we
think we are in that state according to our current belief.
Second, we consider the long-term value by looking at all
possible observations we might receive after taking an ac-
tion. For each possible observation, we calculate how likely
we are to see that observation, determine what our new be-
lief state would be after seeing it, consider the value of that
resulting belief state, and weight this value by the probabil-
ity of getting that observation. The total value is the sum of
these immediate and future components, and we choose the
action that maximizes this total value. In practice, since we
can’t compute exact values over continuous states and obser-
vations, we approximate this calculation using discrete sums
over our particle-based belief representation.

Annealed Importance Resampling
As discussed above, the belief of each belief node is gener-
ated using a state-transition function from its parent belief
node. Suppose the leaf node represents belief at timestep t
and its parent belief node represents belief at timestep t-1,
while our simulator G implements the state-transition func-
tion p(st|st−1, a) during expansion, our ultimate objective
is to have the final particle distribution approximate the op-
timal posterior distribution p(st|ot, st−1, a) referenced in
eq. (1).

The primary challenge in this context stems from the im-
possibility of directly sampling from the optimal posterior

Algorithm 4: Annealed Importance Resampling(b̄)

Require: b̄ from current belief node, sequence of tempering
parameters 0 = β0 ≤ · · · ≤ βK = 1, target inefficiency
ratio r∗, transition kernels T1(s, s

′), . . . , TK(s, s′)
1: for βk in {β0, . . . , βK} do
2: if k == 0 then
3: Continue
4: end if
5: weights(b̄)← Update Weights(b̄, βk, βk−1)
6: if In eff(b̄) ≤ r∗ then
7: break
8: else
9: r∗ ← In eff(b̄)

10: end if
11: Resample b̄
12: b̄←Mutation(b̄)
13: end for

distribution. Previous works (Silver and Veness 2010; Ye
et al. 2017; Sunberg and Kochenderfer 2018; Wu et al. 2021)
approximates sampling from this optimal posterior distribu-
tion using Sequential Importance Resampling, treating the
state-transition distribution as proposal distribution and the
optimal posterior distribution as target distribution. How-
ever, this approach suffers from particle degeneracy issues,
particularly when observations are highly informative about
the true state, leading to a sharply peaked posterior distribu-
tion and a significant divergence between the optimal pos-
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terior and the proposal distribution derived from the current
belief (Wu et al. 2021).

To address the issue, Annealed Importance Sam-
pling (Neal 1998) introduced in Background offers an effec-
tive solution by constructing intermediate bridging distribu-
tions between the proposal distribution and target distribu-
tion, gradually guiding particles toward high-probability re-
gions of the target distribution by constructing a sequence of
intermediate distributions parameterized by tempering pa-
rameters 0 = β0 ≤ β1 ≤ · · · ≤ βK = 1.

Building upon these principles, we integrate Annealed
Importance Resampling (AIR), which extends AIS with a
resampling step, into our AIROAS algorithm to address the
particle degeneracy issue inherent in POMDP planning. Our
approach adapts this concept to the POMDP planning con-
text by designing intermediate distributions that account for
observations. By gradually bridging the proposal and target
distributions, particles are adaptively reweighted and resam-
pled, allowing them to migrate toward regions of high poste-
rior probability. This gradual transition through intermediate
distributions not only addresses degeneracy but also enables
our approach to capture the multimodal characteristics of the
optimal posterior distribution more effectively.

These tempering parameters are generated using a sig-
moid function applied to a linearly spaced sequence between
10−3 and 1. Specifically, for a sequence {x1, x2, · · ·xK}
linearly spaced between 10−3 and 1, each tempering param-
eter βi is computed as:

βi =
1

1 + e−10(xi−0.5)
(9)

This sigmoid transformation ensures a smooth progression
of β values from near zero to one, with denser sampling in
the middle range.

The intermediate distributions are characterized by their
probability densities:

πk = p(st|ot, st−1, a)
βkp(st|st−1, a)

(1−βk) (10)

When k = K, this formulation exactly matches the op-
timal posterior distribution. By progressively transforming
particles sampled from the prior distribution p(st|st−1, a)
through the sequence π1, π2, . . . , πK , we can effectively ap-
proximate particle states drawn from the optimal posterior
distribution.

It is worth noting that while our current experiments use
sequential execution for fair comparison with baseline meth-
ods, the annealing approach naturally supports paralleliza-
tion across particles and tempering steps. This computa-
tional advantage offers significant potential for further ac-
celeration, and we will provide detailed parallel implemen-
tation as part of the released code.

The overall procedure of annealed importance resampling
is described in algorithm 4.

Weights
To update weights of the particles at iteration k and timestep
t, for every βk in the sequence {β0, . . . , βK}, we transform
the particle approximation from πk−1 to πk by recalculat-
ing the weights. Assume the particle set at iteration k and

Algorithm 5: Mutation(b̄)

1: for particle sjt(k−1) in b̄ do
2: Tk(s

j
k−1, ·)←N (sjt(k−1), σ

2 · I)
3: sjtk ∼ Tk(s

j
k−1, ·)

4: Compute the acceptance probability p
5: sjtk← sjtk for probability p, otherwise sjtk← sjt(k−1)

6: end for

timestep t is Stk, for each particle sjtk in the particle set Stk

at iteration k, the weight is updated as:

wj
tk ∝

p(ot | sjtk, at)βk

p(ot | sjtk, at)βk−1

· wj
t(k−1) (11)

This update reflects the incremental adjustment of weights
based on the annealing parameter βk. Specifically, at itera-
tion k, the importance weight of each particle sjtk is updated
by multiplying its previous weight wj

t(k−1) with an incre-
mental weight. This incremental weight is computed as the
ratio of two observation likelihood terms: the observation
density function raised to the current tempering parameter
βk in the numerator, and the same function raised to the pre-
vious tempering parameter βk−1 in the denominator. Specif-

ically, the incremental weight is p(ot|sjtk,at)
βk

p(ot|sjtk,at)
βk−1

, where ot is

the observation received at timestep t and at is the action
taken.

After updating the particle weights, we calculate their
inefficiency score in a similar way as in Herbst and
Schorfheide (2019). For a particle set containing M parti-
cles, the inefficiency score is computed as:

In eff(b̄tk) =
1

M

M∑
j=1

(
wj

tk
1
M

∑M
j=1 w

j
tk

)2 (12)

This score reflects the variance in particle weights. As
in Herbst and Schorfheide (2019) and specified in algo-
rithm 4, we maintain a pre-defined target inefficiency ratio
r∗. If the inefficiency score exceeds r∗, indicating that the
variance of the resulting weights remains high, we continue
adjusting the particle states and weights. Otherwise, we exit
the current iteration.

Mutation
For each particle sjt(k−1), the algorithm employs a Markov

transition kernel Tk(s
j
k−1, s

j
k) to evolve the state from time

k − 1 to k. This transition kernel is constructed to preserve
πk as its invariant distribution, as specified in eq. (4).

The transition mechanism implements a Metropolis-
Hastings kernel (Hastings 1970) with a multivariate Gaus-
sian proposal distribution. Given a state vector sjt(k−1)

that can be decomposed into components sjt(k−1) =<

x, y, · · · >, the proposal distribution is centered at sjt(k−1)
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with covariance structure. The forward proposal distribution
i.e the transition kernel generates new states according to:

sjtk ∼ N (sjt(k−1), σ
2 · I)

where I denotes the identity matrix and σ2 is a scaling pa-
rameter calibrated proportionally to the L1 distance between
the current state sjt(k−1) and the observation ot in the state

space. Then we define its reverse transition kernel T̃k(s
j
k)

as:
N (sjtk, σ

2 · I)
The acceptance rate shown in algorithm 5 is computed as:

paccept = min

{
1,

Tk(s
j
t(k−1), s

j
tk) · p(ot|s

j
tk, at)

βk

T̃k(s
j
tk, s

j
t(k−1)) · p(ot|s

j
t(k−1), at)

βk)

}
(13)

Then we update the particle state:

sjtk =

{
sjtkwith prob. paccept

sjt(k−1)with prob. 1− paccept
(14)

The iterative process continues until either the particle ap-
proximation converges to the optimal posterior distribution,
or the variance of the particle weights becomes less than or
equal to the threshold r∗.

Experiments
In this section, we evaluate our method on several domains
and demonstrate superior performance over state-of-the arts
methods.

Baseline Approaches
We evaluate our approach against four state-of-the-art base-
lines: POMCP (Silver and Veness 2010), ARDESPOT (Ye
et al. 2017), POMCPOW (Sunberg and Kochenderfer 2018),
and AdaOPS (Wu et al. 2021) on four domains: Light Dark
(LD), Tag, Laser Tag, and Rock Sample (RS) (Platt et al.
2010; Egorov et al. 2017; Smith and Simmons 2004). For
ARDESPOT and AdaOPS, we employ different initializa-
tion strategies: in Light Dark, Tag, and Laser Tag domains,
we use domain-specific independent bounds based on max-
imum and minimum achievable discounted rewards, while
for RockSample, bounds are initialized using heuristics. For
POMCPOW, we optimize the maxUCB parameter—which
governs action selection at each node—by testing values in
{1.0, 10.0, 20.0} and selecting the best-performing configu-
ration for each domain. The performance comparison across
all domains is presented in table 1. Our experimental results
for the baselines may differ from previously published re-
sults due to modifications in implementation code, differ-
ences in computing infrastructure, and alternative bound ini-
tialization methods. Specifically, while Wu et al. (2021)
uses heuristics for bound initialization in Light Dark, Tag,
and Laser Tag, we initialize bounds based on maximum
and minimum achievable discounted rewards. However, we
maintain consistent initialization methods across all ap-
proaches within each domain to ensure fair comparison.

Domains
We validate our approach using four standard POMDP envi-
ronments:

1. Light Dark (Platt et al. 2010): A continuous-state prob-
lem where an agent navigates to a target with state-
dependent observation noise. Observations become more
accurate in ”light” regions and less accurate in ”darker”
regions. We vary step size α to modulate problem com-
plexity.

2. Tag (Egorov et al. 2017): An agent aims to tag an oppo-
nent by occupying the same grid cell and executing a tag
action. The agent observes its own position but can only
detect the opponent when they share a cell. The opponent
follows a stochastic evasion policy.

3. Laser Tag (Egorov et al. 2017): A more challenging Tag
variant where the agent must locate and tag a target with-
out knowing either position initially. The agent relies on
noisy sensor readings to infer both positions.

4. RockSample (Smith and Simmons 2004): A robot ex-
plores a grid to collect valuable rocks while avoiding
bad ones. Rock quality can only be determined through
noisy sensor readings that decrease in accuracy with dis-
tance. The robot can move, sample rocks, or use sensors
to check rock status.

Experiment Settings
The main configurations for all baselines are detailed
in Baseline Approaches. For fair comparison, we ensure
AIROAS’s maximum allowed time per decision matches
those of comparable baselines with similar parameters.
While POMCP and POMCPOW use iterations rather than
time limits, we maintain consistency by keeping the num-
ber of iterations identical during testing. AIROAS uses
the same bound initialization methods as ARDESPOT and
AdaOPS. For AIROAS-specific configurations, we gener-
ate 100 tempering parameters βk ranging from 0 to 1 us-
ing the sigmoid transformation described in eq. (9). We
evaluate AIROAS using different target inefficiency ratios
r∗ ∈ {2.0, 3.0, 5.0, 10.0} and select the best-performing
value for each domain.

Regarding computational efficiency, our performance
analysis shows that SIR requires 0.12s per iteration, while
AIR takes 0.14s. In worst-case scenarios (ratio=2.0, 100
tempering parameters), annealing adds 0.13s overhead.
However, these computational costs are justified by AIR’s
superior particle diversity and estimation accuracy. We also
plan to implement parallel annealing to reduce computation
time while maintaining performance benefits.

All experiments were conducted on a computer equipped
with an Intel(R) Core(TM) i9-13900KS processor with 32
CPUs.

Results
The average discounted return and its standard error of
mean (SEM) are presented in table 1. In all these domains,
AIROAS outperforms the other solvers with suitable target
inefficiency ratio and tempering parameters.
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LD (α = 0.5) LD (α = 1.0) Tag Laser Tag RS(11, 11) RS(15,15)

|S| ∞ ∞ 870 4830 247,808 7,372,800
|A| 3 3 5 5 20 16
|O| ∞ ∞ 30 ∼ 1.5× 106 3 3

POMCP 0.357± 0.22 0.691± 0.41 −18.530± 0.40 −18.112± 0.18 12.252± 0.44 8.207± 0.53
ARDESPOT −1.24± 0.25 0.760± 0.41 −13.704± 0.71 −15.982± 0.64 18.113± 0.64 16.111± 0.66
POMCPOW 1.555± 0.21 1.468± 0.49 −16.783± 0.42 −15.263± 0.40 13.521± 0.67 9.141± 0.44
AdaOPS 2.231± 0.13 2.762± 0.27 −9.920± 0.70 −13.427± 0.67 21.904± 0.59 19.091± 0.57

AIROAS 2.303± 0.43 3.102± 0.36 −8.451± 0.75 −12.931± 1.22 22.872± 0.51 20.246± 0.50

Table 1: Performance Comparison between AIROAS and baselines. LD(α) stands for Light Dark with step size α. RS(n,m)
stands for the Rock Sample with n×n map and m rocks.∞means continuous state (or observation) space. The results represent
the average discounted return and its standard error of mean (SEM) for each method and each domain. Higher discounted return
indicates better performance.

In the Light Dark Problem, we evaluate performance with
step sizes α = 0.5 and α = 1.0. The state consists of
position coordinates and termination status (terminated or
not), while observations provide noisy measurements of the
current position. For particle state mutation, we generate a
Gaussian distribution over the position components, where
the variance is proportional to the distance between the
state’s position and the received observation. Through this
mutation strategy in bridging distributions, combined with
weight adjustments, we observe significant mitigation of the
sample impoverishment problem, leading to improved per-
formance.

In the Tag problem, the state consists of the robot’s posi-
tion, target’s position, and tagging status. While the agent’s
position is fully observable, the target’s position is only ob-
served when both actors occupy the same cell. For particle
state mutation, we generate a Gaussian distribution exclu-
sively over the target’s position, as the agent’s position is
known. Given this limited observability structure, we did
not anticipate significant performance improvements from
Annealed Importance Resampling. The observed improve-
ments may be attributed to the compact state and observation
spaces, where the mutation step effectively explores differ-
ent states within this limited domain.

The Laser Tag problem represents a more challenging
variant of the Tag problem. The state space comprises the
agent’s position, target’s position, and terminal signal, with
neither position directly observable. The observation con-
sists of noisy range readings from laser sensors in eight dif-
ferent directions. For particle state mutation, we construct a
multivariate Gaussian distribution over both agent and tar-
get positions. Given these high-dimensional observations,
which induce multimodal distributions over the state space,
we anticipate Annealed Importance Sampling to demon-
strate significant advantages in this domain.

In the RockSample problem, the state space comprises the
robot’s position and the quality (good or bad) of each rock.
With scenarios containing 11 or 15 rocks, this results in an
extremely high-dimensional state space with a large number
of states. In contrast, the observation structure is simple, pro-
viding information about only one rock’s quality at a time

(or no observation). For particle state mutation, we focus
specifically on mutating the quality of the rock for which
the observation provides information, rather than mutating
the entire state vector.

Conclusion
We presented AIROAS, a novel online POMDP solver that
leverages Annealed Importance Resampling to address ob-
servation uncertainty. By constructing bridge distributions
between state-transition and optimal distributions, our ap-
proach effectively mitigates particle degeneracy in tradi-
tional particle filtering. Empirical evaluations across diverse
POMDP domains demonstrate consistent performance ad-
vantages over state-of-the-art baselines, particularly for do-
mains with complex observation spaces or highly informa-
tive observations that create sharply peaked posterior distri-
butions.

While our current approach uses sigmoid transformation
for generating tempering parameters, future work could ex-
plore adaptive scheduling that dynamically adjusts based
on belief uncertainty and parallel implementation to reduce
computational overhead. Additionally, incorporating tempo-
ral abstraction techniques would enable AIROAS to effi-
ciently handle high-dimensional continuous action spaces
through learned macro-actions, extending its applicability
to robotic control and autonomous driving domains (Luo
et al. 2025). These enhancements could further improve
AIROAS’s efficiency and effectiveness across both discrete
and continuous action spaces.
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