
A Guided Explorative Approach for Autonomic
Healing of Model-Based Systems

Steve Nordstrom, Ted Bapty, Sandeep Neema, Abhishek Dubey, Turker Keskinpala
Institute for Software Integrated Systems

Vanderbilt University
Nashville, TN, USA

{steve.nordstrom, ted.bapty, sandeep.neema, abhishek.dubey, turker.keskinpala}@vanderbilt.edu

Abstract—Embedded computing is an area in which many of

the Self-* properties of autonomic systems are desirable. Model
based tools for designing embedded systems, while proven
successful in many applications, are not yet applicable toward
building autonomic or self-sustaining embedded systems. This
paper reports on the progress made by our group in developing a
model based toolset which specifically targets the creation of
autonomic embedded systems.

Keywords—autonomic; guided; healing; reflex-healing;
model-based; model integrated; embedded;

I.

II.

A.

B.

INTRODUCTION
Mission critical and safety critical systems require

implementations that are resilient in the face of system faults.
Autonomic systems aim to provide this resiliency by
adaptively mitigating potential failures. Significant design
challenges arise when constructing a system capable of
handling the uncertainty of multiple potential faults, occurring
in arbitrary combinations and orders. Dynamically adapting a
software system to meet new requirements involves far too
many factors to be understood by humans in a reasonable time
frame.

When a system whose design is based on models needs to
be adapted to a new environment, it becomes necessary that
the system have internal knowledge of its design so that it can
make sense of how to alter itself. Although much work has
been in the areas of rapid design of model based systems there
are still situations where having a human in the redesign loop
is too costly.

What follows in this paper is a discussion of a technique
for allowing model-based systems to exhibit autonomic
healing properties in order to solve the problems associated
with large scale embedded system redesign.

SOFTWARE MODELING

Models are more than documentation
Software modeling has been gaining mainstream

recognition for being a critical task in the process of designing
tightly integrated software systems such as real-time and
embedded systems. System and component properties and
related information are captured and stored as models, where
advanced tools can make greater sense of compositions of

model structures and associated interactions to provide many
of the artifacts necessary to create a more reliable software
product. Such artifacts can include (but are not limited to)
timing simulations, control matrices, process schedules,
additional source code, and configuration files.

The process of modeling software allows designers to
think about software using a familiar abstraction and provides
a platform of understanding in a way that sharing of source
code could never do. Much work has been done in the fields
of computer science and electrical engineering to allow non-
programmers the ability to design software by provided these
familiar abstractions coupled with tools that can make sense of
the designer’s work and transform those design specifications
into artifacts which can contribute toward an implementation.

However, in many cases, design work is extraordinarily
complicated; much more so than typical software design.
Examples of such cases include designing of large-scale high
performance systems or systems which operate in harsh
environments. Much of the struggle in designing these
systems stems from the uncertainty of the future and of the
environment. In such cases the system’s operational lifetime
and component properties necessitate the expectance of
component failures. As components fail in various ways,
software can become unpredictable.

To alleviate some of these concerns, designers are using
more advanced tools to design software systems. These tools
use the concepts of software modeling to describe components
and interactions of a system. More advanced tools can use
these models for a variety of uses from validation, code
synthesis, and deployment assistance.

Model Integrated Computing
Model Integrated Computing (MIC) [1], which has been

developed at the Institute for Software Integrated Systems
(ISIS) at Vanderbilt University, is gaining acceptance in
embedded system design and has shown great usefulness in
modeling variety of simple and complex systems. The flagship
software product that enables MIC is the Generic Modeling
Environment (GME). Model Integrated Computing allows
designers to build domain specific modeling languages and
then use those languages to compose models of a system’s
objects and relationships. Model translators can then be used
to extract a bevy of useful information from the models. This
information can be used for verification, simulation/analysis,

This work is supported by NSF under the ITR grant ACI-0121658.

code generation, and in other areas of a software design and
deployment processes.

MIC has been shown to be an effective means of managing
complexity in large scale embedded systems [2] and is being
shown to allow a growing variety of analyses to be performed
on models [4] [5] [6].

C.

III.

A.

Previous work in reflex and healing architectures
The application of biologically-based two stage reflex-

healing (RH) models as mechanisms for autonomicity and
fault recovery in computer systems has been discussed in [7]
and [8]. The application of MIC toward this problem has been
discussed in [9] and showed promise in this area because
many design problems associated with autonomic and RH
architectures could be alleviated with model-based techniques.
For example, the use of integrating state machine based
modeling formalisms with application and deployment models
to rapidly accommodate new reflexes has been shown in [9]
and refinements toward verification of reflexes has been
shown in [10].

More challenging and still undiscovered are the aspects of
model-based RH architectures that are associated with system
healing after the initial reflexes have been enacted. Model
Integrated Computing places a considerable emphasis on
information capture at design time and in the use of this
information to synthesize a final set of system artifacts from
an integrated system model. If one were to examine the
resulting system, much of the information regarding the
relationships of the components is removed, as for any number
of reasons (memory footprints, timeliness factors, and various
optimization techniques) this information is no longer needed
or deemed superfluous. However, in cases where a system
must undergo redesign (such as autonomic embedded
systems), this information is of utmost importance.

Rather than attempt to design systems where this higher
level knowledge is pushed down into the running system, we
chose to integrate our design tools by feeding information
about the running system back into the modeling tools
themselves. The modeling tools are coupled to the running
system using a model synchronizer; this allows an existing
model translator to be invoked on a model which accurately
represents the current state of the system. Work has been done
in [11] to allow feedback from a live system to be included in
the modeling tool. Such feedback can be used to keep the
model synchronized with the system; the author recognizes the
tasks of fault diagnosis and temporal model accuracy are non-
trivial but beyond the scope if this particular work.

HEALING THROUGH MODEL-BASED REDESIGN
This investigation of complex information about a system is

completely necessary in the case of adaptive systems, as there
are a considerable number of events which could happen to
necessitate an adaptation; perhaps far too many events to be
handled by the system at a given time. What happens when the

system needs to adapt to an environmental change but is
limited by the events it can handle? Designers work very
diligently to rule out such cases, but they are not un-avoidable.

In the case where the system is unable to adapt to its new
environment the designer must re-visit the models using the
modeling tools, add the necessary event handling, fault
scenarios, or fault mitigation rules, and then redeploy the
system. Clearly, this can be done, but at a cost; the designer
must have the knowledge and time to perform the necessary
modifications and the system must be in a state where is can
wait for the necessary modifications.

What happens over time is that the designers oscillate
between design and re-deployment cycle after the system has
been initially deployed. In the vein of adding autonomicity, it
becomes desirable to have modeling tools which are capable
of supporting a more automated redesign process. The
following guidelines are put forth to bind a solution for
autonomic embedded systems to a set of criteria. The
autonomic redesign process must:

1) Require minimal human interaction, as subject to the
guidelines of autonomic computing [12].

2) Retain the benefits of MIC, using the same model
formats and model transformations available to a designer
executing a manual redesign

3) Retain the system’s ability to perform healing operations
in the future

4) Include the ability to accommodate human-in-the-loop
control of healing (allowing a human to evaluate the decisions
of the redesign process before changes to the system are
enacted)

In order that one might automate the process of redesign it
is necessary to understand the manual redesign process to a
degree that one can automate it in software. In order to do this
we must attempt to describe the design effort in a way that
makes sense algorithmically.

Arriving at a healed model
The term healer is used to describe the model

transformation engine which performs the task of finding a
new model which is most suited to operate in the new
environment. A designer has a limited set of operations she is
able to perform on the model. We will consider as atomic only
the operations which lead to healing. (There are many non-
essential operations a designer can perform using a modeling
tool; the changing of a model’s color or name or other trivial
operations which do not lead to healing are not considered by
the automated healing tool.)

A set of allowable operations for this tools set are those
which lead to healing, namely: Promote, Demote, Transfer
(lateral transfer), Create, Destroy, Reassociate, EnableTask,
and DisableTask. Work is ongoing to provide not just healing
operations but healing strategies which can be treated as
atomic operations to the Healer. This in turn will reduce the
explosion of candidate healed models for a given failed model.

c1

c2

c3

c4
c7

c8

c9

failure

Healthy model

Failed model

h1

h2

h3

h1

h2

h3

c5

c6

h1

h2

h3

h1

h2

h3

candidate models

initial
healthy
model

Failure event

Healing operation

initial
failed
model

Figure 1. The determination of candidate models from an initially
failed model through healing action sequences.

Figure 2. Determination of the most resilient model involves
applying potential failures to candidate models and evaluating the

resulting set of healed models.

c1

c2

cm

failure

Healthy model

Failed model

f1
f2

fn

initial candidate
models

initial
healthy
model

Failure event

Healing sequence

possible future
failed models

f1,1

f1,2

f1,n

fm,n

possible future
candidate models

fn

c1.1

c1,2

c1,q

cm,r

initial
failed
model

In order to arrive at a suitable model the healer will first
produce a set of candidate models in accordance with a set of
healing actions which are allowed to be performed. A model
is considered healed when it passes a testing function to
determine if any faults are still present in the model. After one
round of healing, a number of the resulting model may be
considered healed, while a number may not. The procedure
will continue until all the candidate models are considered
healed. Fig. 1 shows this process for a failed model with three
possible healing actions.

B.

C.

IV.

A.

Choosing the best candidate model
Once the set of candidate models is formed, the healer must

then chose which of the set is the most appropriate to be used
on the redesign. We have shown in [13] that this process is
multi-objective in nature and that the process is dependant on
the factors which drive the evaluation criteria. Some examples
of suitable evaluation criteria include 1) Raw predicted
performance of the model with respect to its data processing
capability (number of packets processed per unit time), 2) the
cost to migrate the system from the existing state toward
compliance with candidate healed model, or 3) the models
suitability to handle future failures.

Figure 3. The best choice model is the one whose future failed and
healed models are the most desirable.

Healthy model

Failed model

Failure event

Healing operation

desirable
future
modelsbest choice

candidate

The special criteria of resilience
As proponents of fault tolerant design, we would prefer at

this time to study more closely the process of finding a
model’s suitability to endure future faults. We use the term
resilience describe a measure of the candidate model’s ability
to withstand single a component failure at some future time
with respect to it’s set of possible failures and evaluation
criteria.

The measure of resilience is made by applying all known
failures to a candidate model to arrive a set of possible failure
states. For each of these states the healer can perform the
healing operation to form the resulting next generation of
candidate models. These models are in turn evaluated for their
suitability. One can see that the process is unending, so a
determination must be made as to how far into the future the
healer can look to determine the next healed model.

For this last stage, the healer omits the resilience criteria and
evaluates with remaining models with no further
failure/healing propagation. Fig. 2 shows this process in

general, while Fig. 3 shows a more complete application of the
look-ahead process to determine the new set of candidate
models to be evaluated. Some work has been done in this area
[13]; however, more clarification is needed about how a
designer adapts an existing software model to accommodate
change in the system.

TOOLS FOR MODEL BASED HEALING
Building on our previous work, we present our modeling

framework and toolset which is progressing toward a complete
MIC toolset for designing, building and deploying autonomic
embedded systems. The tools consist of two major
components, a domain specific modeling language for
autonomic embedded systems, and a healing model translator
to determine how best to redesign the system in the event of
component failures.

Domain specific modeling language
First, the Guided Healing and Optimization Search

technique Modeling Language (GHOSTML) is a domain
specific modeling language (DSML) used for specifying the
components and interactions of the system. This is done by
using three distinct aspects in which the components of the

Figure 4. The modeling tools allow the capture of components in both operational and failed states. The Allocation aspect of the model is shown.

system are modeled. The aspects are the following:
• Tasks: A hierarchy of management tasks is created in

the Tasks aspect, which determines the structure of
the reflex-healing hierarchy. Containment and
hierarchical decomposition of tasks are both
modeling techniques which are used to manage
complexity in the Tasks Aspect (e.g. managed tasks
are contained inside their governing manager).

• Networking: Computational resources as well as data
visualization and interconnect resources are modeled
in the networking aspect.

• Allocation: The mapping of tasks onto assigned
resources is done through associations modeled in the
allocation aspect. Tasks are mapped onto resources in
a many-to-one fashion.

 Models expressed in GHOSTML can be used to indicate
the presence of failures in the system. This is done through the
use of a Fault object. All aspects of GHOSTML allow the
specification of a Fault object. Fault objects can be associated
with any component of the GHOSTML language (through
containment or through an isFaulty association). Fig. 5 shows
a view of the Allocation aspect in GME. Since GHOSTML
task models also specify the set of reflex behaviors inside each
component of the management hierarchy, the presence of
faulty reflex actions can also be modeled. Models which

contain isFaulty associations and/or Fault objects are said to
be Failed models.

B. The Healer: An autonomic model translator
Secondly, a specialized model transformation tool called a

Healer is used to perform the action of healing a failed model.
The Healer uses a technique detailed in section III which
explores all possible healing actions which produce a
candidate healed system model. These candidates are then
evaluated against a set of performance criteria, one of which is
the resilience criteria, also described in section III. To
determine the resilience of a given candidate model, it is
transformed in all possible ways into a failed model (using
only single failures), and each failed model is subjected to
further healing and evaluation. Algorithms for healing and
failing a models during the search are shown in Fig. 5.

The best choice candidate is the model which provides the
highest degree of satisfaction in the evaluation criteria. For the
criteria of resilience, the best choice candidate is the model
whose descendant failed models after healing show the best
suitability with respect to the evaluation criteria.

The healer proceeds by conducting an adversarial search
game using two players [14] to explore portions of the game’s
search space. The players are Heal and Fail, and alternate
turns building a state space game tree similar to the tree shown
in Fig. 3. The game proceeds in a minimax-like [15] fashion
using the multi-objective heuristic described in [13] to

evaluate the utility of each node of the tree. Since the game is
too complex to search to completion, a depth cutoff (referred
to as the number of plies) is used to limit the scope of the
look-ahead. The value of this cutoff is dependant on the move
set (which therefore limits to the branching factor of the
search tree) and the computational resources available to the
Healer.

As in other deterministic game searches such as chess or
checkers, full knowledge about the game can be observed by
both players and the moves allowed by each player is known.
Each player is allowed to make a single legal move (in reality
the move can be constructed as a composition of atomic
operations but for some special reasons which will discussed
later we will can consider these operation chains as a single
move).

The Heal player’s allowable moves consist of the set of
model transformation chains which, when applied to the
current model, result in a model containing no faults, as
discussed in section III. The Fail players set of allowable
moves consist of all model transformations which introduce
single failure associated with any component in the model.

In reality, the game is being played while the embedded
system is running, the Heal player acting as the healer and the
Fail player acting as the uncertainty in the environment. The
situation is similar to that of a chess program playing a human
opponent in that the set of moves allowed by the human is
known so the computer is able to compute its best move given
the rules of the game but it must wait for the human to make
move before it can proceed with a new search [16] [17]. In the
same way the Healer must wait for a failure to occur before it
can calculate its best move to heal the system. This is similar
to a game against Nature [18] in which a uniform random
variable is used to predict the moves of a disinterested
opponent.

Once a move is chosen by the Healer, it is applied to the
model where the tools then use a special translator to
implement the healing of the failed system. For the time being
it is assumed that the model on which the game is based is an
accurate reflection of the currently running system for the
duration of the healer’s turn.. It is assumed that the rate of
failures occurring in the environment is sufficiently slow as to
allow a search to be conducted (as limited of depth as it may
be) before the next failure occurs.

Some questions arise from this regarding the fitness of the
guided search. How far into the future can the Healer look and
still produce both a timely and meaningful result? Do
descendants whose ancestors show high resilience to failure
necessarily inherit this high resilience? These questions will
soon be investigated as more statistical analyses of a running
healer are performed.

V. CONCLUSION AND FUTURE WORK
The process of finding an appropriate healed model for a

given failed model can be a difficult decision. There may exist
a large set of evaluation criteria as well as healing strategies to
be considered, and different designers may choose different
healed models. The strategy put forth in this paper is an
attempt to integrate an entire spectrum of strategies and
criteria into a single solution. This solution can then be used to
automate the process of healing a failed model.

As embedded systems grow more pervasive, distributed,
and autonomic, the advancement tools such as these are going
to have a significant impact in the way embedded software
systems are designed, built, and maintained.

Our work will progress in the areas of distributed
computation of and evaluation of candidate models in
embedded supercomputing environments, as well as in a
scientific evaluation of how far into the future a healer can
look for a given problem and still arrive at a meaningful
solution in acceptable time.

function Heal(Model m):

 H := set of all healing operations

max := Empty{Model, Xfm}

Mh := {Empty{Model,Xfm}}

plies := plies + 1

for all h in H

 mc := ApplyXfm(h, m)

 if (plies <= maxplies)

 Mf := Fail(mc)

 for all mf in Mf

 if (Eval(Heal(mf)) > Eval(max))

 max := mc

 else

 if (Eval(mc) > Eval(max))

 max := mc

 return max;

function Fail(Model m):

 F := set of all fail operations

 Mf := Empty{};

 for all f in F

 append ApplyXfm(m, f) to Mf

return Mf

Figure 5. A recursive algorithm for determining resilience of candidate
models is used by the Healer.

ACKNOWLEDGMENT
The authors also acknowledge the contribution of other

RTES collaboration team members at Fermi National
Accelerator Lab, University of Illinois at Urbana-Champaign,
University of Pittsburg, and Syracuse University.

REFERENCES
[1] J. Sztipanovits, G. Karsai, “Model-Integrated Computing”, IEEE

Computer, pp. 110-112, April, 1997.
[2] S. Ahuja et al., “RTES demo system2004”, ACM SIGBED Review

Special issue: The second workshop on high performance, fault
adaptive, large scale embedded real-time systems (FALSE-II), vol. 2 no.
3, pp. 1-6, ISSN:1551-3688, July 2005.

[3] S. Neema, Ted Bapty, S. Shetty, S. Nordstrom, “Developing Autonomic
Fault Mitigation Systems”, Journal of Engineering Applications of
Artificial Intelligence Special Issue on Autonomic Computing and Grids,
Elsevier, 2004.

[4] T. Szemethy, G. Karsai, “Platform Modeling and Model
Transformations for Analysis”, Journal of Universal Computing
Science, vol. 10, no. 10, pp. 1383-1408, November 23, 2004.

[5] G. Madl, S. Abdelwahed, D.C. Schmidt, “Verifying Distributed Real-
time Properties of Embedded Systems via Graph Transformations and
Model Checking”, Real-Time Systems, Special Issue: Invited Papers
from the 25th IEEE International Real-Time Systems Symposium
(RTSS 2004), Volume 33, Numbers 1-3, Pages 77-100, July 2006.

[6] E. J. Manders, G. Biswas, N. Mahadevan, and G. Karsai, “Component-
oriented Modeling of hybrid dynamic systems using the Generic
Modeling environment”, Proceedings of the 4th Workshop on Model-
Based Development of Computer Based Systems, Potsdam, Germany,
March 2006.

[7] R. Sterritt, D. Gunning, A. Meban, P. Henning, "Exploring Autonomic
Options in an Unified Fault Management Architecture through Reflex
Reactions via Pulse Monitoring," Proceedings of the 11th IEEE
International Conference and Workshop on the Engineering of
Computer-Based Systems (ECBS'04), pp. 449-455, 2004.

[8] R. Sterritt, D.F. Bantz, "Personal autonomic computing reflex reactions
and self-healing," Systems, Man and Cybernetics, Part C, IEEE
Transactions on, vol. 36, no. 3, pp. 304- 314, May 2006.

[9] S. Shetty, S. Nordstrom, S. Ahuja, D. Yao, T. Bapty, S. Neema,
“Systems Integration of Autonomic Large Scale Systems Using Multiple
Domain Specific Modeling Languages”, Proceedings of the 12th IEEE
International Conference on the Engineering of Computer Based
Systems (ECBS 2005), 2nd IEEE Workshop on the Engineering of
Autonomic Systems (EASe 2005), pp. 481-489, Greenbelt, MD , USA,
April 2005.

[10] A. Dubey, S. Nordstrom, T. Keskinpala, S. Neema, T. Bapty, “Verifying
Autonomic Fault Mitigation Strategies in Large Scale Real-Time
Systems”, Third IEEE International Workshop on Engineering of
Autonomic & Autonomous Systems (EASE'06), pp. 129-140, Potsdam,
Germany, March, 2006.

[11] D. Messie, M. Jung, J.C. Oh, S. Shetty, S. Nordstrom, and M. Haney,
"Prototype of Fault Adaptive Embedded Software for Large-Scale Real-
Time Systems", Artificial Intelligence Review, invited paper, special
issue on Engineering Autonomic Systems, in press.

[12] R. Sterritt, “Autonomic Computing”, Innovations in Systems and
Software Engineering, A NASA Journal, vol. 1, No.1, ISSN-1614-5046,
Springer, April 2005.

[13] S. Nordstrom, A. Dubey, T. Keskinpala, S. Neema, T. Bapty, "GHOST:
Guided Healing and Optimization Search Technique for Healing Large-
Scale Embedded Systems," Proceedings of the Third IEEE International
Workshop on Engineering of Autonomic & Autonomous Systems
(EASE'06), pp. 54-60, 2006.

[14] S. Russell, P. Norvig, Artificial Intelligence, A Modern Approach,
Second Edition, Prentice Hall/Allyn & Bacon, 2003.

[15] N. J. Nilsson, Principles of artificial intelligence, San Francisco, CA,
USA, Morgan Kaufmann Publishers, Inc., 1980.

[16] C. E. Shannon, "Programming a computer for playing chess", Computer
chess compendium, Springer-Verlag New York, Inc., pp 2-13, 1988.

[17] A. Bernstein, M. de V. Roberts, "Computer v chess player", Computer
chess compendium, Springer-Verlag New York, Inc., pp 2-13, 1988.

[18] C. H. Papadimitriou, “Games against nature”, Journal of Computer and
Systems Science, vol 31, pp. 288--301, 1985.

	I. Introduction
	II. Software Modeling
	A. Models are more than documentation
	B. Model Integrated Computing
	C. Previous work in reflex and healing architectures
	III. Healing through model-based redesign
	A. Arriving at a healed model
	B. Choosing the best candidate model
	C. The special criteria of resilience

	IV. Tools for Model Based Healing
	A. Domain specific modeling language
	B. The Healer: An autonomic model translator

	V. Conclusion and Future Work
	 Acknowledgment
	References

