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a b s t r a c t 

If last decade viewed computational services as a utility then surely this decade has transformed computation into a 

commodity . Computation is now progressively integrated into the physical networks in a seamless way that enables 

cyber-physical systems (CPS) and the Internet of Things (IoT) meet their latency requirements. Similar to the 

concept of “platform as a service ” or “software as a service ”, both cloudlets and fog computing have found their own 

use cases. Edge devices (that we call end or user devices for disambiguation) play the role of personal computers, 

dedicated to a user and to a set of correlated applications. In this new scenario, the boundaries between the 

network node, the sensor, and the actuator are blurring, driven primarily by the computation power of IoT nodes 

like single board computers and the smartphones. The bigger data generated in this type of networks needs clever, 

scalable, and possibly decentralized computing solutions that can scale independently as required. Any node can 

be seen as part of a graph, with the capacity to serve as a computing or network router node, or both. Complex 

applications can possibly be distributed over this graph or network of nodes to improve the overall performance 

like the amount of data processed over time. In this paper, we identify this new computing paradigm that we 

call Social Dispersed Computing , analyzing key themes in it that includes a new outlook on its relation to agent 

based applications. We architect this new paradigm by providing supportive application examples that include 

next generation electrical energy distribution networks, next generation mobility services for transportation, 

and applications for distributed analysis and identification of non-recurring traffic congestion in cities. The paper 

analyzes the existing computing paradigms (e.g., cloud, fog, edge, mobile edge, social, etc.), solving the ambiguity 

of their definitions; and analyzes and discusses the relevant foundational software technologies, the remaining 

challenges, and research opportunities. 
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. Introduction 

Social computing applications are smart applications, where the re-

ults received by the end users or the performance that they experience

s affected by the other users using the same application. A classical ex-

mple of this kind is traffic routing, implemented by many commercial

obility planning solutions like Waze and Google. The routes provided

o the end users depend upon the interaction that other users in the sys-

ems have had with the application. An effective route planning solution

ill be proactive in the sense that it will analyze the demands being

ade by users and will use the dynamic demand model for effectively

istributing vehicle and people across space, time, and modes of trans-

ortation, improving the efficiency of the mobility system and leading

o a reduction of congestion. However, due to its nature, this computing
∗ Corresponding author. 

E-mail addresses: mvalls@it.uc3m.es (M. García-Valls), abhishek.dubey@vanderbi

q  

ttps://doi.org/10.1016/j.sysarc.2018.05.007 

eceived 9 March 2018; Accepted 14 May 2018 

vailable online 2 June 2018 

383-7621/© 2018 The Authors. Published by Elsevier B.V. This is an open access ar

 http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
pplication requires large scale real-time data ingestion, analysis, and

ptimization. We call such applications social computing applications . 

With the burst of the cloud computing paradigm, systems requiring

ntensive computations over large data volumes have relied on the usage

f shared data centers to which they transfer their data for processing.

his is a powerful scheme for application scenarios that benefit from

eep processing and data availability, but it brings in non negligible

roblems to meet the time requirements of time sensitive social comput-

ng applications. While not necessarily real-time in the strict sense, such

pplications have built in penalty (user aversion) if they are not respon-

ive; they must be low-latency; however, the traditional cloud comput-

ng architecture is problematic in a number of application domains that

re latency sensitive. Precisely, the delay incurred by data propagation

cross the backhaul is not suited to the needs of applications that re-

uire (near) real-time response or high quality of service guarantees.
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ackhaul data handling latency is severe in the unpredictable occasions

here the network throughput is limited. Furthermore, a community

eploying such smart applications often finds it difficult to scale the

ystem to the cloud due to economic constraints. 

To alleviate these situations, engineers have looked around towards

what is available ”, i.e., to leverage the computing power of the avail-

ble near by resources, leading to a profound discussion on the oppor-

unistic usage of the computing resources dispersed in the community.

ut of this new scenario, we have identified this new computing ap-

roach that we call “Social Dispersed Computing ”. This is a powerful

aradigm that can significantly improve the performance experienced

y applications in what concerns latency and available throughput that

ill, in turn, have an indirect impact on other measures such as the

nergy consumption. 

Unlike cloud computing, resource scalability comes from the partic-

patory nature of the system, i.e., having a larger number of users. The

ey driver is the social benefit behind the achieved collaboration and

he great value obtained from the aggregation of the individual infor-

ation. Users have to perceive hardly no entry barriers to use these

pplications; barrier elimination is done by fulfilling the technical re-

uirements of these applications such as providing low cost computation

esources, reliability, and data privacy guarantees, over a low overhead

anagement structure that achieves low latency in service provisioning.

Enabling social dispersed computing . The next computing generation

s one in which the computing platform and the social applications will

e tightly integrated. For example, sharing computing resources can be

sed as incentive for participation. Moreover, providing the users with

he capability of deciding where their computations will run for secu-

ity and privacy concerns will likely be a major factor for enrolling in

pplication usage. 

To enable this, the corresponding transformations are already hap-

ening in the communications and persistent storage mechanisms. For

xample, Software Defined Network [83] addresses the required mecha-

isms to create a flexible overlay network over dispersed resources. The

oncept of decentralized distributed ledgers like Ethereum [5] and other

imilar ones enable immutable event chronology across computing re-

ources. New concepts such as the inter-planetary files system (IPFS)

29] extend blockchains and the concept of distributed file systems to

rovide a shared, decentralized, and world-wide persistent information

tore. 

In this paper, we claim that social dispersed computing systems re-

uire fog infrastructures to take a predominant role. Fog infrastructures

ill support the mobility of the users, enabling them to offload heavy

asks such as those that run machine learning services to more power-

ul nodes in their vicinity. However, the great push of relatively very

ovel computation paradigms such as fog, edge, cloud, social, and dis-

ersed computing (among other computing paradigms) has resulted in

 non-negligible level of terminology confusion in the community. In

ifferent research contributions, the reader can find these terms being

sed differently. This paper aims at shedding some light by clarifying

he meanings, and defining the boundaries (where possible) of these

aradigms, guided by their goals and application-level motivation. 

Paper outline . This paper is structured as follows. Section 2 defines

 number of computing paradigms that are simultaneously used nowa-

ays; some of these paradigms are very recent and still the scientific

ommunity has not fully agreed on what they actually are; we clar-

fy the paradigms and introduce the concept of social dispersed com-

uting . Section 3 describes the concept of social dispersed computing

nd illustrates it through a set of application scenarios in domains such

s energy, social routing and distributed traffic congestion analysis.

ection 4 presents the enabling technologies that will allow the develop-

ent of social dispersed applications. To do this, a selected set of compu-

ational approaches are presented, followed by a selection of supporting

oftware tools. Section 5 compiles the main challenges for the design and

evelopment of social dispersed applications. Finally, Section 6 draws

he conclusions presented as the opportunities for research. 
84 
. Computing paradigms: definitions and evolution 

Distributed computing systems date back decades ago enabled by the

rst communication schemes for remote machines. Fig. 1 shows a gen-

ral view since the 90’s; a time where a number of important software

nd hardware developments came together, and hardware and software

chemes started to become more sophisticated and powerful. This led to

ubsequent productive decades, resulting in the introduction of a num-

er of new and refined concepts and terms, sometimes over short periods

f time. 

Especially through the last decade, a number of keywords have ap-

eared that imply different computing paradigms such as cloud, mobile

loud, fog, or edge, among others. However, the rapid proliferation of

ontributions on these paradigms, even prior to the real consolidation of

 wide accepted definition for some of them, has introduced some con-

usion on their definitions. For example, the definition of edge computing

iverges across a number of works. In [136] , edge computing is defined

s “any computing and network resources along the path between data

ources and cloud data centers ”; whereas [145] defines edge computing

s a paradigm belonging to the sphere of the pure network infrastruc-

ure that connects the user devices (that it refers to as “edge nodes ”) to

he cloud. This last vision of edge computing is also shared by [51] al-

hough it refers to the user devices as “end nodes ” in a more consistent

anner. 

All these concepts have led us to the point where we are ready to

ealize the potential of social computing using resources from either the

loud, the fog, or locally dispersed computing resources. Nevertheless, it

s first important to clarify the terminology and, for this reason, we ini-

ially provide a comprehensive definition of key computing paradigms

resent in modern literature, with the aim to establish a common under-

tanding. These definitions are based on the most accepted significations

f the research community. The goal is to draw a clean separation (wher-

ver possible) among the different computing paradigms also explaining

heir evolution, motivation, and purpose. 

.1. Cloud computing 

Cloud computing (CC) is a service model where computing services

hat are available remotely allow users to access applications, data, and

hysical computation resources over a network, on demand, through

ccess devices that can be highly heterogeneous. 

In cloud computing [59] , resources are rented in an on demand and

ay-per-use fashion from cloud providers. Just as a huge hardware ma-

hine, cloud computing data centers deliver an infrastructure, platform,

nd software applications as services that are available to consumers.

his facilitates offloading of highly consuming tasks to cloud servers. 

The National Institute of Standards and Technology (NIST) is respon-

ible for developing standards and guidelines for providing security to

ll assets. [108] provides an insight into the cloud computing infras-

ructure which consists of three service models, four deployment mod-

ls, and five essential characteristics which are: on-demand self-service,

road network access, resource pooling, rapid elasticity, and measured

ervice. 

A cloud service model represents the packaging of IT resources re-

uired by the consumers as a service that is provided by the cloud ven-

or. The three cloud service models are: 

• Software as a service (SaaS) : The consumers are granted the capability

to run the applications of the provider, but they have no control over

the cloud infrastructures like operating system, servers, or storage. 

• Platform as a service (PaaS) : The consumers have the capability to

deploy either own or acquired applications to the cloud. The con-

sumer does not have any control on the cloud infrastructure, but has

control over the deployed application. 

• Infrastructure as a service (IaaS) : The consumers can use the appli-

cations provided on the cloud without the need to download the
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Fig. 1. Evolution of computing: a general view on the evolution of personal devices over the years. 
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application to the consumer’s computer. Consumers can manage the

underlying infrastructure at the cloud such as virtual machines, the

operating systems, and other resources. 

Additionally, with the wide increase of data processing and storage

n the cloud, larger data volumes circulate over the network, increasing

heir exposure to third parties and attackers. This brings in the need for

ata security and privacy mechanisms. Data security in particular is a

ital challenge that has been analyzed in [114] . In the paper, the authors

ave addressed the security problem from the perspective of different

takeholders like cloud providers, service providers, and consumers. It

lso summarizes the security issues in each one of the service delivery

odels of IaaS, PaaS, and SaaS, where some of the identified problems

re responsibility of the cloud vendor while the other issues are that

f the consumers. The authors also identified the various holes in the

ecurity loop of the cloud computing model, suggesting fixes that would

ake the whole model more secure. 

Apart from security there are other obstacles in using and imple-

enting cloud services. For example, while the main the advantage of

he large amount of data storage and analytics capabilities of the cloud,

ome of its disadvantages (e.g., unreliable data latency, immobility and

ack of location awareness) are important drawbacks in some domains;

nd this has made way to other technologies like mobile cloud comput-

ng or fog computing. 

.2. Mobile cloud computing 

The proliferation of mobile personal devices led to Mobile Cloud Com-

uting (MCC). MCC appeared as a natural evolution and enhancement

f cloud computing with the goal of offering specific services to mo-

ile users with powerful computational and storage resources. Task of-

oading strategies are one of the most studied problems in this domain

ecause mobile devices have strict resource limitations if compared to

loud servers. As explained in [56] , MCC combines mobile computing,

obile Internet, and cloud computing for providing task offloading. 

The literature gives different definitions for MCC as explained in

77] . Infrastructure based MCC refers to a model that uses the cloud

ata centers hardware to serve mobile users; and ad-hoc MCC defines

he concept of mobile cloud as made up of nearby mobile nodes acting

s a resource cloud that grants access to the Internet (including other

loud services) for other mobile users. Using the nearby mobile devices

as several advantages like the possibility of using a faster LAN network

hat is comparable to the available servers interconnection inside a cloud
85 
ata center. Also, MCC is “cloudlet ” based (a rather parallel concept that

s defined below). 

The paper [20] provides an overview of MCC along with its evolution

rom cloud computing, and its advantages and disadvantages, as well as

ts applications. Some of the mentioned noteworthy advantages of MCC

re flexibility, storage, cost efficiency, mobility and availability, scal-

bility, and performance. Some discussed disadvantages are security,

rivacy, compliance, compatibility, and dependency. The authors also

numerate a few open challenges faced by MCC which are low band-

idth and quality of service (QoS) parameters like congestion, network

isconnection, and interoperability. 

These non-negligible security and privacy challenges of MCC arise

rom the integration of mobile devices with cloud computing. Along

ith the similar security concerns of cloud computing, some new issues

n security and privacy arise in MCC as there is a wireless medium for

ransferring data between the mobile device and the cloud. In [113] , the

uthors identify the main security and privacy challenges as data secu-

ity, virtualization security, partitioning and offloading security, mobile

loud application security, mobile device security, data privacy, loca-

ion privacy and identity privacy; and solutions to each of these ques-

ions have also been discussed by citing prior literature work. Given the

ncrease in the number of mobile users and applications, security and

rivacy requirements are vital for MCC; and addressing them will likely

ncrease the computation and communication overhead that will have

o be dealt with by the users. 

With the integration of mobile devices and cloud computing, MCC

vercomes the limitation of immobility and lack of location awareness

n cloud computing; also, it provides an attractive and convenient tech-

ology for moving all the data-rich mobile computation to the cloud.

owever advantageous this idea of MCC may look, there are still open

ssues like the associated high network latency and power consumption

f data transmission from the mobile devices to the cloud, which are not

andled by MCC. 

.3. Cloudlet 

Cloudlet is defined as a small scale cloud data center formed by

esource-rich and trusted computing devices near the vicinity of mobile

sers that can be used to process data jointly over a local area network

onnection. It is a major technological enabler for MCC, defined at the

onvergence of MCC and cloud computing. It defines a virtualized ar-

hitecture [132] as a computational resource accessible by mobile users

t range, i.e., within their physical vicinity. This has the objective of
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mpowering mobile devices providing them the capabilities to access

omputationally intensive services that could not be run by their own

imited resources. Examples of such as services are speech recognition,

rocessing of natural language, machine learning, or augmented reality.

As discussed in [132] , even with the increased computation and stor-

ge capacity, mobile devices are not able to process rich media content

ocally with their own resources. MCC aimed at solving the above issue

y offloading all the data from the mobile device to the cloud for com-

utation. However, MCC could not provide a feasible solution for ap-

lications with tight latency requirements (i.e., real time applications),

nd this led to the concept of cloudlet. 

Additionally, as discussed in [147] , mobile users can utilize the

loudlets virtual machines to run the required software applications

loser to the mobile devices that aims to solve the latency issues by mov-

ng the virtual machine closer to the mobile devices. However, there is

 notable drawback of mobile users being dependent on network ser-

ice providers to deploy cloudlets into the LAN network for the mobile

evices to utilize them. The authors in [147] present the architecture of

loudlets where the applications are managed at the component level

nd evaluate it by implementing it for a use case of augmented reality

lassify the architecture into two categories: ad hoc cloudlet and elastic

loudlet. 

The evolution of the cloudlet concept is further discussed in

132,147] , placing the concept between cloud computing and MCC. In

loudlet, the jobs of the mobile users are not transmitted all the way

o the cloud but to a nearby cloudlet; this tends to reduce the power

onsumption of mobile devices and also the transmission delay. Thus,

t this point, cloudlet makes an advantageous evolution from MCC. 

In order to reduce the power consumption of mobile devices and

he network communication latency, [74] merges the concepts of MCC

nd cloudlets. This proposal has an advantage as it can support real

ime processing on the cloudlet; other non-real time data processing

nd storage can be run on the cloud. These claims for reduced power

onsumption and transmission delay are properly supported by their

nalysis and evaluation. 

.4. Internet of Things 

Internet of Things (IoT, that includes IoE – Internet of Everything) is an

xtension of the classical sensor network paradigm, providing support

or large scale sensor data aggregation, cloud based data processing, and

ecision support systems. 

The concept of pervasive computing emerged before IoT to refer to the

rovisioning of computation anytime, anywhere . One of the novelties of

his concept was the fact that computation devices could be personal

evices, among others. This idea was also expressed and referred to as

mbient intelligence or everywhere . 

IoT is a similar concept except that in IoT the emphasis is placed on

he physical object. The range of possible devices in IoT was enlarged

s compared to those considered in pervasive computing. As technol-

gy improved, the IoT vision was to flood the market with computation

odes that were deeply immersed in the environment: from sensors to

mall embedded computers that could be connected to the Internet as

irect and uniquely addressable end points. 

The primary evolution in the IoT paradigm compared to the sensor

etworks is the support for complex event processing (CEP) [46] which

s typically executed on the integrated cloud platform. CEP engines can

e run over the intermediate IoT node resources in the network, and

ueries can be placed on the incoming continuous data streams from

he end devices 1 like sensors and RFID tags. As compared to the pre-

ious paradigm where end nodes sent data streams to the cloud that
1 By end devices, we refer to the nodes at the leaf position of the information 

ow graph, typically intelligent sensors, smartphones, embedded computers, 

tc. 

o  

a  

o  

t  

e

86 
ould process them, performing such processing on the available IoT

odes could reduce the latency and bandwidth requirements of the IoT

etwork. 

An overview of CEP for IoT and its applications is provided in [41] ,

onsisting of a deep insight into the distributed CEP architecture based

n the client-server model which can be realized on the IoT devices to

erform queries like filtering, passing data, and placing windows on the

ncoming data. Some of the advantages of using CEP over IoT are: (1)

istributed CEP in the network will balance the workload better; (2)

ase of CEP engine deployment; and (3) the data traffic can be signif-

cantly reduced by removing unwanted data using queries of filtering,

ata passing, etc. 

Additionally, there are other works like [63] that address the idea

f distributing the data analytics between the IoT nodes and the cloud.

or example, they use genetic algorithms to optimize the query mapping

o the end devices. While the integration of IoT and CEP is a well stud-

ed concept, the challenges of security, privacy, adaptability, scalability,

nd interoperability still remain. 

To deal with the complexity and heterogeneity of IoT environments,

 number of high level flexible layered architectures have been con-

ributed. Heterogeneity has led to different sets of requirements, with

ifferent needs for complexity and varied performance, which has af-

ected the design of architectures. This has led to a scenario in which

olutions have not yet converged to a reference model, which causes

ssues of interoperability across systems [84] . 

.5. Cyber-Physical Systems 

Cyber-Physical Systems (CPS) are networked systems in which the

omputational (cyber) part is tightly integrated with the physical com-

onents. That is, the computational components sense the state of the

ystem and environment and then provide continuous feedback for con-

rolling the system and actuating on the environment. Physical compo-

ents include energy sources, transmission and distribution lines, loads,

nd control devices. Cyber components include energy management sys-

ems (EMS), supervisory control and data acquisition (SCADA) systems,

nd embedded implementations of control algorithms. The interplay of

omputational and physical systems yields new capabilities. The net-

ork is a key component in cyber-physical systems as it provides the

ackplane that guarantees timely transmission of the information (from

he physical to the computational world) and of the commands (from

he computation to the physical world). 

Traditionally, these systems had been mostly self-contained in the

ense that they have included all needed computational parts with little

nteraction with external elements. For example, the traditional archi-

ecture for the Smart Grid transfers all SCADA data to centralized utility

ervers [142] . An evolution of the design of such systems arrived with

he rising of the cloud computing paradigm as many of the analytics

unctions were deployed in the cloud [139] . However, even with the

vailability of on-demand resources in the cloud, the critical CPS of-

en are unable to transfer the time-critical control tasks to the cloud

ue to communication latencies [36,38] . This centralized SCADA ar-

hitecture is changing with recent developments like Fog Computing

64,153] , which have advertised the use of dual purpose sensing and

omputation nodes (that are end nodes ) that are closer to the physical

henomenon that is observed or analyzed. For example, the SCALE-

 [30] platform provides the capability to run air-quality monitoring

ensors, whereas the Paradrop architecture [148] provides the capabil-

ty to run containerized applications in network routers. Nowadays, cy-

er physical systems research has to consider the highly dynamic nature

f CPS; it is not possible to perform static system design as the full oper-

tion conditions are unknown at design time. For this reason, a number

f contributions are appearing that support the online verification of

hese systems as they face new situations that require them to adapt;

xamples of these contributions are [92] and [126] . 
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As a direct consequence of the evolution of the computing paradigm

rom “central data-centers ” to “shared cloud computing resources ” to

distributed edge (meaning end ) computing resources plus shared cloud

esources ”, critical CPS like smart grids can distribute the intelligence

urther down into the network, away from the centralized utility servers.

or example, this capability provides us with the means to build energy

anagement applications of the future that are both distributed and

oordinated, with heavy reliance on communication and coordination

mong local sensing and control algorithms, while also obeying strate-

ic energy management decisions made on a higher level of the control

ierarchy. We discuss this concept of providing “scalable ” and “extensi-

le ” computation services near the physical process (i.e., fog computing)

ext. 

.6. Fog computing 

Fog computing (FC) was introduced to solve the problem of having bil-

ions of IoT devices and cyber physical systems that cannot operate by

imply having connectivity to servers in the cloud; and instead, compu-

ations are pushed closer to these end nodes and devices. Unlike the tra-

itional computation model, the fog computing model, pioneered by the

pen Fog Consortium, suggests the use of shared computation servers,

imilar to the vision of cloudlet described by [132] . However, the key

ifference lies in the software as a service pioneered by fog computing.

or example, instead of just providing the computation resources, a fog

omputing machine often provides machine learning stack as a service

7] . Also, a difference with respect to cloud is that fog computing sup-

orts user mobility. Nevertheless, fog and cloud are not independent

aradigms as in a fog computing environment there is the need for in-

eracting with the cloud to achieve coherent data management. 

As mentioned in [154] , the unresolved issues in cloud computing

f latency and mobility have been overcome by providing services and

lastic resources at the end of the information chain, close to the sensors.

156] defines fog computing and discusses the characteristics related

o it like fog networking, quality of service, interfacing and program-

ing model, computation offloading, accounting, billing and monitor-

ng, provisioning and resource management, and security and privacy.

long with providing insights into the issues related to fog computing,

t also mentions paradigmatic applications like augmented reality (AR)

nd real-time video analytics, content delivery and caching, and mobile

ig data analytics which will promote fog computing. 

All of the computation paradigms discussed have big security and

rivacy challenges. Some of the main security issues faced by fog com-

uting [116] are trust, authentication, secure communication, privacy

t the end user’s node, and malicious insider attacks. A number of papers

ave contributed to identifying the security and privacy concerns of fog

omputing, and similarly a number of solutions for each of the above

tated security challenges have also been analyzed in the literature. 

Similar to [116] , also [141] mentions different security issues in fog

omputing. All smart appliances (e.g., fog computing nodes like smart

eters) have an IP address, and here, authentication problems are a

ig threat. A malicious attacker may try to hack the device and tamper

he data associated to it; e.g., in case of a smart meter this may imply

roviding false meter reading. Similar to authentication problems, man-

n-the-middle attack is also a prominent type of attack on fog computing

odes (FCN), where the devices may be compromised or replaced by

ake ones. This problem arises because the FCN under this type of attack

tilize only a small amount of the processor and memory, and normal

ntrusion and anomaly detection techniques will not be able to detect

t. The authors also provide an insight into the solution to the man-in-

he-middle attack and list a number of privacy issues in fog computing

nd different solutions available in the literature. 

Overall, it must be acknowledged that fog computing provides a

umber of advantages that are of key importance for most applica-

ions: low latency, location awareness, real time operation, heterogene-

ty, and end device mobility; all these make it an attractive computation
87 
aradigm. But, the security and privacy challenges of trust, authentica-

ion and man-in-the-middle attack discussed above make it challenging

o implement FCN in daily life applications. 

.7. Edge computing 

Edge computing (EC) is an overloaded concept, defined differently

cross the literature. The most commonly mentioned meaning of edge is

hat of end , meaning that edge computing is carried out by the end de-

ices or user devices (also called edge devices in many works). Although

he latter one pulls the focus away from the network elements and their

ssociated challenges, it is probably the most extended term up to the

resent time. 

However, the networking community has started to use edge com-

uting to refer to the computation performed by the network elements.

f we view the Internet as a graph that connects computation nodes

computers), the term edge is assigned to the connecting line between

he central nodes (cloud servers) and the end nodes (the devices at the

nd of the network or user devices). Here, edge computing refers to the

omputation done at the network backhaul. 

After presenting both usages of edge computing , we use this term in

he networking sense in the remainder of this paper. This way, we refer

o end or user devices as the leaf nodes of the Internet graph, and we

se the term edge computing as to the computation done at the network

lements and backhaul that will support offloading and will speed up the

ervice time to end devices by partly performing heavy computations in

he network segments. 

In the first presented meaning of the term, the idea behind edge

omputing is to perform computation and storage locally within the re-

ources available at the end devices. For this type of nodes, [136] tar-

ets at addressing the potential issues of response time requirements,

attery life constraints, data security and privacy, and bandwidth re-

uction; this paper also discusses the evolution of the edge computing

rom the concepts of cloud computing and IoT, providing a definition

or edge computing and several case studies that support this paradigm

nd show the inherent advantages that it offers. 

Similarly, an insight into edge computing is provided in [51] along

ith the comparison among the different edge computing implemen-

ations of fog computing, mobile edge computing, and cloudlets. Some

imple differences among the three are: 

• Characteristics of nodes. Fog computing nodes use off-the-shelf de-

vices and provide them with computation and storage capabilities

which make them slower as compared to the dedicated devices of

mobile edge computing and cloudlets. 

• Proximity to end devices. Fog computing nodes may not be the first

hop for end devices due to the use of off-the-shelf computing devices;

whereas for MEC and cloudlet, the devices can connect directly to

the end nodes using WiFi for cloudlets and mobile base station for

mobile edge computing. 

• Access/communication mechanisms between the devices. Fog com-

puting nodes can use WiFi, Bluetooth or even mobile networks; mo-

bile edge computing devices can only utilize mobile networks; and

Cloudlets use WiFi. 

• Diversity and heterogeneity in the off-the-shelf devices. The fog com-

puting paradigm requires an abstraction layer; whereas mobile edge

computing and cloudlets do not require this because of the dedicated

connections that devices use. 

Additionally, the authors have also mentioned the use case based se-

ection of the three edge computing implementations in terms of power

onsumption, access medium, context awareness, proximity, and com-

utation times. 

As a result from the literature analysis, it appears that the genesis

f edge computing has made way to other edge computing implemen-

ations of fog computing, mobile edge computing, and cloudlets which

end to tackle the disadvantages of cloud computing and mobile cloud
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omputing. However, there are several open issues of edge computing

s indicated in [95] and these are security and privacy, resilience, ro-

ustness, achieving openness in the networks, supporting multi-services

nd operation. 

.8. Mobile edge computing 

Mobile-Edge Computing (MEC) was motivated by the growth of the

etwork traffic generated by the proliferation of smart phones and their

pplications that require intensive data exchange and processing. MEC

ntends to reduce the latency and to support location awareness in or-

er to increase the capacity of the applications that run on mobile de-

ices. MEC started development in 2014 led by ETSI 2 with the goal

f achieving a sustainable business strategy [132] . For this, it brought

ogether mobile operators, service providers, mobile users, and over-

he-top (OTT) players. Different metrics can be improved by deploying

ervices over MEC. On the functional side: latency, energy efficiency,

hroughput, goodput, packet loss, jitter, and QoS. On the non-functional

ide: service availability, reliability, service load, and number of invo-

ation requests. MEC servers are located near the base stations. Smart

evices offload activities and the cellular data and offloaded activities

re processed on such servers; them, the edge servers decrease the traffic

nd congestion on the backhaul. 

Thus, MEC aims at placing the computational and storage resources

t the mobile base stations so that mobile users can widely use the ad-

itional features it has to provide. [27] provide technical insight into

EC along with its limitations by identifying the applications of MEC.

arious applications and use cases of content scaling, offloading, aug-

entation, edge content delivery, aggregation and local connectivity are

valuated in terms of power consumption, delay, bandwidth and scala-

ility. A few of the listed advantages of MEC for different stakeholders

f end users, network operators and application service providers are:

1) end users benefit from reduced communication delay; (2) network

perators benefit with bandwidth reduction and scalability; (3) appli-

ation service providers benefit with faster service and scalability; and

4) augmentation enables the application providers to integrate cellular

etwork specific information into the application traffic. 

A comprehensive overview of MEC is found in [104] that introduces

eatures of MEC along with its paradigm shift from MCC. A comparison

f MEC and MCC has been made to support the advantages of paradigm

hift from MCC. The advantages of MEC like low latency, mobile energy

avings, context awareness and, privacy and security enhancement are

iscussed along with examples. Some of the mentioned technical chal-

enges of MEC are: security, network integration, application portability,

erformance, regulatory and legal consideration, resilience and opera-

ion. The literature also mentions some use case scenarios of MEC like

ideo stream analysis, augmented reality, IoT, and connected vehicles. 

In contrast to the cloudlet model, which is available to specific users

n the vicinity of the cloudlet, MEC is available to all mobile users as

EC servers are deployed in mobile base stations to deliver additional

eatures such as location and mobility information. 

Fog or cloudlet nodes are managed typically by individuals and can

e deployed at any location that they judge convenient. MEC servers

re owned by mobile operators; servers have to be deployed near the

ase stations to facilitate that users have access to the mobile network

ver the radio access network (RAN) [131] . The MEC model has been

rototyped on a few scenarios such as edge video orchestration in which

sers access live video streams enabled by an orchestration application

unning on a MEC server. MEC servers can be deployed at different loca-
2 European Telecommunications Standards Institute. http://www.etsi.org . 

t

a

i

88 
ions on the networking infrastructure: an LTE base station, 3 3G Radio

etwork Controllers (RNC), or a mix of both. 

Security and privacy issues are shared by fog, cloud, and MEC. More-

ver, in MEC the congestion of a server may affect the service provided

o a number of mobile users, resulting in high monetary costs. Therefore,

ncreasing the computation power at the edge servers is a real need. 

.9. Mist computing 

Mist Computing is a concept explained in [125] . There is lack of con-

ensus as to the precise definition of mist computing . In some works, mist

omputing is defined as the paradigm that takes advantage of every pro-

essing capacity available everywhere, from the end nodes (sensors and

ctuators) to the cloud servers. Some of these works also provide defi-

itions for other concepts that collide with the mainstream trend, e.g.,

dge computing acquires fog computing capabilities [73] . As there is no

lean definition of what mist actually provides, we are inclined to either

se cloud, fog, or edge. 

As in [126] , fog computing performs the computation at the network

sing the gateway devices, but in mist computing this is performed by

he actual end devices, i.e., sensors and actuators. We know that the

loser the computation is to the end devices, the bigger is the decrease

n the network latency and transmission delay, which improves the user

xperiences in real time applications. 

.10. Social computing 

Social Computing [78] is a paradigm for analyzing and modeling so-

ial behaviors of users on media and platforms to extract added value

nformation and create intelligent and interactive applications and data.

t involves a multi-disciplinary approach that encompasses computing,

ociology, social psychology, communication theory, computer-science,

nd human-machine interaction (HMI). For this purpose, social comput-

ng focuses essentially on studying the relations among people within a

roup to analyze how the information flows; the collaboration manner

o extract positive and negative patterns; how communities are built,

nd how grouping is achieved. The target systems for analysis are social

edia, social networks, social games, social bookmarking and tagging

ystems, social news, and knowledge sharing, among others. 

Among these scenarios, social computing and social software are ca-

able of providing big data that can be processed and analyzed with

omplex algorithms and computation techniques [78] capable of ex-

racting essential social knowledge that creates high value for society,

ndustry, or individuals. Social computing is a part of computer science

t the confluence area between social behavior and computational sys-

ems. By means of using software systems and computer science technol-

gy, social computing recreates social conventions and social contexts.

oftware applications for social communication and interaction are the

uilding block of social computing and illustrate this concept. Among

hese software elements, one may find public web based content, blogs,

mail, instant messaging, social network services, wikis, social tagging

nd bookmarking. 

Since the wide availability of Internet and powerful personal com-

uters, social computing took a phenomenal growth. This paradigm

hifts the computing towards the end of the network for the end users to

ngage in social communities, share information and ideas, and collec-

ively build and use new tools. Social communities with common ideas,

ools and interests are formed which can improve the experience of us-

ng tools and sharing common problems and solutions. As an example,

ikipedia is an open source encyclopedia that works like an informa-

ion sharing tool formed by collaborative authoring which can be re-
3 Long-Term Evolution (LTE) is a telecommunications standard –a registered 

rademark of ETSI – for high-speed wireless communication in mobile devices 

nd data terminals; it increases the capacity and speed by using a different radio 

nterface together with core network improvements 

http://www.etsi.org
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iewed and changed upon the feedback of users. Though this social tool

elps the community in sharing information through a common plat-

orm called wiki, the credibility of information is at stake, as it is an

pen source tool with collaborative authorship. Some other notable ex-

mples of social computing platforms are YouTube, Word press, Tumblr,

acebook, Twitter, or LinkedIn. 

.11. Dispersed computing 

Dispersed computing [18] involves algorithms and protocols for

ission-aware computation and communication across broad-scale,

hysically dispersed objects for designing scalable, secure, and robust

ecision systems that are collectively driven by a global mission. These

ystems can operate under highly variable and unpredictable (possibly

lso degraded) network connectivity conditions. For this reason, dis-

ersed computing envisions opportunistic and convenient design of mo-

ile code and data relations as needed by the users, the applications, or

he mission. 

For cloud computing and mobile computing, users offload the real

ime data on to the cloud for processing and data analytics. We have

lso discussed a few limitations of high network latency and transmis-

ion delay, that lead to the genesis of the different paradigms of edge

omputing, fog computing and mobile edge computing based on the

dea of utilizing the computational resources of the end devices in the

etwork to process the data locally. Similar to this idea, dispersed com-

uting seeks to provide a scalable and robust computing system which

ollectively uses heterogeneous computing platforms to process large

ata volumes. This paradigm is typically deployed in situations where

here is degraded network connectivity that leads to higher data latency

nd transmission delay. 

Among the first works on dispersed computing, we find [140] that

efines the term as an alternative model derived from the consolidation

f a number of contributions on data transmission, data storage, and

ode execution. Still that work is very preliminar and much targeted at

urveying the existing distributed computing models according to vari-

us criteria and highly related to cloud. 

Other meanings of disperse computing rather point at the edge com-

uting elements, such as DARPA’s definition [18] where NCPs (the net-

ork control points) are placed at the core of the computations. 

Dispersed computing systems run software partly inside the pro-

rammable platforms within the network, the NCPs. As mentioned ear-

ier, NCPs are capable of running code for both, users/applications and

or the network protocol stack. For implementing the dispersed comput-

ng paradigm, the application-level logic will need resources available

t the end points (the computation devices) and at the NCPs. 

. Social dispersed computing 

In this paper, we coin the term social dispersed computing that is at the

ntersection of social computing and dispersed computing . On the one hand,

ispersed computing [18] has the goal of providing scalable, secure, and

obust decision systems that are collectively driven by a global mission.

ispersed computing is a computing paradigm for designing systems

hat can operate under highly variable and unpredictable (possibly also

egraded) network connectivity conditions. For this, such a computing

aradigm envisions opportunistic and convenient design of mobile code

nd data relations as needed by the users, the applications, or the mis-

ion. On the other hand, the social dispersed computing paradigm takes

n agent or actor based approach, connecting the users with each other

ia messages, enabling them to obtain globally useful analysis, while

erforming local computations. Further, decisions on what users do are

nfluenced not only by the users’ personal preference and desire but also

y what other users are doing. 

These models demand complex, flexible, and adaptive systems, in

hich components cannot simply be passive nor can reactive entities

e managed by only one organization [144] . Nevertheless, instead of
89 
eing a solitary activity, computation becomes rather an inherently so-

ial activity , leading to new ways of conceiving, designing, developing,

nd handling computational systems [138] . Considering the emergence

f distributed paradigms such as web services, service-oriented comput-

ng, grid computing, peer-to-peer technologies, autonomic computing,

tc., large systems can be viewed as the services that are offered and

onsumed by different entities, enabling a transactive paradigm. 

Formally, social dispersed computing applications can be approxi-

ated as multi agent systems. For example, they can be thought of as

ollections of service-provider and service-consumer components inter-

inked by dynamically defined workflows [103] . Agents are autonomous

ntities with given behaviours that interact with other agents that also

ave their own behaviours. As a result of these interactions, individ-

al behaviours (or even objectives, preferences, etc.) may be affected,

merging a global (or aggregated) behaviour of the whole system. Intel-

igent software agents are a new class of software that act on behalf of

he user to find and filter information, negotiate for services, easily au-

omate complex tasks, or collaborate with other software agents to solve

omplex problems. This concept of intelligent agent provides support to

uild complex social dispersed computing systems as components with

igher levels of intelligence, which demand complex ways of interac-

ion and cooperation in order to solve specific problems and achieve the

iven objectives. However, while procedures, functions, methods and

bjects are familiar software abstractions that software developers use

very day, software agents, are a fundamentally new paradigm unfamil-

ar to many software developers. Thus, new platforms and programming

bstractions are required. We describe some of these paradigms in the

ections on market based approaches later in the paper. 

.1. Multi agent systems 

It should be noted that the concept of social dispersed systems bor-

ows heavily from the paradigm of multi-agent systems and integrates

ocial behaviors and incentives (to encourage participation) in to the

ix. Multi Agent Systems (MAS) is an important and exciting research

rea that has arisen in the field of Information Technologies in the last

ecade [102] . According to [150] , an agent is defined by its flexibility,

hich implies that an agent is reactive as it must answer to its environ-

ent; proactive as it must try to fulfill its own plans or objectives; and

ocial because an agent has to be able to communicate with other agents

y means of some kind of language. A Multi Agent System consists of a

umber of agents that interact with one-another [149] . 

The most promising application of MAS technology is its use for sup-

orting open distributed systems [102] . Open systems are characterized

y the heterogeneity of their participants, non-trustworthy members,

xistence of conflicting individual goals and a high possibility of non-

ccordance with specifications [25] . The main feature of agents in these

ystems is autonomy. It is this autonomy that requires regulation, and

orms are a solution for this requirement. In these types of systems,

roblems are solved by means of cooperation among several software

gents [103] . Norms prescribe what is permitted, forbidden, and manda-

ory in societies. Thus, they define the benefits and responsibilities of the

ociety members and, as a consequence, agents are able to plan their ac-

ions according to their expected behaviour. 

When developing applications based on the new generation of dis-

ributed systems, developers and users require infrastructures and tools

hat support essential features in Multi Agent Systems (such as agent

rganizations, mobility, etc.) and that facilitate the system design, man-

gement, execution, and evaluation [48,57] . Agent infrastructures are

sually built using other technologies such as grid systems, service-

riented architectures, P2P networks, etc. In this sense, the integration

nd interoperability of such technologies in Multi Agent Systems is also

 challenging issue in the area of both tools and infrastructures. What is

ore, agent technologies can provide concepts and tools that give possi-

le answers to the challenges of practical development of such systems

y taking into consideration issues such as decentralization and distri-
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c  
ution of control, flexibility, adaptation, trust, security, and openness

35] . Finally, in order for Multi Agent Systems to be included in real

omains like media and Internet, logistics, e-commerce and health care,

heir associated infrastructures and tools should provide efficiency, scal-

bility, security, management, monitoring and other features related to

uilding real applications. 

.2. Social dispersed computing illustration 

To illustrate the concept of social dispersed computing, we consider

hree examples: two from the transportation domain and one from the

nergy domain. 

.2.1. Next generation electrical energy systems 

Transactive energy systems (TES) [45,80,91,109] have emerged in

nticipation of a shift in the electricity industry, away from centralized,

onolithic business models characterized by bulk generation and one-

ay delivery, towards a decentralized model in which end users play a

ore active role in both production and consumption [109] . The main

ctors of this system are the consumers, which are comprised primar-

ly of residential loads and prosumers who operate distributed energy

esources (DERs). Examples of such DERs include photovoltaics, bat-

eries, and schedulable loads (electric vehicle charging, laundry, etc.).

dditionally, a distribution system operator (DSO) manages the connec-

ion between the microgrid and the primary grid. Such installations are

quipped with an advanced metering infrastructure, which consists of

E-enabled smart meters. In addition to the standard functionality of

mart meters (i.e., the ability to measure line voltages, power consump-

ion and production, and communicate these to the DSO), TE-enabled

mart meters are capable of communicating with other smart meters,

ave substantial on-board computational resources, and are capable of

ccessing the Internet and cloud computing services as needed. Exam-

les of such installations include the well-known Brooklyn Microgrid

roject [17] . 

At its core, transactive energy systems are market based social appli-

ations that have to dynamically balance the demand and supply across

he electrical infrastructure [109] . In this approach, customers on the

ame feeder (i.e., those sharing a power line link) can operate in an open

arket, trading and exchanging generated energy locally. Distribution

ystem operators can be the custodians of this market, while still meeting

he net demand [47] . Implementing such systems requires either a cen-

ralized or decentralized market framework that is robust, resilient, and

ecure. Fog computing resources provide an ideal opportunity to sched-

le the operation of the market activities in the community as most of

he activity remains within the community and each home has access to

 set of smart inverters and computers attached to the smart inverters

hat can be part of the fog computing layer. 

.2.2. Social mobility 

Social routing platforms address the problem of urban transporta-

ion and congestion by directly engaging individual commuters. Due to

idespread use of smart devices, users are becoming active agents in the

hared mobility economy. This favors the use of algorithms for designing

ctive incentives that encourage users to take mobility decisions consid-

ring the overall system effect, rather than myopic individual utilities,

hat focuses on what is best for each individual from his or her local per-

pective, as implemented by commercially available mobility solutions

130] . 

Such services require a for information sharing, and a transactive

latform that: (a) provides multimodal routing algorithms, which ex-

end existing optimization techniques for solving the multimodal tran-

it problem by incorporating probabilistic representations of events in

ities, creating a near-optimal distributed algorithm by employing sub-

odularity and folding incentive mechanisms into the optimization

roblem; (b) provide high-fidelity analytics and simulation capabilities

or service providers, informing them about how users are consuming
90 
ransportation resources, which enables them to develop mechanisms

or improving services; and (c) provide an immutable and auditable

ecord of all transactions in the system. 

Again a market-based distributed system running across these agents

ill be able to create a dynamic offer with incentive-based route assign-

ent logic that can ensure that transportation resources are shared ef-

ciently without causing congestion. Clearly, such a platform is also an

xtension of the transaction management platform by: (1) making indi-

idual consumers the participants; and (2) making the apps running on

heir smart phones the transaction agents and the transaction manage-

ent platform provided by the transportation agency. 

A solution to this problem requires a social computing and informa-

ion sharing platform that overcomes the incentive gap between individ-

als and municipalities. This platform must offer mixed-mode routing

uggestions and general system information to travelers and, in turn,

upply service providers with high-fidelity information about how users

re consuming different transportation resources. At the same time, this

ystem must also consider the investment required by the cities in the

omputing infrastructure required to solve the problem at scale. Alter-

atively, a social dispersed computing approach that utilizes the various

nd computing resources available in the city, including the mobile de-

ices of the commuters, can be employed by municipalities to improve

fficiency within their cities with little investment. 

This scenario precisely leads to the problem of secure and trustwor-

hy computing. Privacy of individuals is an important aspect of a suitable

olution; the usage of individuals’ smart devices as both data sources

nd computational resources could expose the end users to a risk of pri-

acy breach. Seemingly innocuous data, such as transit mode or route

hoice, can lead to inferences of private information, such as real-time

racking of an individual’s position [82] , likelihood of affairs [115] , and

orecasting trip destinations [50] . Therefore, again localized computing

esources which are managed under the legal jurisdiction are more at-

ractive to use for implementing the transaction management. 

.2.3. Distributed traffic congestion analysis 

Another example is traffic congestion analysis in cities. Traffic con-

estion in urban areas has become a significant issue in recent years.

ecause of traffic congestion, people in the United States traveled an

xtra 6.9 billion hours and purchased an extra 3.1 billion gallons of

uel in 2014. The extra time and fuel cost were valued up to 160 bil-

ion dollars [133] . Congestion that is caused by accidents, roadwork,

pecial events, or adverse weather is called non-recurring congestion

NRC) [65] . Compared with the recurring congestion that happens re-

eatedly at particular times in the day, weekday and peak hours, NRC

akes people unprepared and has a significant impact on urban mobil-

ty. For example, in the US, NRC accounts for two-thirds of the overall

raffic delay in urban areas with a population of over one million [100] .

Driven by the concepts of the Internet of Things (IoT) and smart

ities, various traffic sensors have been deployed in urban environments

n a large scale, and many techniques for knowledge discovery and

ata mining that integrate and utilize the sensor data have been also

eveloped. Traffic data is widely available by using static sensors (e.g.,

oop detectors, radars, cameras, etc.) as well as mobile sensors (e.g., in-

ehicle GPS and other crowdsensing techniques that use mobile phones).

he fast development of sensor techniques enables the possibility of in-

epth analysis of congestion and their causes. 

The problem of finding anomalous traffic patterns is called traf-

c anomaly detection. Understanding and analyzing traffic anoma-

ies, especially congestion patterns, is critical to helping city plan-

ers make better decisions to optimize urban transportation systems

nd reduce congestion conditions. To identify faulty sensors, many

ata-driven and model-driven methods have been proposed to incorpo-

ate historical and real-time data [62,101,129,156] . Some researchers

75,81,146,152] have worked on detecting traffic events such as car ac-

idents and congestion using videos, traffic, and vehicular ad hoc data.
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here are also researchers who have explored the root causes of anoma-

ous traffic [19,44,86,87,99,151] . 

Most existing work still focuses mostly on a road section or a small

etwork region to identify traffic congestion, but few studies explore

on-recurring congestion and its causes for a large urban area. Recently,

eep learning techniques have gained great success in many research

elds (including image processing, speech recognition, bioinformatics,

tc.), and provide a great opportunity to potentially solve the NRC iden-

ification and classification problem. However, the state of the art still

s to collate the data into a server and then perform the NRC classi-

cation periodically. The concept of Mobile Edge Computing and Fog

omputing provide a new opportunity. 

Consider a network of micro-devices running on the transit buses, on

iosks at the bus stops, and the metro data center can be used to not only

rovide the transit schedule analysis services to the end customer but

an also be used to provide analysis of non-recurring congestion (NRC).

ompared with the recurring congestion that happens repeatedly at a

articular time in the day, weekday and peak hours, NRC usually shows

pecific patterns associated with the causing events. It is important to

dentify and correlate the traffic data gathered by individual road sen-

ors, including cameras, and solve a coordinated analysis of traffic con-

itions across the region. Clearly, sending all the data in real-time to

he cloud or the metro data center is inefficient and the data should be

nly sent when the likelihood of NRC is high. Detection of NRC events

s important in communities as the local traffic operation centers and

mergency responders can take proactive actions. Once an NRC event

s detected, it is possible to do further analysis to identify if it can be

xplained due to an existing event or if it can be explained as a failure

f one or more traffic sensors [62] , which can then be repaired. 

. Enabling social dispersed computing 

While fog computing, edge computing, and mobile edge computing

rovide the required computation resources, the resilience, timeliness,

nd security requirements impose the need for additional middleware

echnology with improved services. While traditionally middleware was

hought of as the “networking ” glue, these days middleware is often

sed as the term to also describe “useful platform ” services. These plat-

orm services provide reusable capabilities like distributed transactions,

ime synchronization, fault-tolerance, etc. This section describes some

f these core computation services. The reader must think of them as

ore-enablers, which when combined appropriately with the underlying

omputation substrates enable useful social dispersed computing appli-

ations. 

.1. Distributed transaction management 

At its core, agents in the social dispersed computing domain are ex-

cuting a set of related operations. These operations and their sequence

an be grouped into a transaction to enable fault tolerance, specially

roviding the capability of roll back. 

A distributed transaction is a set of operations that involve two or

ore networked nodes that, in turn, provide resources that are used and

robably updated by the operations. In a traditional transaction, there

s the notion of the transaction manager that manages the execution of

he constituent operations and their access to the distributed resources.

ypical transaction systems such as [49,111] use techniques for faster

xecution like compensating transactions, optimism, and isolation with-

ut locking. However, the concept of centralized management will have

o be revisited for social dispersed computing applications; these are

ighly distributed applications, potentially involving large numbers of

articipants with high mobility, that produce large data volumes, and

hat manage data selectively. 

Social computing applications are transactive by nature because they

ften involve exchange of digital assets between participants. The state

ransition of the system also depends upon the confirmed past state
91 
f the system. Examples include transactive ride-share systems [155] ,

ransactive health-care systems [26] , and transactive energy systems

45,80,109] . Typically, there are three different kinds of subsystems re-

uired to settle the transactions in a social dispersed computing appli-

ation. 

The first subsystem is a distributed ledger (e.g. Blockchains), which

s responsible for keeping track of (and log) all events of interest. For

nstance, in the energy domain these events are trades, energy transfers,

nd financial transactions. In the health care domain, the events record

he time of access of the health care data. The data is not stored in the

lockchain due to the size and privacy issues. Rather, the data is stored

n the second layer, which can be implemented by either a cloud or a

ecentralized storage service like Storj [3] or IPFS [119] . The second

ubsystem is the IoT layer, which is responsible for sensing and control.

he third subsystem is the communication layer and is typically imple-

ented using messaging middlewares like MQTT [120] or DDS [121] . 

A new enabling technology for transaction management can be IPFS

Inter Planetary File System) that is a peer to peer distributed file sys-

em with the goal of connecting all computing devices through a single

lobal file system. In IPFS, nodes do not need to trust each other: it uses

 distributed hashtable and a self-certifying namespace, and has no sin-

le point of failure. IPFS is similar to the web, but it tries to mimic the

xchange of files through a Git type of repository for all devices by pro-

iding a content-addressed block storage model with content-addressed

yper links. This connection type will form a data structure (Merkle

AG) that can be used for providing blockchains, versioned file systems,

r a permanent web. 

.2. Blockchain 

Blockchains combine the storage of transaction information with ad-

anced protocols in a way that ensures that there is a consensus on the

perations that were executed. It is a public database where new data are

tored in a container called a block . Each block is added to an immutable

hain that has data added in the past. Data stored in blockchains can

e of any type. The perfect illustration of this technology is inevitably

elated to Bitcoins, a cryptocurrency whose transactions are recorded

hronologically and publicly on the database, where each block is a

ransaction. 

The evolution of blockchain technology ancestors until today is de-

icted in Fig. 2 . 

Current transactions require that people trust on a third party to

omplete the transaction. This third party can be a bank or a national

uthority for the case of transactions involving money. 

Blockchain technology is radically challenging the current way of

perating transactions. Blockchain relies on the use of mathematical

ools and cryptography to provide an open decentralized database as

 global and decentralized source of trust recording every transaction

hat involves value, money, goods, property, work, or even votes. Ev-

ry transaction is recorded on a public and distributed ledger accessible

y anyone who has an Internet connection. It consists of creating and

anaging a record whose authenticity can be verified by the entire user

ommunity. Distributed property and trust can, then, be enabled in a

ay in which every user with access to the Internet can get involved in

lockchain-based transactions, and third party trust organizations may

o longer be necessary. Blockchain technology can be used in an endless

umber of applications: tax collection, money transfers without bank

ntervention, or health care management. How it work is explained in

hat follows. 

When someone requests a transaction, such transaction is broad-

ast to a peer-to-peer network consisting of computation nodes, simply

nown as nodes, that form a completely decentralized network. The net-

ork of nodes validates the transaction and the user’s status applying

lgorithms. When this transaction is verified, it is combined with other

ransactions to create a new block of data that is placed in the ledger.
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Fig. 2. Evolution of Blockchain. 
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fter, the new block is added to the existing blockchain permanently

nd inmutably. 

Social dispersed applications are candidates for using blockchain

echnology given their highly distributed nature. Overall, the blockchain

atabase is stored in a distributed way, and the records it keeps are pub-

ic and easily verifiable. As no centralized version of such information

xists, it is secured from hacker attacks. 

.3. Distributed market platform 

As discussed in the earlier examples, there is a need for incentives to

articipate as a resource in the social dispersed computing as well as to

e eager to provide information. A market based distributed framework

an provide this foundation: one in which all interactions generated in

he social computing application are safely stored. As mentioned previ-

usly, such interactions are found in other sharing economy driven ap-

lications [135] , e.g., ride-sharing [79,94] , car-sharing [66] and trans-

ctive energy systems [31,85,92] . However, these exchange of data and

esource raises the concerns of integrity, trust, and above all the need

or fair and optimal solutions to the problem of resource allocation, mo-

ivating the requirement for a management platform. 

Specifically, such a market based platform involves a number of self-

nterested agents that interact with each other by submitting offers to

uy or sell the goods, while satisfying one or more of the following

equirements: (1) anonymity of participant identities, i.e., individual

gents shall not have the means to infer the identities of other agents,

r who trades with whom; (2) confidentiality of market information,

hich includes individual bids and transaction information, output of

rade verification processes, and finalized trading data that are yet exe-

uted; (3) market integrity and non-repudiation transactions; (4) avail-

bility and auditability of all events and data which can take the form

f encrypted or non-encrypted data. 

Blockchains form a key component of such market based platforms

ecause they enable participants to reach a consensus on the value of

ny state variable in the system, without relying on a trusted third party

r trusting each other. Distributed consensus not only solves the trust is-

ue, but also provides fault-tolerance since consensus is always reached

n the correct state as long as the number of faulty nodes is below a

hreshold. Further, blockchains can also enable performing computa-

ion in a distributed and trustworthy manner in the form of smart con-
92 
racts. However, while the distributed integrity of a blockchain ledger

resents unique opportunities, it also introduces new assurance chal-

enges that must be addressed before protocols and implementations

an live up to their potential. For instance, smart contracts deployed

n practice are riddled with bugs and security vulnerabilities. Another

roblem with blockchain based implementation is that the computation

s relatively expensive on blockchain-based distributed platforms and

olving the trading problem using a blockchain-based smart contract is

ot scalable in practice. 

Fig. 3 describes an example of such a market platform called Solid-

orx [54] . It allows agents to post offers using predefined programming

nterfaces. A directory actor provides a mechanism to look up connec-

ion endpoints, including the address of a deployed smart contract. The

mart contract functions check the correctness of each offer and then

tores it within the smart contract. Mixer services can be used to obfus-

ate the identity of the prosumers [31] . By generating new anonymous

ddresses at random periodically, prosumers can prevent other entities

rom linking the anonymous addresses to their actual identities [31,91] ,

hereby keeping their activities private. Solver actors, which are pre-

onfigured with constraints and an objective function, can listen to

mart-contract events, which provide the solvers with information about

ffers. Solvers run at pre-configured intervals, compute a resource allo-

ation, and submit the solution allocation to the smart contract. The

irectory, acting as a service director, can then finalize a solution by in-

oking a smart-contract function, which chooses the best solution from

ll the allocations that have been submitted. Once a solution has been

nalized, the prosumers are notified using smart-contract events. To en-

ure correctness, the smart contract of SolidWorx is generated and ver-

fied using a finite-state machine (FSM) based language called FSolidM

106] . 

.4. Time synchronization 

Satisfying time deterministic requirements during code execution on

 node is crucial but not enough for a distributed system like social dis-

ersed computing. In these applications, we sometimes need to establish

 common synchronized time base and need to align each node’s local

lock(s) to this global reference. Even slight differences in each node’s

ocal clock —typically a few tens of parts per million (ppm) —accumulate

ast and become apparent over time. Based on environmental factors
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Fig. 3. An example of a distributed market platform managing the interaction of the agents in a social computing setting described in [54] . 
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temperature, humidity, and voltage stability), the frequency differences

re not constant. Thus, to provide an accurate globally synchronized

ime base, the supporting services need to periodically measure and

ompensate for these differences. The periodic adjustment of the local

ime on the node requires careful considerations to avoid disruption of

he local event scheduler [52] . Fortunately, there are two well estab-

ished technologies for solving this problem, both are supported by any

odern Linux kernel. 

The Network Time Protocol (NTP) [71] is a ubiquitous time synchro-

ization service using heuristic software algorithms with no special re-

uirements on the networking hardware and communication infrastruc-

ure. The Precision Time Protocol (PTP, IEEE-1588) on the other hand is

uilt on accurate end-to-end hardware-level timestamping capabilities.

t is no surprise that the attainable accuracy of the two methods differ by

rders of magnitudes: tens of milliseconds with NTP vs. microseconds

ith PTP [117] . PTP has also been implemented over wireless [42] . 

The PTP protocol achieves excellent accuracy if used within a local

rea network and/or all network equipment in the packet forwarding

ath participate in the protocol. The basic building blocks of the pro-

ocol are: (1) a hierarchical master/slave clock tree strategy supported

y a leader-election ( “best master ”) protocol, (2) accurate time-of-flight

easurement of network packets with the built-in assumption that these

elays are symmetrical (3) support for measuring and compensating for

ntermediate delays across the communication medium (4) using level-

 LAN frames or IPv4/IPv6 UDP messages as the transport mechanism

5) support for co-existing independent PTP clock domains on the same

AN. 

At its core, the master-slave clock synchronization mechanism is im-

lemented by periodic beacon frames broadcast by the master and con-

aining the master clock value at the beginning of the beacon message

eneration. If the networking hardware is not capable of inserting this

ime value during frame transmission, a second non time critical frame

s sent by the master containing this value. With properly maintained

stimates on frame transmission delays, each slave can adjust its local

lock to the master. The delay estimation is based on periodic round-trip

equests from the slaves to the master. The request message is transmit-

imestamped by the slave and received-timestamped by the master. The

erver then replies with a non real time message which contains the

eceived-timestamp for the slave to have a good estimate on the current

etwork delay. 

.5. Distributed coordination services 

Social dispersed computing applications will aggregate large num-

ers of users participating as sensing actors and will also receive and

se data produced by the applications themselves. Interactions across

hese users will be possibly made on the basis of user groups that can

hange dynamically. Services for grouping/membership management

nd distributed coordination and consensus will have to be put in place

o enable consistent interoperation with coherent state management. 
93 
An application may be deployed on a variable number of nodes.

odes can be added or removed from the network at any time, either by

 controlling authority or unintentionally due to a fault condition. It is

ossible for an application to operate on a subset of nodes (or groups),

hile another application operates on another subset of nodes. It is pos-

ible for a node to migrate from one subset to another subset. 

A distributed coordination service provides common services for co-

rdination among actors that run on a network of nodes. The distributed

oordination service includes: (1) group membership, (2) leader elec-

ion, (3) distributed consensus, and (4) time-synchronized coordinated

ction; these are explained below: 

• Group membership maintenance: It is a basic building block that main-

tains the logical lists of components (i.e., users) that register with the

service. All the distributed coordination features are available inside

a logical group. 

• Leader election: Choosing a leader is a process where a single node be-

comes designated as an organizer of tasks among several distributed

nodes. 

• Distributed consensus: A process where group members form agree-

ment on some data value. 

• Time-synchronized coordinated action: Time synchronized activities

take the clock value as the trigger for their execution. In a distributed

scenario, several nodes will have to agree on when to schedule a task

of this kind, and for this, their clocks must be synchronized. 

More in detail, coordination services are needed to maintain shared

tate in a consistent and fault-tolerant manner. Achieving fault tolerance

s done by using replication that is typically based on running a quo-

um (majority) based protocol such as Paxos [88,89] . Paxos manages

he state updates history with acceptors , and each update is voted by a

uorum of acceptors. The leader that manages the voting process is one

cceptor. Paxos also has learners that are light weight services that get

he notifications of updates after the quorum accepts them; learners do

ot participate in the voting. Different technologies have implemented

his protocol; a few selected ones will be presented in the next section.

 major criticism to Paxos is that it is not an easy-to-understand proto-

ol. Raft [122] is similar to Paxos, however, according to the authors it

s more understandable, the implementation phase is shorter, and it is

esigned to have fewer states. 

Often, distributed hash tables are also used to store the information

hat can be used for distributed coordination. For example [55] uses

penDHT [128] to store, query, and disseminate details of publishers

nd subscribers across the network. OpenDHT is a fast, lightweight Dis-

ributed Hash Table (DHT) implementation. The dissemination does not

ean full data replication on all nodes. OpenDHT stores the registered

alue locally and forwards it to a maximum of eight neighbors. The dis-

ributed hash table for service discovery does not distinguish the nodes,

.e. there are no “server ” or “client ” nodes; nodes are peers and each one

perates with the same rules. If a node disconnects from the network,
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Fig. 4. Looking back at 60 years of virtualization history. 
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he DHT service on the other nodes is still able to register new services

r run queries. 

.6. Software technologies 

.6.1. Virtualization 

Since 1966 when the term “hypervisor ” was first used until today,

irtualization technology has undergone a strong revolution (see ( Fig. 4 )

p to the point in which virtualization technology has been one of the

ey enablers of cloud computing [59] ; and we believe that it will also

lay a major role in social dispersed computing. The partial computa-

ions from user groups will have to happen in servers in their vicinity

hat will aggregate the data received from users, possibly maintaining

 state of the group, and communicate back to the users and to other

eighboring servers and the cloud. These servers will have to run other

pplications besides the social computing application; in this way, vir-

ualization can be used to isolate the execution of the different applica-

ions in the same physical node, avoiding interference and preserving

erformance. In a computer system, virtualization refers to the creation

f a virtual (not actual) version of some other system; that includes pro-

essor, storage, or network virtualization. There are different types of

irtualization. A few of them are provided in what follows. 

Machine virtualization . It provides an abstraction of the real hard-

are resources or subsystems, mapping the virtual resource to the ac-

ual one, offering applications an abstract view through interfaces of the

ardware platform and resources that are provided underneath. In this

ontext, the host machine is used for referring to the physical machine

n which virtualization occurs; and guest machine is the virtual machine

hat is created on the physical machine. The hypervisor or virtual machine

onitor (VMM) is a program (whether software, firmware, or hardware)

hat creates virtual machines on an actual host machine. 

Virtualization allows applications to be run in software environments

hat are separated from their underlying hardware infrastructure by a

ayer of abstraction. This enables different applications to be split into

irtualized machines that can run over different operating systems run-

ing over the same hardware. 

A virtual machine (VM) is an execution environment in its own: it is

 software implementation of a physical execution platform, machine,

r computer, capable of running the same programs that the physical

achine can run. Virtual environments can be designed from either a

ardware partitioning or hypervisor design side. Hardware partitioning
94 
oes not support the benefits that resource sharing and emulation of-

ered by hypervisors can provide. 

There are two main types of hypervisors. On the one hand, bare metal

namely type 1) hypervisors execute directly on the physical hardware

latform that virtualizes the critical hardware devices offering several

ndependent isolated partitions. Examples of these are VMWare ESX,

en, or Microsoft Hyper-V; and others such as WindRiver Hypervisor or

tratuM for real-time systems. These can also include network virtual-

zation models like VMware NSX. On the other hand, type 2 hypervisors

re hosted ones as they run over a host operating system. 

Containers . Containers are a different virtualization model in which

ifferent applications and services can run on a single operating system

s a host, instead of virtual machines which allow to run different oper-

ting systems. The idea behind containers was providing software code

n a way that it can be quickly moved around to run on servers using

inux OS; such software form can even be connected together to run a

istributed application in the cloud. The benefit is, then, maximized by

he possibility of speeding up the building of large cloud applications

hat are scalable. 

Containerization was originally developed as a way to separate

amespaces in Linux for security reasons for protecting the kernel from

he execution of applications that could have questionable security or

uthenticity. After this came the idea of making these “partitions ” effi-

ient and portable. LXC [10] was probably the first true container sys-

em, and it was developed as part of Linux. Additionally, Docker [4] was

hen developed as a system capable of deploying LXC containers on a

aaS environment. 

The applications running with containers are virtualized. In the spe-

ific case of Docker’s native environment, there is no hypervisor. There

s a daemon in the kernel that provides the isolation across containers

nd connects the existing workloads to the kernel. Modern containers

sually include a minimal operating system (e.g. VMWare’s Photon OS)

ith the sole objective of providing basic local services for the hosted

pplications. 

Microservices . The concept of microservices has a natural fit to con-

ainers, and it provides an alternative to the monolithic architecture pat-

ern that is the traditional architectural style of enterprise applications.

he microservice architecture structures applications as collections of

oosely coupled, small, modular services that provide business capabili-

ies and in which every service runs a unique process and communicates

hrough well-defined, lightweight mechanisms. 
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Microservices are functions that can operate for different applica-

ions like libraries, that contact them via an API to produce a discrete

utput. In monolithic applications, these functions would be instanti-

ted redundantly: one per application. Netflix [118] streaming video

ervice provider uses microservices. Modern containers include only the

asic services needed for a given system. Orchestration services such as

ubernetes and Mesosphere Marathon manage the replication and re-

oval of container images depending on the traffic patters to/from the

orkloads of microservices. 

Different protocols are possible for communication across microser-

ices like HTTP; however, DevOps professionals mostly choose REST

Representational State Transfer) given its lower complexity as com-

ared to other protocols. Microservices support the continuous deliv-

ry/deployment of large, complex applications, that yields agile soft-

are provisioning. Given its scalability, it is considered a particularly

nteresting pattern when it is needed to support a broad range of plat-

orms and devices. 

.6.2. Cloud deployment and management 

There are various alternatives to designing and developing a cloud

omputing infrastructure and manage it such as Amazon Elastic Com-

ute Cloud (Amazon EC2) [21] , Microsoft Azure [110] , CloudStack

22] , OpenStack [12] , OpenNebula [11] , Eucalytus [6] , or IBM Cloud

9] , among others. They offer compute and storage services on the basis

f an IaaS model, except for Google App Engine [8] and Azure; the latter

ffers a PaaS model on which it is possible to deploy web applications

nd scalable mobile backends. 

The technologies that provide an IaaS model are typically based on

ow-level virtual machine monitors (VMMs) that support the construc-

ion of virtual execution environments or virtual machines. Most of the

revious technologies are based on either Xen [15] , VMware [14] , or

VM [96] VMMs and have a native Linux host. This is true except for

BM Cloud that also uses the above virtualization. 

On the other hand, the technologies that provide PaaS are based on

ighter weight virtualization models such as application containers in

he case of Google App Engine or OS virtualization for Microsoft Azure.

mong the main benefits of this model is the maintenance cost as users

o not have to configure nor fine tune any backend server. User appli-

ations deployed in this type of environments can use APIs to access a

umber of available services just as data base interfacing (through SQL

ueries, etc.) or user authentication. In addition, applications availabil-

ty is also managed by the platform, and they are automatically scaled

epending of the amount of incoming traffic, so users only pay for the

mount of resources used. 

A number of problems have been addressed over the last decade

or data center management. Precisely, virtual machine placement has

een one of the most popular problems addressed by the scientific com-

unity that has produced many contributions such as [105] . Energy

onsumption has also received great attention; some researchers have

ontributed algorithms to optimize virtual machine placement and en-

rgy consumption such as [43] through live migration based on values

f usage thresholds considering multiple resources, therefore targeting

wo of the greatest problems of data centers. 

Another research problem in cloud is QoS-aware data delivery to

sers. One of the bottlenecks in a data center that hinders performance is

he networking across servers with kilometers of cables and terabytes of

xchanged data across inhouse servers. Quality of service provisioning

s concerned also with a number of very common activities such as effec-

ive resource management strategies [28] including virtual machine mi-

ration, service scaling, service migration, or on-the-fly hardware con-

guration changes. These may all affect the quality experienced by data

elivery to users. 

One of todays’ open problems in cloud computing management is

anaging the complexity introduced by geographically distributed data

enters. Some authors have proposed the design of an integrated control

lane [40] that brings together both computation resources and network
95 
rotocols for managing the distribution of data centers. Timely traffic

elivery is essential to guaranteeing quality of service to applications,

ervices, and users. Traffic engineering relies on the appropriate net-

orking mechanism over LSP (Label Switched Paths) that are set at core

etworks and are controlled by the control plane. Path computation is

ssential to achieving the goals of traffic engineering. Actually, the IETF

Internet Engineering Task Force) promoted the Path Computation Ele-

ent (PCE) architecture as a means to overcome the inefficiencies en-

ountered by the lack of visibility of some distributed network resources.

he core idea of PCE is a dedicated network entity destined to the path

omputation process. A number of initiatives for using the PCE also for

loud provisioning have been further researched like [124] . 

Predictable cloud computing technologies . The penetration of virtu-

lization technology has paved the way for the integration of different

unctions over the same physical platform. This effect of virtualization

echnology has also arrived to the real-time systems area supporting the

ntegration of a number of functions of heterogeneous criticality levels

ver the same physical platform. The design of mixed criticality systems

MCS) [39] is an important trend that supports the execution of various

pplications and functions of different criticality levels. 

Real-time research applied to technologies has improved the capac-

ties of hypervisors to ensure full isolation across virtual machines that

re called partitions . Partitions are fully independent and are scheduled

y the hypervisor according to some scheduling policy. To comply with

he real-time requirements, hierarchical scheduling is used most of the

ime due to its simplicity that favors timeliness; however, still the most

omplex point in this domain is the integration of the communication

nd distribution technology into partitioned systems. In [60] , it is shown

ow a distributed partitioned system can be naturally integrated with

 hierarchical scheduling mechanism to ensure timeliness of the com-

unications when using distribution software under a number of still

evere restrictions. 

.6.3. Messaging middleware 

Existing middleware solutions still have much room for improvement

n order to fulfill the requirement interconnecting large numbers of de-

ices in IoT scenarios, as many IoT devices are resource constrained.

o overcome this, a variety of solutions have recently been developed

nd new ones are progressively emerging. We survey a few of the most

opular solutions used in connecting IoT devices in what follows. 

Message Queuing Telemetry Transport (MQTT). MQTT [70] was

riginally developed in 1999 and has recently become an OASIS stan-

ard starting from version 3.1.1. It is a connectivity protocol to support

achine-to-machine (M2M) communications in IoT. Since the goal was

o support the IoT resource-constrained devices, it is designed to be a

ightweight technology. MQTT supports a publish/subscribe messaging

ransport. Example use cases include sensors communicating to a bro-

er via a satellite link, over occasional dial-up connections with health

are providers, and in a range of home automation and small device sce-

arios. Even mobile applications can make use of MQTT because of its

upport for small size, low power usage, smaller data packet payloads,

nd efficient distribution of information to one or many receivers. 

Its publish/subscribe communication model uses the term “client ” to

efer to entities that either publish data related to given topics or sub-

cribe to topics to receive their associated data; while the term “server ”

efers to mediators/brokers that relay messages between the clients.

QTT operates over TCP or any other transport protocol that supports

rdered, lossless message communication. MQTT supports three levels

f QoS for message delivery: (a) at-most-once, (b) at-least-once, and (c)

xactly once. 

Message Brokers . MQTT is somehow an example of a pub-

ish/subscribe message broker. In addition to MQTT, a number of mes-

age brokers like Apache Kafka, AMQP (Advanced Message Queue Pro-

ocol), and Active MQ are finding applications in areas of IoT. Apache

afka [23] is an open source distributed streaming platform used to

uild real-time data pipelines between different systems or applications.
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4 http://www.hyperledger.org 
5 Burrow was contributed by Monax. 
6 Fabric was originally contributed by IBM and Digital Asset. 
7 Contributed by Soramitsu. 
8 Contributed by Intel. 
9 Software Guard Extensions by Intel. 
hey provide high throughput, low latency and fault tolerant pipelines

or streaming data with a tradeoff between performance and reliability.

hey are deployed as a cluster of servers which handles the messaging

ystem with the help of four core APIs, namely, producers, consumers,

treams, and connectors. The other important part of the Kafka architec-

ure is the topic, broker, and records. Here, data is divided into topics,

hich is further divided into partitions for the brokers to handle them.

pache Zookeeper is used to provide synchronization between multiple

rokers. In addition, among the most popular data buses is the data-

entric DDS (Data Distribution Service) [72] which has been extended

n a number of ways such as [61] for supporting real-time reconfigura-

ion in dynamic service-oriented applications. 

Constrained Application Protocol (CoAP). The CoAP protocol [37] ,

hich is defined as an Internet Standard in RFC 7252, is a web transfer

rotocol for use by resource-constrained devices of IoT, e.g., 8-bit micro-

ontrollers with small ROM and RAM. Like MQTT, CoAP is also meant to

upport M2M communications. CoAP provides a request/response inter-

ction model in contrast to the publish/subscribe model between appli-

ation endpoints. It provides built-in discovery of services and resources.

CoAP supports key web-related concepts such as URIs (Uniform Re-

ource Identifier) and Internet media types. It leverages the REST archi-

ectural pattern that has been highly successful in the traditional HTTP

ealm. Thus, in CoAP, servers make their resources available as URLs

nd clients can use commands such as GET, PUT, POST, and DELETE to

vail of these resources. Due to the use of the REST architectural pattern,

t is seamless to combine HTTP with CoAP thereby allowing traditional

eb clients to access an IoT sensor device. 

CoAP uses UDP as its transport layer. Other protocols like DTLS

Datagram Transport Layer Security) are also applicable. Like HTTP,

oAP allows payloads of multiple different types, e.g., XML, JavaScript

bject Notation (JSON), or Concise Binary Object Representation

CBOR). 

Node-RED . Node-RED [34] is technically not a middleware but

ather a browser-based model-driven tool to wire the flows between IoT

evices. The tool then allows a one-click approach to deploy the capabil-

ties in the runtime environment. Node-RED uses Node.js (a JavaScript

xecution engine) behind the scenes. The flows are stored as JSON ob-

ects. Thus, we can consider Node-RED as a model-driven middleware

apability. 

Akka . [1] Akka is an open-source event-driven middleware frame-

ork that uses the Actor Model [67] to provide a platform to build scal-

ble, resilient, and responsive distributed and concurrent applications.

kka runs on a Java virtual machine (JVM) and supports actors written

n Java and Scala. Actors in Akka are lightweight event-driven processes

hat provide abstractions for concurrency and parallelism. Akka follows

he “let it crash ” model for fault-tolerance in order to support applica-

ions that self-heal and never stop. 

Distributed applications in Akka are made of multiple actors dis-

ributed amongst a cluster of member nodes. Cluster membership is

aintained using Gossip Protocol , where the current state of a cluster is

andomly propagated through the cluster with preference to members

ho have not seen the latest state. Actors within a cluster can commu-

icate with each other using mediators that facilitate point-to-point as

ell as pub/sub interaction patterns. Each node can host a single medi-

tor in which case discovery becomes decentralized, or particular nodes

f a cluster can be designated to host a mediator in which case discov-

ry becomes centralized. Akka’s message delivery semantics facilitates

hree different QoS policies – (a) at-most-once, (b) at-least-once, and (c)

xactly-once. 

Robot Operating System (ROS ) . ROS [13] is a framework that pro-

ides a collection of tools, libraries, and conventions to write robust,

eneral-purpose robot software. It is designed to work with various

obotic platforms. ROS nodes are processes that perform computation,

nd these nodes combined together form a network (graph) of nodes

hat communicate with each other using pub/sub or request/response

nteraction patterns. 
96 
Pub/sub interaction is facilitated via topics . Multiple publishers and

ubscribers can be associated with a topic. Request/response interaction,

n the other hand, is done via a service . A node that provides a service,

ffers its service under a string name , and a client calls a provided service

y sending the request message and awaiting the reply. Both, topics and

ervices, are monitored by the ROS Master . Therefore, the master is a

ingle point of failure that performs the task of matching nodes that need

o communicate with each other, regardless of the interaction pattern. 

.6.4. Complex Event Processing (CEP) 

CEP is used in multiple points for IoT analytics (e.g. Edge, Cloud

tc). In general, event processing is a method for tracking and analyz-

ng streams of data and deriving a conclusion from them, while the data

s in motion. A number of CEP engines like Siddhi, Apache flink and Es-

er are available for stream processing. These CEP tools allow the users

o write queries over the arriving stream of data which can be utilized to

etermine anomalies, sequences, and patterns of interest. For example,

iddhi [143] is an open source CEP server with a very powerful SQL

uery like language for event stream processing. It allows the users to

ntegrate the data from any input system like Kafka, MQTT, file, and

ebsocket with data in different formats like XML, JSON, or plain text.

fter the data has been received at the input adapters, queries like pat-

erns, filters, sequences, windows and pass through can be applied on

he data at the even stream to perform some real time event processing.

he data obtained after processing can be published over web-based

nalytics dashboard to monitor the meaningful processed data. 

.6.5. Transaction management 

During 2016, several open-source platforms for transaction man-

gement for the financial services industry have appeared, e.g. Hyper-

edger, Chain Core, or Corda, besides other open-source platforms such

s Ethereum and Monax that were released in precedent years. 

Among the most relevant transaction management systems we find

yperledger 4 , that is a Linux implementation for blockchain. Hyper-

edger (or the Hyperledger project) is an umbrella project of open source

lockchains and related tools [53] started in December 2015 by the

inux Foundation [16] . Hyperledger’s goal is to develop blockchain-

ased distributed ledgers following the Linux philosophy of collabora-

ive development. 

The Hyperledger project is partitipated by a large number of partners

ontributing different tools individually or in collaboration. Burrow 

5 is

 blockchain client that includes a virtual machine (Ethereum). Fabric, 6 

s an architecture that defines the execution of smart contracts (namely

haincode in Fabric); the processes for consensus and membership, and

he roles of the participating nodes. Iroha 7 is another Hyperledger tool

imilar to Fabric but targeted at mobile aplications. Lastly, Sawtooth 8 is

 tool that provides the Proof of Elapsed Time consensus protocol based

n a lottery-design consensus protocol; this tool is based on trusted ex-

cution environments such as SGX 

9 . 

.6.6. Service configuration and deployment technologies 

One of the most complex problem in distributed computing is remote

anagement of computation environment and resources. This includes

anagement, update and configuration of the computation environment

s well as remote deployment of tasks. We highlight a few of the repre-

entative technologies that provide this functionality. 

Kubernetes . It is an open source platform that facilitates the task of

unning applications in clouds, whether private or public. It supports the

http://www.hyperledger.org
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utomatic deployment and operation of application containers. Applica-

ions can be scaled on the fly, and the usage of hardware can be limited

o required resources only. Whenever an application need be released,

ubernetes allows generating container images; it can schedule and run

pplication containers on clusters of physical or virtual machines. One

f the most interesting characteristics is that it supports continuous de-

elopment, integration, and deployment with quick rollbacks. Also, it

aises the level of abstraction as compared to running an operating sys-

em on a virtualized hardware; in this way, it is an application that is run

n an operating system that uses logical resources. In Kubernetes, ap-

lications are composed of smaller microservices that are independent

ieces of code that can be deployed and managed dynamically. 

Paradrop . It is a platform that offeres computing and storage re-

ources over the end nodes supporting the development of services [98] .

 key element is the WiFi access point as it has all information about

ts end devices and manages all the traffic across them. Paradrop pro-

ides an API for third party developers to create and manage their ser-

ices across different access points, that are isolated in containers (called

hutes). Also, it provides a cloud backend to install dynamically the ac-

ess points and the third party containers, and to instantiate and revoke

hem. Paradrop uses lightweight Linux containers [97] instead of vir-

ual machines as the virtualization mechanism to deploy services on the

etwork routers. 

The computational requirements of social dispersed computing ap-

lications make it necessary to provide efficient execution over the

odes. In this way, control over the execution of all nodes, especially

n resource limited ones, needs to be put in place. Following, we de-

cribe one of the technologies that provides such a functionality. 

Mesos [68] is a thin software acting as a resource manager that en-

bles fine-grained sharing across different and highly diverse cluster

omputing frameworks by providing them with a common interface to

ccess the cluster resources. Control of task scheduling and execution is

aken by the frameworks; this allows each framework to decide on ex-

cution of activities according to its specific needs and better supports

he independent evolution of frameworks. 

Mesos consists of a master and slave daemons, frameworks , and tasks .

he master process manages the slave daemons running on each cluster

ode. Moreover, frameworks run tasks on these slave daemons. Each

ramework running on Mesos has two components: a scheduler and a

xecutor . The scheduler registers with the master in order to be offered

esources; the executor process is launched on the slave daemons to run

he tasks. 

Fine-grained resource sharing across the frameworks is implemented

sing resource offers, that are lists of free resources on multiple slaves.

he organizational policies (priority or fair sharing) determine how the

aster decides on how many resources to offer to each framework.

esos defines a plugable allocation module to let organizations define

heir own allocation policies. 

An important characteristic is that Mesos provides performance iso-

ation between framework executors running on the same slave by lever-

ging existing isolation mechanisms of operating systems. 

.6.7. Service coordination 

Distributed systems also need technologies that can ensure that the

elated services remain coordinated. We discuss a few state of the art

echnologies here. 

Zookeeper . It is an open source technology [24] that provides key

ervices for large scale systems containing large numbers of distributed

rocesses; these services are configuration, synchronization, group ser-

ices, and naming registry. Typically, these services can be highly com-

lex to design and implement and they are used by the vast majority of

istributed applications. 

Zookeeper has a simple architecture in the form of a shared hierar-

hical namespace to facilitate process coordination. Also, it is a reliable

ystem that can continue to run in the presence of a node failure; it

rovides redundant services for ensuring high availability. 
97 
Data storage is performed in a hierarchical name space such as a

le system or a tree data structure. It supports data updates in a totally

rdered manner as in an atomic broadcast system. 

Fault tolerance and security is an important characteristic in co-

rdination services that must be well supported not only considering

imple faults (crashes) or attacks (invalid access). DeepSpace [33] is a

istributed coordination service that provides Byzantine fault tolerance

90] in a tuple space abstraction. It provides secure, reliable, and avail-

ble operation in the presence of less than a third of faulty service repli-

as. Also, it has a content-addressable confidentiality scheme that allows

o store critical data. The maturity level, community, services, and pen-

tration of Zookeeper is, however, not comparable. 

Girafe . It is a scalable coordination service [137] for cloud ser-

ices. It organizes the coordination of servers by means of interior-

ode-disjoint trees; it uses a Paxos protocol for strong consistency and

ault tolerance; and it supports hierarchical data organization for high

hroughput and low latency. 

ZooNet . It is a coordination service [93] that addresses the problems

f coordination of applications running in multiple geographic regions;

hese applications need to trade-off between performance and consis-

ency, and ZooNet provides a modular composition design for this pur-

ose. 

Consul . Consul is a system that enables service discovery and con-

guration in a distributed infrastructure [2] . Consul clients provide ser-

ices (e.g. MySQL) and other clients can discover the providers of such

iven service. Health checks for services are also enabled with respect

o specific characteristics such as if a service is up and running or if it is

sing a certain memory size. Health checks can be used to route traffic

voiding unhealthy hosts. It also provides multi-region datacenters. 

Consul is based on agents . Each node that is part of Consul (i.e., that

rovides services to it) runs a Consul agent that is responsible for health

hecking the services on the node as well as the node itself. Agents in-

eract with Consul servers that store data and replicate it. Servers elect

 leader . Components that need to locate a service query any of the

ervers or any of the agents; agents automatically forward requests to

he servers. Location of services residing in remote data centers is per-

ormed by the local servers that forward the queries to the remote data

enter. 

Etcd . Etcd is a key value store [112] which internally uses raft

123] consensus algorithm. Etcd can be used to build a discovery ser-

ice. However, it is primarily used to store information across a set of

odes. Kubernetes uses etcd for managing the configuration data across

he cluster. 

.6.8. Networking technologies 

Networking is a concept that is critical for distributed computing, in-

luding edge computing. The recent avdances in software defined net-

orking have provided mechanisms to increase the flexibility of this

rucial layer. We provide a brief overview here. 

Software defined networks (SDN). Social dispersed computing appli-

ations require flexible network connections to support the dynamic

eographic distribution of end users and fine tune the parameters of

he communication. Although the advances in network technology and

andwidth increase have been impressive, still IP networks have until

ecently been structured in an manner that did not achieve sufficient

exibility. 

Actually, the boost of Internet has occurred over IP networks that are

ertically integrated [134] in which control and data planes are bundled

ogether [58] inside the network devices. However, this design makes it

ard to reconfigure in the event of adverse load conditions, faults, etc.

he control plane is the logic that decides how to handle the network

ackets; whereas the data plane is the logic in charge of forwarding the

ackets as indicated by the control plane. Network operators configure

ach network device individually using low-level (and sometimes ven-

or specific) logic; all data packets are treated the same by the switch

hat starts sending every packet going to the same destination along the
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e  
ame path. Originally, SDN focused exclusively on the separation of the

ontrol and data planes. 

Software defined networking brings in the promise for solving the

bove limitations in a flexible way by providing the needed mechanisms

or a network that will be programmable. 

Kreutz et al. [83] provide a comprehensive survey of the technologies

owards SDN and its adoption. It presents the main differences of the

onventional networking as compared to SDN, describing the role of

he SDN controller over which a number of network applications (like

AC learning, routing algorithms, intrusion detection system, and load

alancer) run. 

The above is the classic SDN scenario in which a controller (that is an

pplication running somewhere on some server) sends the rules for han-

ling the packets to the switch; then, switches that are the data plane

evices request guidance to the controller whenever needed and pro-

ide the controller with information about the traffic that they handle.

he communication between the controllers and the switches happens

hrough well defined interfaces. The interface that enables communica-

ion between the SDN controller and the network nodes (that are phys-

cal and virtual switches and routers) is called the controller’s south-

ound interface, and it is typically the OpenFlow [107] specification.

penFlow has become the most important architecture for managing

arge scale complex networks and has, therefore, become the major bet

or SDN. This is a specification that need be applied in matured sys-

ems through implementations. Hu et al. [69] provide a survey of the

arget applications, the language abstraction, the controller functions

nd inner workings, the virtualization that is achieved, quality of ser-

ice properties, security issues and its integration in different networks.

penFlow security issues are very relevant especially in large scale de-

loyments. Kandoi and Antikainen [76] describe the two types of denial

f service (DoS) attacks that are specific to OpenFlow SDN networks dis-

overing some key configurations (like the timeout value of a flow rule

nd the control plane bandwidth) that directly affect the capability of a

witch and it identifies mitigation actions for them. 

The research in SDN proceeds in parallel with the improvement of

he control plane algorithms searching for better and more efficient

ays to route traffic. Especially cloud services with soft real-time re-

uirements experience the delays of wide area IP network interconnects

cross geographically distributed locations. To address this problem,

essani et al. [32] propose a routing mechanism for providing latency

nd reliability assurances for control traffic in wide-area IP networks

ith a just in time routing that routes deadline constrained messages

hat are control messages at the application layer with the goal of achiev-

ng a non-intrusive solution for timely and reliable communication. 

. Challenges in social dispersed computing 

Having explained the different computation technologies that cover

he range from utility cloud computing to edge computing, we can now

evisit the concept of social dispersed computing and identify the key

hallenges that still exist. For researchers, these points also serve as a

ummary of current research interests and opportunities for the commu-

ity. 

The primary challenge of social dispersed computing is mobility .

onsider that nodes in the social routing application described earlier

re mobile, the system must be cognizant of intermittent connectivity

aused due to high mobility. Thus, new mechanisms have to be built

or implementing handover strategies that account for multi-tenancy on

 local cloud in which multiple service providers can be present to en-

ure backup. Additionally, given the high mobility of users, managing

olatile group formation may play a key role in the efficient collection

f data and in the transmission of only the needed data that are relevant

or particular groups. For this, it will be needed to incorporate dynamic

ransaction management functionality. 

The second challenge emanates from the resource constraints of the

ystem, which suggests that only required applications should be run-
98 
ing on the computation platforms. However, this leads to an interest-

ng question of what are the required applications. In the past, “goal-

riven ” computing has been used in high criticality, but mostly static

ystems [127] . However, a social dispersed application implies that the

nd nodes or user nodes act in a social way; they will exchange infor-

ation, sharing part of their computations among the participant users,

he local fog nodes, and partly with the cloud nodes. A number of dif-

erent services may run at these three layers: user/end and fog, edge,

nd cloud. Also, some services may be split across the different layers.

s all participant nodes are driven by a shared goal, they will have to

hare part of their data and computations in a synchronized way and

he exchanged data will have to be appropriately tagged in the tempo-

al domain to meet the global goal. Thus goal-driven service orchestration

s a third challenge in these systems. 

Another challenge includes service synchronization and orchestration .

n the cloud model, services are provided to clients in a client-server type

f interaction. In social dispersed computing, end nodes come into play,

equiring interaction not only with the cloud servers. End nodes will in-

eract with other end nodes for fast information exchange; with the fog

odes for data bulk exchange and for low latency gathering of informa-

ion derived from heavy processing; and with the cloud servers for ob-

aining results derived from more complex data intensive computations

ike machine learning services for longer term prediction. Social dis-

ersed computing applications will need that supporting architectures

dd an abstraction layer that meets the coordination and orchestration

equirements by providing smooth cooperation through the end nodes.

his layer will contain the required logic to orchestrate the interaction

etween fog servers and the central cloud, as well as the interaction

cross fogs. 

Timely operation and stringent quality of service demands is yet another

hallenge. Some social dispersed applications need to provide real-time

ervices to users. This requires to put in place a number of physical

esource management policies that ensure time bounded operation. Fog

ervers will have high consolidation, so virtualization techniques will

ave to be properly applied in conjunction with scheduling policies that

nsure timely operation for those real-time services and avoidance of

xecution interference among applications in the presence of possibly

omputationally greedy functions. 

Understanding that failures will be more common in social dispersed

omputing applications is important. Thus, the soft state of applications

ust be properly managed. End nodes may interact heavily in social

ispersed applications, and these interactions may not assume that data

or the infrastructure are available at all times. There is a noticeable

ifference with respect to the cloud model that handles hard state and

ersistent data. Considering soft state brings in much more complex sce-

arios in which fall back operations will need to be considered for the

nd nodes to run recovery actions. 

In social dispersed computing, the focus shifts towards the service and

he data , and other characteristics such as the location become less impor-

ant . A service may reside on a number of fog servers as well as partly

n the cloud. Then, the traditional client-server structure falls short as

P based operations become inappropriate for handling service and data

entric interactions across nodes (mainly the fog and end nodes). A ser-

ice centric design that relies on data centric interaction and informa-

ion exchange better adjusts to this level of complexity. 

As a result, service offloading strategies and selection of target infras-

ructure processing point are going to be a difficult problem. In a social

ispersed applications, it will be beneficial to draw a clever server pro-

essing hierarchy. Where to process, whether at the cloud, at the edge,

r at the fog, and why are decisions that will have to be taken based on

 per application basis. We believe that the target point for running a

pecific service should be selected according to the computational com-

lexity of the service itself (e.g. online video streaming probably at the

dge servers, face recognition probably at the fog). There is strong need

or designing efficient service partitioning schemes that make use of the

nd, fog, edge, and cloud infrastructures as a complementary overall ex-
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cution platform that will speed up the dispersed computations for the

ocial interactions. 

Lastly, autonomy, interaction, mobility and openness are the char-

cteristics that the Multi Agent System (MAS) paradigm covers from a

heoretical and practical perspective. MAS technology provides models,

rameworks, methods and algorithms for constructing large-scale open

istributed computer systems and allows to cope with the (high) dynam-

city of the systems topology and with semantic mismatches in the in-

eraction, both natural consequences of the distributed and autonomous

ature of the components. Open distributed systems are going to be the

orm in the software development industry of the future, and the in-

eroperation of the software entities will need to rely on a declarative

oncept of agreement that is autonomously signed and executed by the

ntities themselves. The generation of agreements between entities will

eed to integrate semantic, normative, organization, negotiation and trust

echniques. 

As evidenced by the partial list of technical problems given above,

here is a complex technical challenge in the design and development of

ocial dispersed computing applications that is multi-faceted. Address-

ng some of these problems simultaneously may result in the appearance

f emerging problems that have still not been envisioned. 

. Discussion and conclusions 

A number of computing paradigms have appeared through the years

hat, currently, put in practice in the development of a number of sys-

ems across different application domains. Newer computing paradigms

oexist with the more classical ones and each has brought into scene

heir accompanying set of tools and technologies in their support. This

arge number of computation design options allows us to implement

ystems of a complexity that was not previously imagined and that in-

reases day by day. Some of the more recent paradigms have still not

een sufficiently applied in practice and even create confusion as to

hat they mean to different scientific communities. This paper situates

he computing paradigms from the times where they were used as a util-

ty to provide practical solutions to given problems that could be solved

n a faster and more efficient manner; up to today where users are pro-

ressively accustomed to having commodity solutions at reach which go

ome steps beyond the mere practicality of automating tasks to a point

n which they even consent to share information and knowledge online

o ease their lives in some way or to obtain some other non primary

enefit in exchange. 

In this paper, we presented a review of core computing paradigms

hat have appeared in the distributed system community in the last two

ecades, focusing on cloud computing, edge computing, and fog com-

uting; and we have analyzed how they are refered to across the litera-

ure to disambiguate their definition. We identify a new paradigm, social

ispersed computing, that borrows from some existing paradigms and is

ssentially enabled by powerful technology and tools that are available

oday. Then, we described such a set of current computing technologies

r services, which when augmented with the computing paradigms can

nable interesting social dispersed computing applications. We exemplify

his new paradigm by describing three example applications, two from

he transportation domain and one from the energy domain. These ap-

lications can run successfully on both edge and fog computing devices.

owever, as we imagine more complex and integrated applications, we

ust start considering the challenges we mentioned in Section 5 . Cur-

ent computing technologies only partially meet these challenges, giving

he community a great opportunity to explore this broad research space.
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