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ARTICLE INFO ABSTRACT

Keywords: If last decade viewed computational services as a utility then surely this decade has transformed computation into a
Social dispersed computing commodity. Computation is now progressively integrated into the physical networks in a seamless way that enables
IoT

cyber-physical systems (CPS) and the Internet of Things (IoT) meet their latency requirements. Similar to the
concept of “platform as a service” or “software as a service”, both cloudlets and fog computing have found their own
use cases. Edge devices (that we call end or user devices for disambiguation) play the role of personal computers,
dedicated to a user and to a set of correlated applications. In this new scenario, the boundaries between the
network node, the sensor, and the actuator are blurring, driven primarily by the computation power of IoT nodes
like single board computers and the smartphones. The bigger data generated in this type of networks needs clever,
scalable, and possibly decentralized computing solutions that can scale independently as required. Any node can
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Social Computing
Edge Computing
Distributed computing
Cyber physical systems

Real time be seen as part of a graph, with the capacity to serve as a computing or network router node, or both. Complex
Middleware applications can possibly be distributed over this graph or network of nodes to improve the overall performance
Virtua_lization like the amount of data processed over time. In this paper, we identify this new computing paradigm that we
;?:E;Z:xces call Social Dispersed Computing, analyzing key themes in it that includes a new outlook on its relation to agent
Distributed transactions based applications. We architect this new paradigm by providing supportive application examples that include
Blockchain next generation electrical energy distribution networks, next generation mobility services for transportation,

and applications for distributed analysis and identification of non-recurring traffic congestion in cities. The paper
analyzes the existing computing paradigms (e.g., cloud, fog, edge, mobile edge, social, etc.), solving the ambiguity
of their definitions; and analyzes and discusses the relevant foundational software technologies, the remaining
challenges, and research opportunities.

Multi agent systems
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1. Introduction

Social computing applications are smart applications, where the re-
sults received by the end users or the performance that they experience
is affected by the other users using the same application. A classical ex-
ample of this kind is traffic routing, implemented by many commercial
mobility planning solutions like Waze and Google. The routes provided
to the end users depend upon the interaction that other users in the sys-
tems have had with the application. An effective route planning solution
will be proactive in the sense that it will analyze the demands being
made by users and will use the dynamic demand model for effectively
distributing vehicle and people across space, time, and modes of trans-
portation, improving the efficiency of the mobility system and leading
to a reduction of congestion. However, due to its nature, this computing
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application requires large scale real-time data ingestion, analysis, and
optimization. We call such applications social computing applications.
With the burst of the cloud computing paradigm, systems requiring
intensive computations over large data volumes have relied on the usage
of shared data centers to which they transfer their data for processing.
This is a powerful scheme for application scenarios that benefit from
deep processing and data availability, but it brings in non negligible
problems to meet the time requirements of time sensitive social comput-
ing applications. While not necessarily real-time in the strict sense, such
applications have built in penalty (user aversion) if they are not respon-
sive; they must be low-latency; however, the traditional cloud comput-
ing architecture is problematic in a number of application domains that
are latency sensitive. Precisely, the delay incurred by data propagation
across the backhaul is not suited to the needs of applications that re-
quire (near) real-time response or high quality of service guarantees.
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Backhaul data handling latency is severe in the unpredictable occasions
where the network throughput is limited. Furthermore, a community
deploying such smart applications often finds it difficult to scale the
system to the cloud due to economic constraints.

To alleviate these situations, engineers have looked around towards
“what is available”, i.e., to leverage the computing power of the avail-
able near by resources, leading to a profound discussion on the oppor-
tunistic usage of the computing resources dispersed in the community.
Out of this new scenario, we have identified this new computing ap-
proach that we call “Social Dispersed Computing”. This is a powerful
paradigm that can significantly improve the performance experienced
by applications in what concerns latency and available throughput that
will, in turn, have an indirect impact on other measures such as the
energy consumption.

Unlike cloud computing, resource scalability comes from the partic-
ipatory nature of the system, i.e., having a larger number of users. The
key driver is the social benefit behind the achieved collaboration and
the great value obtained from the aggregation of the individual infor-
mation. Users have to perceive hardly no entry barriers to use these
applications; barrier elimination is done by fulfilling the technical re-
quirements of these applications such as providing low cost computation
resources, reliability, and data privacy guarantees, over a low overhead
management structure that achieves low latency in service provisioning.

Enabling social dispersed computing. The next computing generation
is one in which the computing platform and the social applications will
be tightly integrated. For example, sharing computing resources can be
used as incentive for participation. Moreover, providing the users with
the capability of deciding where their computations will run for secu-
rity and privacy concerns will likely be a major factor for enrolling in
application usage.

To enable this, the corresponding transformations are already hap-
pening in the communications and persistent storage mechanisms. For
example, Software Defined Network [83] addresses the required mecha-
nisms to create a flexible overlay network over dispersed resources. The
concept of decentralized distributed ledgers like Ethereum [5] and other
similar ones enable immutable event chronology across computing re-
sources. New concepts such as the inter-planetary files system (IPFS)
[29] extend blockchains and the concept of distributed file systems to
provide a shared, decentralized, and world-wide persistent information
store.

In this paper, we claim that social dispersed computing systems re-
quire fog infrastructures to take a predominant role. Fog infrastructures
will support the mobility of the users, enabling them to offload heavy
tasks such as those that run machine learning services to more power-
ful nodes in their vicinity. However, the great push of relatively very
novel computation paradigms such as fog, edge, cloud, social, and dis-
persed computing (among other computing paradigms) has resulted in
a non-negligible level of terminology confusion in the community. In
different research contributions, the reader can find these terms being
used differently. This paper aims at shedding some light by clarifying
the meanings, and defining the boundaries (where possible) of these
paradigms, guided by their goals and application-level motivation.

Paper outline. This paper is structured as follows. Section 2 defines
a number of computing paradigms that are simultaneously used nowa-
days; some of these paradigms are very recent and still the scientific
community has not fully agreed on what they actually are; we clar-
ify the paradigms and introduce the concept of social dispersed com-
puting. Section 3 describes the concept of social dispersed computing
and illustrates it through a set of application scenarios in domains such
as energy, social routing and distributed traffic congestion analysis.
Section 4 presents the enabling technologies that will allow the develop-
ment of social dispersed applications. To do this, a selected set of compu-
tational approaches are presented, followed by a selection of supporting
software tools. Section 5 compiles the main challenges for the design and
development of social dispersed applications. Finally, Section 6 draws
the conclusions presented as the opportunities for research.
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2. Computing paradigms: definitions and evolution

Distributed computing systems date back decades ago enabled by the
first communication schemes for remote machines. Fig. 1 shows a gen-
eral view since the 90’s; a time where a number of important software
and hardware developments came together, and hardware and software
schemes started to become more sophisticated and powerful. This led to
subsequent productive decades, resulting in the introduction of a num-
ber of new and refined concepts and terms, sometimes over short periods
of time.

Especially through the last decade, a number of keywords have ap-
peared that imply different computing paradigms such as cloud, mobile
cloud, fog, or edge, among others. However, the rapid proliferation of
contributions on these paradigms, even prior to the real consolidation of
a wide accepted definition for some of them, has introduced some con-
fusion on their definitions. For example, the definition of edge computing
diverges across a number of works. In [136], edge computing is defined
as “any computing and network resources along the path between data
sources and cloud data centers”; whereas [145] defines edge computing
as a paradigm belonging to the sphere of the pure network infrastruc-
ture that connects the user devices (that it refers to as “edge nodes”) to
the cloud. This last vision of edge computing is also shared by [51] al-
though it refers to the user devices as “end nodes” in a more consistent
manner.

All these concepts have led us to the point where we are ready to
realize the potential of social computing using resources from either the
cloud, the fog, or locally dispersed computing resources. Nevertheless, it
is first important to clarify the terminology and, for this reason, we ini-
tially provide a comprehensive definition of key computing paradigms
present in modern literature, with the aim to establish a common under-
standing. These definitions are based on the most accepted significations
of the research community. The goal is to draw a clean separation (wher-
ever possible) among the different computing paradigms also explaining
their evolution, motivation, and purpose.

2.1. Cloud computing

Cloud computing (CC) is a service model where computing services
that are available remotely allow users to access applications, data, and
physical computation resources over a network, on demand, through
access devices that can be highly heterogeneous.

In cloud computing [59], resources are rented in an on demand and
pay-per-use fashion from cloud providers. Just as a huge hardware ma-
chine, cloud computing data centers deliver an infrastructure, platform,
and software applications as services that are available to consumers.
This facilitates offloading of highly consuming tasks to cloud servers.

The National Institute of Standards and Technology (NIST) is respon-
sible for developing standards and guidelines for providing security to
all assets. [108] provides an insight into the cloud computing infras-
tructure which consists of three service models, four deployment mod-
els, and five essential characteristics which are: on-demand self-service,
broad network access, resource pooling, rapid elasticity, and measured
service.

A cloud service model represents the packaging of IT resources re-
quired by the consumers as a service that is provided by the cloud ven-
dor. The three cloud service models are:

* Software as a service (SaaS): The consumers are granted the capability
to run the applications of the provider, but they have no control over
the cloud infrastructures like operating system, servers, or storage.

* Platform as a service (PaaS): The consumers have the capability to
deploy either own or acquired applications to the cloud. The con-
sumer does not have any control on the cloud infrastructure, but has
control over the deployed application.

« Infrastructure as a service (IaaS): The consumers can use the appli-
cations provided on the cloud without the need to download the
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Fig. 1. Evolution of computing: a general view on the evolution of personal devices over the years.

application to the consumer’s computer. Consumers can manage the
underlying infrastructure at the cloud such as virtual machines, the
operating systems, and other resources.

Additionally, with the wide increase of data processing and storage
in the cloud, larger data volumes circulate over the network, increasing
their exposure to third parties and attackers. This brings in the need for
data security and privacy mechanisms. Data security in particular is a
vital challenge that has been analyzed in [114]. In the paper, the authors
have addressed the security problem from the perspective of different
stakeholders like cloud providers, service providers, and consumers. It
also summarizes the security issues in each one of the service delivery
models of [aaS, PaaS, and SaaS, where some of the identified problems
are responsibility of the cloud vendor while the other issues are that
of the consumers. The authors also identified the various holes in the
security loop of the cloud computing model, suggesting fixes that would
make the whole model more secure.

Apart from security there are other obstacles in using and imple-
menting cloud services. For example, while the main the advantage of
the large amount of data storage and analytics capabilities of the cloud,
some of its disadvantages (e.g., unreliable data latency, immobility and
lack of location awareness) are important drawbacks in some domains;
and this has made way to other technologies like mobile cloud comput-
ing or fog computing.

2.2. Mobile cloud computing

The proliferation of mobile personal devices led to Mobile Cloud Com-
puting (MCC). MCC appeared as a natural evolution and enhancement
of cloud computing with the goal of offering specific services to mo-
bile users with powerful computational and storage resources. Task of-
floading strategies are one of the most studied problems in this domain
because mobile devices have strict resource limitations if compared to
cloud servers. As explained in [56], MCC combines mobile computing,
mobile Internet, and cloud computing for providing task offloading.

The literature gives different definitions for MCC as explained in
[77]. Infrastructure based MCC refers to a model that uses the cloud
data centers hardware to serve mobile users; and ad-hoc MCC defines
the concept of mobile cloud as made up of nearby mobile nodes acting
as a resource cloud that grants access to the Internet (including other
cloud services) for other mobile users. Using the nearby mobile devices
has several advantages like the possibility of using a faster LAN network
that is comparable to the available servers interconnection inside a cloud
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data center. Also, MCC is “cloudlet” based (a rather parallel concept that
is defined below).

The paper [20] provides an overview of MCC along with its evolution
from cloud computing, and its advantages and disadvantages, as well as
its applications. Some of the mentioned noteworthy advantages of MCC
are flexibility, storage, cost efficiency, mobility and availability, scal-
ability, and performance. Some discussed disadvantages are security,
privacy, compliance, compatibility, and dependency. The authors also
enumerate a few open challenges faced by MCC which are low band-
width and quality of service (QoS) parameters like congestion, network
disconnection, and interoperability.

These non-negligible security and privacy challenges of MCC arise
from the integration of mobile devices with cloud computing. Along
with the similar security concerns of cloud computing, some new issues
on security and privacy arise in MCC as there is a wireless medium for
transferring data between the mobile device and the cloud. In [113], the
authors identify the main security and privacy challenges as data secu-
rity, virtualization security, partitioning and offloading security, mobile
cloud application security, mobile device security, data privacy, loca-
tion privacy and identity privacy; and solutions to each of these ques-
tions have also been discussed by citing prior literature work. Given the
increase in the number of mobile users and applications, security and
privacy requirements are vital for MCC; and addressing them will likely
increase the computation and communication overhead that will have
to be dealt with by the users.

With the integration of mobile devices and cloud computing, MCC
overcomes the limitation of immobility and lack of location awareness
in cloud computing; also, it provides an attractive and convenient tech-
nology for moving all the data-rich mobile computation to the cloud.
However advantageous this idea of MCC may look, there are still open
issues like the associated high network latency and power consumption
of data transmission from the mobile devices to the cloud, which are not
handled by MCC.

2.3. Cloudlet

Cloudlet is defined as a small scale cloud data center formed by
resource-rich and trusted computing devices near the vicinity of mobile
users that can be used to process data jointly over a local area network
connection. It is a major technological enabler for MCC, defined at the
convergence of MCC and cloud computing. It defines a virtualized ar-
chitecture [132] as a computational resource accessible by mobile users
at range, i.e., within their physical vicinity. This has the objective of
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empowering mobile devices providing them the capabilities to access
computationally intensive services that could not be run by their own
limited resources. Examples of such as services are speech recognition,
processing of natural language, machine learning, or augmented reality.

As discussed in [132], even with the increased computation and stor-
age capacity, mobile devices are not able to process rich media content
locally with their own resources. MCC aimed at solving the above issue
by offloading all the data from the mobile device to the cloud for com-
putation. However, MCC could not provide a feasible solution for ap-
plications with tight latency requirements (i.e., real time applications),
and this led to the concept of cloudlet.

Additionally, as discussed in [147], mobile users can utilize the
cloudlets virtual machines to run the required software applications
closer to the mobile devices that aims to solve the latency issues by mov-
ing the virtual machine closer to the mobile devices. However, there is
a notable drawback of mobile users being dependent on network ser-
vice providers to deploy cloudlets into the LAN network for the mobile
devices to utilize them. The authors in [147] present the architecture of
cloudlets where the applications are managed at the component level
and evaluate it by implementing it for a use case of augmented reality
classify the architecture into two categories: ad hoc cloudlet and elastic
cloudlet.

The evolution of the cloudlet concept is further discussed in
[132,147], placing the concept between cloud computing and MCC. In
cloudlet, the jobs of the mobile users are not transmitted all the way
to the cloud but to a nearby cloudlet; this tends to reduce the power
consumption of mobile devices and also the transmission delay. Thus,
at this point, cloudlet makes an advantageous evolution from MCC.

In order to reduce the power consumption of mobile devices and
the network communication latency, [74] merges the concepts of MCC
and cloudlets. This proposal has an advantage as it can support real
time processing on the cloudlet; other non-real time data processing
and storage can be run on the cloud. These claims for reduced power
consumption and transmission delay are properly supported by their
analysis and evaluation.

2.4. Internet of Things

Internet of Things (IoT, that includes IoE — Internet of Everything) is an
extension of the classical sensor network paradigm, providing support
for large scale sensor data aggregation, cloud based data processing, and
decision support systems.

The concept of pervasive computing emerged before IoT to refer to the
provisioning of computation anytime, anywhere. One of the novelties of
this concept was the fact that computation devices could be personal
devices, among others. This idea was also expressed and referred to as
ambient intelligence or everywhere.

IoT is a similar concept except that in IoT the emphasis is placed on
the physical object. The range of possible devices in IoT was enlarged
as compared to those considered in pervasive computing. As technol-
ogy improved, the IoT vision was to flood the market with computation
nodes that were deeply immersed in the environment: from sensors to
small embedded computers that could be connected to the Internet as
direct and uniquely addressable end points.

The primary evolution in the IoT paradigm compared to the sensor
networks is the support for complex event processing (CEP) [46] which
is typically executed on the integrated cloud platform. CEP engines can
be run over the intermediate IoT node resources in the network, and
queries can be placed on the incoming continuous data streams from
the end devices' like sensors and RFID tags. As compared to the pre-
vious paradigm where end nodes sent data streams to the cloud that

1 By end devices, we refer to the nodes at the leaf position of the information
flow graph, typically intelligent sensors, smartphones, embedded computers,
etc.
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would process them, performing such processing on the available IoT
nodes could reduce the latency and bandwidth requirements of the IoT
network.

An overview of CEP for IoT and its applications is provided in [41],
consisting of a deep insight into the distributed CEP architecture based
on the client-server model which can be realized on the IoT devices to
perform queries like filtering, passing data, and placing windows on the
incoming data. Some of the advantages of using CEP over IoT are: (1)
distributed CEP in the network will balance the workload better; (2)
ease of CEP engine deployment; and (3) the data traffic can be signif-
icantly reduced by removing unwanted data using queries of filtering,
data passing, etc.

Additionally, there are other works like [63] that address the idea
of distributing the data analytics between the IoT nodes and the cloud.
For example, they use genetic algorithms to optimize the query mapping
to the end devices. While the integration of IoT and CEP is a well stud-
ied concept, the challenges of security, privacy, adaptability, scalability,
and interoperability still remain.

To deal with the complexity and heterogeneity of IoT environments,
a number of high level flexible layered architectures have been con-
tributed. Heterogeneity has led to different sets of requirements, with
different needs for complexity and varied performance, which has af-
fected the design of architectures. This has led to a scenario in which
solutions have not yet converged to a reference model, which causes
issues of interoperability across systems [84].

2.5. Cyber-Physical Systems

Cyber-Physical Systems (CPS) are networked systems in which the
computational (cyber) part is tightly integrated with the physical com-
ponents. That is, the computational components sense the state of the
system and environment and then provide continuous feedback for con-
trolling the system and actuating on the environment. Physical compo-
nents include energy sources, transmission and distribution lines, loads,
and control devices. Cyber components include energy management sys-
tems (EMS), supervisory control and data acquisition (SCADA) systems,
and embedded implementations of control algorithms. The interplay of
computational and physical systems yields new capabilities. The net-
work is a key component in cyber-physical systems as it provides the
backplane that guarantees timely transmission of the information (from
the physical to the computational world) and of the commands (from
the computation to the physical world).

Traditionally, these systems had been mostly self-contained in the
sense that they have included all needed computational parts with little
interaction with external elements. For example, the traditional archi-
tecture for the Smart Grid transfers all SCADA data to centralized utility
servers [142]. An evolution of the design of such systems arrived with
the rising of the cloud computing paradigm as many of the analytics
functions were deployed in the cloud [139]. However, even with the
availability of on-demand resources in the cloud, the critical CPS of-
ten are unable to transfer the time-critical control tasks to the cloud
due to communication latencies [36,38]. This centralized SCADA ar-
chitecture is changing with recent developments like Fog Computing
[64,153], which have advertised the use of dual purpose sensing and
computation nodes (that are end nodes) that are closer to the physical
phenomenon that is observed or analyzed. For example, the SCALE-
2 [30] platform provides the capability to run air-quality monitoring
sensors, whereas the Paradrop architecture [148] provides the capabil-
ity to run containerized applications in network routers. Nowadays, cy-
ber physical systems research has to consider the highly dynamic nature
of CPS; it is not possible to perform static system design as the full oper-
ation conditions are unknown at design time. For this reason, a number
of contributions are appearing that support the online verification of
these systems as they face new situations that require them to adapt;
examples of these contributions are [92] and [126].
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As a direct consequence of the evolution of the computing paradigm
from “central data-centers” to “shared cloud computing resources” to
“distributed edge (meaning end) computing resources plus shared cloud
resources”, critical CPS like smart grids can distribute the intelligence
further down into the network, away from the centralized utility servers.
For example, this capability provides us with the means to build energy
management applications of the future that are both distributed and
coordinated, with heavy reliance on communication and coordination
among local sensing and control algorithms, while also obeying strate-
gic energy management decisions made on a higher level of the control
hierarchy. We discuss this concept of providing “scalable” and “extensi-
ble” computation services near the physical process (i.e., fog computing)
next.

2.6. Fog computing

Fog computing (FC) was introduced to solve the problem of having bil-
lions of IoT devices and cyber physical systems that cannot operate by
simply having connectivity to servers in the cloud; and instead, compu-
tations are pushed closer to these end nodes and devices. Unlike the tra-
ditional computation model, the fog computing model, pioneered by the
Open Fog Consortium, suggests the use of shared computation servers,
similar to the vision of cloudlet described by [132]. However, the key
difference lies in the software as a service pioneered by fog computing.
For example, instead of just providing the computation resources, a fog
computing machine often provides machine learning stack as a service
[7]. Also, a difference with respect to cloud is that fog computing sup-
ports user mobility. Nevertheless, fog and cloud are not independent
paradigms as in a fog computing environment there is the need for in-
teracting with the cloud to achieve coherent data management.

As mentioned in [154], the unresolved issues in cloud computing
of latency and mobility have been overcome by providing services and
elastic resources at the end of the information chain, close to the sensors.
[156] defines fog computing and discusses the characteristics related
to it like fog networking, quality of service, interfacing and program-
ming model, computation offloading, accounting, billing and monitor-
ing, provisioning and resource management, and security and privacy.
Along with providing insights into the issues related to fog computing,
it also mentions paradigmatic applications like augmented reality (AR)
and real-time video analytics, content delivery and caching, and mobile
big data analytics which will promote fog computing.

All of the computation paradigms discussed have big security and
privacy challenges. Some of the main security issues faced by fog com-
puting [116] are trust, authentication, secure communication, privacy
at the end user’s node, and malicious insider attacks. A number of papers
have contributed to identifying the security and privacy concerns of fog
computing, and similarly a number of solutions for each of the above
stated security challenges have also been analyzed in the literature.

Similar to [116], also [141] mentions different security issues in fog
computing. All smart appliances (e.g., fog computing nodes like smart
meters) have an IP address, and here, authentication problems are a
big threat. A malicious attacker may try to hack the device and tamper
the data associated to it; e.g., in case of a smart meter this may imply
providing false meter reading. Similar to authentication problems, man-
in-the-middle attack is also a prominent type of attack on fog computing
nodes (FCN), where the devices may be compromised or replaced by
fake ones. This problem arises because the FCN under this type of attack
utilize only a small amount of the processor and memory, and normal
intrusion and anomaly detection techniques will not be able to detect
it. The authors also provide an insight into the solution to the man-in-
the-middle attack and list a number of privacy issues in fog computing
and different solutions available in the literature.

Overall, it must be acknowledged that fog computing provides a
number of advantages that are of key importance for most applica-
tions: low latency, location awareness, real time operation, heterogene-
ity, and end device mobility; all these make it an attractive computation
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paradigm. But, the security and privacy challenges of trust, authentica-
tion and man-in-the-middle attack discussed above make it challenging
to implement FCN in daily life applications.

2.7. Edge computing

Edge computing (EC) is an overloaded concept, defined differently
across the literature. The most commonly mentioned meaning of edge is
that of end, meaning that edge computing is carried out by the end de-
vices or user devices (also called edge devices in many works). Although
the latter one pulls the focus away from the network elements and their
associated challenges, it is probably the most extended term up to the
present time.

However, the networking community has started to use edge com-
puting to refer to the computation performed by the network elements.
If we view the Internet as a graph that connects computation nodes
(computers), the term edge is assigned to the connecting line between
the central nodes (cloud servers) and the end nodes (the devices at the
end of the network or user devices). Here, edge computing refers to the
computation done at the network backhaul.

After presenting both usages of edge computing, we use this term in
the networking sense in the remainder of this paper. This way, we refer
to end or user devices as the leaf nodes of the Internet graph, and we
use the term edge computing as to the computation done at the network
elements and backhaul that will support offloading and will speed up the
service time to end devices by partly performing heavy computations in
the network segments.

In the first presented meaning of the term, the idea behind edge
computing is to perform computation and storage locally within the re-
sources available at the end devices. For this type of nodes, [136] tar-
gets at addressing the potential issues of response time requirements,
battery life constraints, data security and privacy, and bandwidth re-
duction; this paper also discusses the evolution of the edge computing
from the concepts of cloud computing and IoT, providing a definition
for edge computing and several case studies that support this paradigm
and show the inherent advantages that it offers.

Similarly, an insight into edge computing is provided in [51] along
with the comparison among the different edge computing implemen-
tations of fog computing, mobile edge computing, and cloudlets. Some
simple differences among the three are:

* Characteristics of nodes. Fog computing nodes use off-the-shelf de-
vices and provide them with computation and storage capabilities
which make them slower as compared to the dedicated devices of
mobile edge computing and cloudlets.

Proximity to end devices. Fog computing nodes may not be the first
hop for end devices due to the use of off-the-shelf computing devices;
whereas for MEC and cloudlet, the devices can connect directly to
the end nodes using WiFi for cloudlets and mobile base station for
mobile edge computing.

Access/communication mechanisms between the devices. Fog com-
puting nodes can use WiFi, Bluetooth or even mobile networks; mo-
bile edge computing devices can only utilize mobile networks; and
Cloudlets use WiFi.

Diversity and heterogeneity in the off-the-shelf devices. The fog com-
puting paradigm requires an abstraction layer; whereas mobile edge
computing and cloudlets do not require this because of the dedicated
connections that devices use.

Additionally, the authors have also mentioned the use case based se-
lection of the three edge computing implementations in terms of power
consumption, access medium, context awareness, proximity, and com-
putation times.

As a result from the literature analysis, it appears that the genesis
of edge computing has made way to other edge computing implemen-
tations of fog computing, mobile edge computing, and cloudlets which
tend to tackle the disadvantages of cloud computing and mobile cloud
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computing. However, there are several open issues of edge computing
as indicated in [95] and these are security and privacy, resilience, ro-
bustness, achieving openness in the networks, supporting multi-services
and operation.

2.8. Mobile edge computing

Mobile-Edge Computing (MEC) was motivated by the growth of the
network traffic generated by the proliferation of smart phones and their
applications that require intensive data exchange and processing. MEC
intends to reduce the latency and to support location awareness in or-
der to increase the capacity of the applications that run on mobile de-
vices. MEC started development in 2014 led by ETSI? with the goal
of achieving a sustainable business strategy [132]. For this, it brought
together mobile operators, service providers, mobile users, and over-
the-top (OTT) players. Different metrics can be improved by deploying
services over MEC. On the functional side: latency, energy efficiency,
throughput, goodput, packet loss, jitter, and QoS. On the non-functional
side: service availability, reliability, service load, and number of invo-
cation requests. MEC servers are located near the base stations. Smart
devices offload activities and the cellular data and offloaded activities
are processed on such servers; them, the edge servers decrease the traffic
and congestion on the backhaul.

Thus, MEC aims at placing the computational and storage resources
at the mobile base stations so that mobile users can widely use the ad-
ditional features it has to provide. [27] provide technical insight into
MEC along with its limitations by identifying the applications of MEC.
Various applications and use cases of content scaling, offloading, aug-
mentation, edge content delivery, aggregation and local connectivity are
evaluated in terms of power consumption, delay, bandwidth and scala-
bility. A few of the listed advantages of MEC for different stakeholders
of end users, network operators and application service providers are:
(1) end users benefit from reduced communication delay; (2) network
operators benefit with bandwidth reduction and scalability; (3) appli-
cation service providers benefit with faster service and scalability; and
(4) augmentation enables the application providers to integrate cellular
network specific information into the application traffic.

A comprehensive overview of MEC is found in [104] that introduces
features of MEC along with its paradigm shift from MCC. A comparison
of MEC and MCC has been made to support the advantages of paradigm
shift from MCC. The advantages of MEC like low latency, mobile energy
savings, context awareness and, privacy and security enhancement are
discussed along with examples. Some of the mentioned technical chal-
lenges of MEC are: security, network integration, application portability,
performance, regulatory and legal consideration, resilience and opera-
tion. The literature also mentions some use case scenarios of MEC like
video stream analysis, augmented reality, IoT, and connected vehicles.

In contrast to the cloudlet model, which is available to specific users
in the vicinity of the cloudlet, MEC is available to all mobile users as
MEC servers are deployed in mobile base stations to deliver additional
features such as location and mobility information.

Fog or cloudlet nodes are managed typically by individuals and can
be deployed at any location that they judge convenient. MEC servers
are owned by mobile operators; servers have to be deployed near the
base stations to facilitate that users have access to the mobile network
over the radio access network (RAN) [131]. The MEC model has been
prototyped on a few scenarios such as edge video orchestration in which
users access live video streams enabled by an orchestration application
running on a MEC server. MEC servers can be deployed at different loca-

2 Furopean Telecommunications Standards Institute. http://www.etsi.org.
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tions on the networking infrastructure: an LTE base station,® 3G Radio
Network Controllers (RNC), or a mix of both.

Security and privacy issues are shared by fog, cloud, and MEC. More-
over, in MEC the congestion of a server may affect the service provided
to a number of mobile users, resulting in high monetary costs. Therefore,
increasing the computation power at the edge servers is a real need.

2.9. Mist computing

Mist Computing is a concept explained in [125]. There is lack of con-
sensus as to the precise definition of mist computing. In some works, mist
computing is defined as the paradigm that takes advantage of every pro-
cessing capacity available everywhere, from the end nodes (sensors and
actuators) to the cloud servers. Some of these works also provide defi-
nitions for other concepts that collide with the mainstream trend, e.g.,
edge computing acquires fog computing capabilities [73]. As there is no
clean definition of what mist actually provides, we are inclined to either
use cloud, fog, or edge.

Asin [126], fog computing performs the computation at the network
using the gateway devices, but in mist computing this is performed by
the actual end devices, i.e., sensors and actuators. We know that the
closer the computation is to the end devices, the bigger is the decrease
in the network latency and transmission delay, which improves the user
experiences in real time applications.

2.10. Social computing

Social Computing [78] is a paradigm for analyzing and modeling so-
cial behaviors of users on media and platforms to extract added value
information and create intelligent and interactive applications and data.
It involves a multi-disciplinary approach that encompasses computing,
sociology, social psychology, communication theory, computer-science,
and human-machine interaction (HMI). For this purpose, social comput-
ing focuses essentially on studying the relations among people within a
group to analyze how the information flows; the collaboration manner
to extract positive and negative patterns; how communities are built,
and how grouping is achieved. The target systems for analysis are social
media, social networks, social games, social bookmarking and tagging
systems, social news, and knowledge sharing, among others.

Among these scenarios, social computing and social software are ca-
pable of providing big data that can be processed and analyzed with
complex algorithms and computation techniques [78] capable of ex-
tracting essential social knowledge that creates high value for society,
industry, or individuals. Social computing is a part of computer science
at the confluence area between social behavior and computational sys-
tems. By means of using software systems and computer science technol-
ogy, social computing recreates social conventions and social contexts.
Software applications for social communication and interaction are the
building block of social computing and illustrate this concept. Among
these software elements, one may find public web based content, blogs,
email, instant messaging, social network services, wikis, social tagging
and bookmarking.

Since the wide availability of Internet and powerful personal com-
puters, social computing took a phenomenal growth. This paradigm
shifts the computing towards the end of the network for the end users to
engage in social communities, share information and ideas, and collec-
tively build and use new tools. Social communities with common ideas,
tools and interests are formed which can improve the experience of us-
ing tools and sharing common problems and solutions. As an example,
Wikipedia is an open source encyclopedia that works like an informa-
tion sharing tool formed by collaborative authoring which can be re-

3 Long-Term Evolution (LTE) is a telecommunications standard —a registered
trademark of ETSI - for high-speed wireless communication in mobile devices
and data terminals; it increases the capacity and speed by using a different radio
interface together with core network improvements
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viewed and changed upon the feedback of users. Though this social tool
helps the community in sharing information through a common plat-
form called wiki, the credibility of information is at stake, as it is an
open source tool with collaborative authorship. Some other notable ex-
amples of social computing platforms are YouTube, Word press, Tumblr,
Facebook, Twitter, or LinkedIn.

2.11. Dispersed computing

Dispersed computing [18] involves algorithms and protocols for
mission-aware computation and communication across broad-scale,
physically dispersed objects for designing scalable, secure, and robust
decision systems that are collectively driven by a global mission. These
systems can operate under highly variable and unpredictable (possibly
also degraded) network connectivity conditions. For this reason, dis-
persed computing envisions opportunistic and convenient design of mo-
bile code and data relations as needed by the users, the applications, or
the mission.

For cloud computing and mobile computing, users offload the real
time data on to the cloud for processing and data analytics. We have
also discussed a few limitations of high network latency and transmis-
sion delay, that lead to the genesis of the different paradigms of edge
computing, fog computing and mobile edge computing based on the
idea of utilizing the computational resources of the end devices in the
network to process the data locally. Similar to this idea, dispersed com-
puting seeks to provide a scalable and robust computing system which
collectively uses heterogeneous computing platforms to process large
data volumes. This paradigm is typically deployed in situations where
there is degraded network connectivity that leads to higher data latency
and transmission delay.

Among the first works on dispersed computing, we find [140] that
defines the term as an alternative model derived from the consolidation
of a number of contributions on data transmission, data storage, and
code execution. Still that work is very preliminar and much targeted at
surveying the existing distributed computing models according to vari-
ous criteria and highly related to cloud.

Other meanings of disperse computing rather point at the edge com-
puting elements, such as DARPA’s definition [18] where NCPs (the net-
work control points) are placed at the core of the computations.

Dispersed computing systems run software partly inside the pro-
grammable platforms within the network, the NCPs. As mentioned ear-
lier, NCPs are capable of running code for both, users/applications and
for the network protocol stack. For implementing the dispersed comput-
ing paradigm, the application-level logic will need resources available
at the end points (the computation devices) and at the NCPs.

3. Social dispersed computing

In this paper, we coin the term social dispersed computing that is at the
intersection of social computing and dispersed computing. On the one hand,
dispersed computing [18] has the goal of providing scalable, secure, and
robust decision systems that are collectively driven by a global mission.
Dispersed computing is a computing paradigm for designing systems
that can operate under highly variable and unpredictable (possibly also
degraded) network connectivity conditions. For this, such a computing
paradigm envisions opportunistic and convenient design of mobile code
and data relations as needed by the users, the applications, or the mis-
sion. On the other hand, the social dispersed computing paradigm takes
an agent or actor based approach, connecting the users with each other
via messages, enabling them to obtain globally useful analysis, while
performing local computations. Further, decisions on what users do are
influenced not only by the users’ personal preference and desire but also
by what other users are doing.

These models demand complex, flexible, and adaptive systems, in
which components cannot simply be passive nor can reactive entities
be managed by only one organization [144]. Nevertheless, instead of
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being a solitary activity, computation becomes rather an inherently so-
cial activity, leading to new ways of conceiving, designing, developing,
and handling computational systems [138]. Considering the emergence
of distributed paradigms such as web services, service-oriented comput-
ing, grid computing, peer-to-peer technologies, autonomic computing,
etc., large systems can be viewed as the services that are offered and
consumed by different entities, enabling a transactive paradigm.

Formally, social dispersed computing applications can be approxi-
mated as multi agent systems. For example, they can be thought of as
collections of service-provider and service-consumer components inter-
linked by dynamically defined workflows [103]. Agents are autonomous
entities with given behaviours that interact with other agents that also
have their own behaviours. As a result of these interactions, individ-
ual behaviours (or even objectives, preferences, etc.) may be affected,
emerging a global (or aggregated) behaviour of the whole system. Intel-
ligent software agents are a new class of software that act on behalf of
the user to find and filter information, negotiate for services, easily au-
tomate complex tasks, or collaborate with other software agents to solve
complex problems. This concept of intelligent agent provides support to
build complex social dispersed computing systems as components with
higher levels of intelligence, which demand complex ways of interac-
tion and cooperation in order to solve specific problems and achieve the
given objectives. However, while procedures, functions, methods and
objects are familiar software abstractions that software developers use
every day, software agents, are a fundamentally new paradigm unfamil-
iar to many software developers. Thus, new platforms and programming
abstractions are required. We describe some of these paradigms in the
sections on market based approaches later in the paper.

3.1. Multi agent systems

It should be noted that the concept of social dispersed systems bor-
rows heavily from the paradigm of multi-agent systems and integrates
social behaviors and incentives (to encourage participation) in to the
mix. Multi Agent Systems (MAS) is an important and exciting research
area that has arisen in the field of Information Technologies in the last
decade [102]. According to [150], an agent is defined by its flexibility,
which implies that an agent is reactive as it must answer to its environ-
ment; proactive as it must try to fulfill its own plans or objectives; and
social because an agent has to be able to communicate with other agents
by means of some kind of language. A Multi Agent System consists of a
number of agents that interact with one-another [149].

The most promising application of MAS technology is its use for sup-
porting open distributed systems [102]. Open systems are characterized
by the heterogeneity of their participants, non-trustworthy members,
existence of conflicting individual goals and a high possibility of non-
accordance with specifications [25]. The main feature of agents in these
systems is autonomy. It is this autonomy that requires regulation, and
norms are a solution for this requirement. In these types of systems,
problems are solved by means of cooperation among several software
agents [103]. Norms prescribe what is permitted, forbidden, and manda-
tory in societies. Thus, they define the benefits and responsibilities of the
society members and, as a consequence, agents are able to plan their ac-
tions according to their expected behaviour.

When developing applications based on the new generation of dis-
tributed systems, developers and users require infrastructures and tools
that support essential features in Multi Agent Systems (such as agent
organizations, mobility, etc.) and that facilitate the system design, man-
agement, execution, and evaluation [48,57]. Agent infrastructures are
usually built using other technologies such as grid systems, service-
oriented architectures, P2P networks, etc. In this sense, the integration
and interoperability of such technologies in Multi Agent Systems is also
a challenging issue in the area of both tools and infrastructures. What is
more, agent technologies can provide concepts and tools that give possi-
ble answers to the challenges of practical development of such systems
by taking into consideration issues such as decentralization and distri-
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bution of control, flexibility, adaptation, trust, security, and openness
[35]. Finally, in order for Multi Agent Systems to be included in real
domains like media and Internet, logistics, e-commerce and health care,
their associated infrastructures and tools should provide efficiency, scal-
ability, security, management, monitoring and other features related to
building real applications.

3.2. Social dispersed computing illustration

To illustrate the concept of social dispersed computing, we consider
three examples: two from the transportation domain and one from the
energy domain.

3.2.1. Next generation electrical energy systems

Transactive energy systems (TES) [45,80,91,109] have emerged in
anticipation of a shift in the electricity industry, away from centralized,
monolithic business models characterized by bulk generation and one-
way delivery, towards a decentralized model in which end users play a
more active role in both production and consumption [109]. The main
actors of this system are the consumers, which are comprised primar-
ily of residential loads and prosumers who operate distributed energy
resources (DERs). Examples of such DERs include photovoltaics, bat-
teries, and schedulable loads (electric vehicle charging, laundry, etc.).
Additionally, a distribution system operator (DSO) manages the connec-
tion between the microgrid and the primary grid. Such installations are
equipped with an advanced metering infrastructure, which consists of
TE-enabled smart meters. In addition to the standard functionality of
smart meters (i.e., the ability to measure line voltages, power consump-
tion and production, and communicate these to the DSO), TE-enabled
smart meters are capable of communicating with other smart meters,
have substantial on-board computational resources, and are capable of
accessing the Internet and cloud computing services as needed. Exam-
ples of such installations include the well-known Brooklyn Microgrid
Project [17].

At its core, transactive energy systems are market based social appli-
cations that have to dynamically balance the demand and supply across
the electrical infrastructure [109]. In this approach, customers on the
same feeder (i.e., those sharing a power line link) can operate in an open
market, trading and exchanging generated energy locally. Distribution
system operators can be the custodians of this market, while still meeting
the net demand [47]. Implementing such systems requires either a cen-
tralized or decentralized market framework that is robust, resilient, and
secure. Fog computing resources provide an ideal opportunity to sched-
ule the operation of the market activities in the community as most of
the activity remains within the community and each home has access to
a set of smart inverters and computers attached to the smart inverters
that can be part of the fog computing layer.

3.2.2. Social mobility

Social routing platforms address the problem of urban transporta-
tion and congestion by directly engaging individual commuters. Due to
widespread use of smart devices, users are becoming active agents in the
shared mobility economy. This favors the use of algorithms for designing
active incentives that encourage users to take mobility decisions consid-
ering the overall system effect, rather than myopic individual utilities,
that focuses on what is best for each individual from his or her local per-
spective, as implemented by commercially available mobility solutions
[130].

Such services require a for information sharing, and a transactive
platform that: (a) provides multimodal routing algorithms, which ex-
tend existing optimization techniques for solving the multimodal tran-
sit problem by incorporating probabilistic representations of events in
cities, creating a near-optimal distributed algorithm by employing sub-
modularity and folding incentive mechanisms into the optimization
problem; (b) provide high-fidelity analytics and simulation capabilities
for service providers, informing them about how users are consuming

90

Journal of Systems Architecture 91 (2018) 83-102

transportation resources, which enables them to develop mechanisms
for improving services; and (c) provide an immutable and auditable
record of all transactions in the system.

Again a market-based distributed system running across these agents
will be able to create a dynamic offer with incentive-based route assign-
ment logic that can ensure that transportation resources are shared ef-
ficiently without causing congestion. Clearly, such a platform is also an
extension of the transaction management platform by: (1) making indi-
vidual consumers the participants; and (2) making the apps running on
their smart phones the transaction agents and the transaction manage-
ment platform provided by the transportation agency.

A solution to this problem requires a social computing and informa-
tion sharing platform that overcomes the incentive gap between individ-
uals and municipalities. This platform must offer mixed-mode routing
suggestions and general system information to travelers and, in turn,
supply service providers with high-fidelity information about how users
are consuming different transportation resources. At the same time, this
system must also consider the investment required by the cities in the
computing infrastructure required to solve the problem at scale. Alter-
natively, a social dispersed computing approach that utilizes the various
end computing resources available in the city, including the mobile de-
vices of the commuters, can be employed by municipalities to improve
efficiency within their cities with little investment.

This scenario precisely leads to the problem of secure and trustwor-
thy computing. Privacy of individuals is an important aspect of a suitable
solution; the usage of individuals’ smart devices as both data sources
and computational resources could expose the end users to a risk of pri-
vacy breach. Seemingly innocuous data, such as transit mode or route
choice, can lead to inferences of private information, such as real-time
tracking of an individual’s position [82], likelihood of affairs [115], and
forecasting trip destinations [50]. Therefore, again localized computing
resources which are managed under the legal jurisdiction are more at-
tractive to use for implementing the transaction management.

3.2.3. Distributed traffic congestion analysis

Another example is traffic congestion analysis in cities. Traffic con-
gestion in urban areas has become a significant issue in recent years.
Because of traffic congestion, people in the United States traveled an
extra 6.9 billion hours and purchased an extra 3.1 billion gallons of
fuel in 2014. The extra time and fuel cost were valued up to 160 bil-
lion dollars [133]. Congestion that is caused by accidents, roadwork,
special events, or adverse weather is called non-recurring congestion
(NRC) [65]. Compared with the recurring congestion that happens re-
peatedly at particular times in the day, weekday and peak hours, NRC
makes people unprepared and has a significant impact on urban mobil-
ity. For example, in the US, NRC accounts for two-thirds of the overall
traffic delay in urban areas with a population of over one million [100].

Driven by the concepts of the Internet of Things (IoT) and smart
cities, various traffic sensors have been deployed in urban environments
on a large scale, and many techniques for knowledge discovery and
data mining that integrate and utilize the sensor data have been also
developed. Traffic data is widely available by using static sensors (e.g.,
loop detectors, radars, cameras, etc.) as well as mobile sensors (e.g., in-
vehicle GPS and other crowdsensing techniques that use mobile phones).
The fast development of sensor techniques enables the possibility of in-
depth analysis of congestion and their causes.

The problem of finding anomalous traffic patterns is called traf-
fic anomaly detection. Understanding and analyzing traffic anoma-
lies, especially congestion patterns, is critical to helping city plan-
ners make better decisions to optimize urban transportation systems
and reduce congestion conditions. To identify faulty sensors, many
data-driven and model-driven methods have been proposed to incorpo-
rate historical and real-time data [62,101,129,156]. Some researchers
[75,81,146,152] have worked on detecting traffic events such as car ac-
cidents and congestion using videos, traffic, and vehicular ad hoc data.
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There are also researchers who have explored the root causes of anoma-
lous traffic [19,44,86,87,99,151].

Most existing work still focuses mostly on a road section or a small
network region to identify traffic congestion, but few studies explore
non-recurring congestion and its causes for a large urban area. Recently,
deep learning techniques have gained great success in many research
fields (including image processing, speech recognition, bioinformatics,
etc.), and provide a great opportunity to potentially solve the NRC iden-
tification and classification problem. However, the state of the art still
is to collate the data into a server and then perform the NRC classi-
fication periodically. The concept of Mobile Edge Computing and Fog
Computing provide a new opportunity.

Consider a network of micro-devices running on the transit buses, on
kiosks at the bus stops, and the metro data center can be used to not only
provide the transit schedule analysis services to the end customer but
can also be used to provide analysis of non-recurring congestion (NRC).
Compared with the recurring congestion that happens repeatedly at a
particular time in the day, weekday and peak hours, NRC usually shows
specific patterns associated with the causing events. It is important to
identify and correlate the traffic data gathered by individual road sen-
sors, including cameras, and solve a coordinated analysis of traffic con-
ditions across the region. Clearly, sending all the data in real-time to
the cloud or the metro data center is inefficient and the data should be
only sent when the likelihood of NRC is high. Detection of NRC events
is important in communities as the local traffic operation centers and
emergency responders can take proactive actions. Once an NRC event
is detected, it is possible to do further analysis to identify if it can be
explained due to an existing event or if it can be explained as a failure
of one or more traffic sensors [62], which can then be repaired.

4. Enabling social dispersed computing

While fog computing, edge computing, and mobile edge computing
provide the required computation resources, the resilience, timeliness,
and security requirements impose the need for additional middleware
technology with improved services. While traditionally middleware was
thought of as the “networking” glue, these days middleware is often
used as the term to also describe “useful platform” services. These plat-
form services provide reusable capabilities like distributed transactions,
time synchronization, fault-tolerance, etc. This section describes some
of these core computation services. The reader must think of them as
core-enablers, which when combined appropriately with the underlying
computation substrates enable useful social dispersed computing appli-
cations.

4.1. Distributed transaction management

At its core, agents in the social dispersed computing domain are ex-
ecuting a set of related operations. These operations and their sequence
can be grouped into a transaction to enable fault tolerance, specially
providing the capability of roll back.

A distributed transaction is a set of operations that involve two or
more networked nodes that, in turn, provide resources that are used and
probably updated by the operations. In a traditional transaction, there
is the notion of the transaction manager that manages the execution of
the constituent operations and their access to the distributed resources.
Typical transaction systems such as [49,111] use techniques for faster
execution like compensating transactions, optimism, and isolation with-
out locking. However, the concept of centralized management will have
to be revisited for social dispersed computing applications; these are
highly distributed applications, potentially involving large numbers of
participants with high mobility, that produce large data volumes, and
that manage data selectively.

Social computing applications are transactive by nature because they
often involve exchange of digital assets between participants. The state
transition of the system also depends upon the confirmed past state
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of the system. Examples include transactive ride-share systems [155],
transactive health-care systems [26], and transactive energy systems
[45,80,109]. Typically, there are three different kinds of subsystems re-
quired to settle the transactions in a social dispersed computing appli-
cation.

The first subsystem is a distributed ledger (e.g. Blockchains), which
is responsible for keeping track of (and log) all events of interest. For
instance, in the energy domain these events are trades, energy transfers,
and financial transactions. In the health care domain, the events record
the time of access of the health care data. The data is not stored in the
blockchain due to the size and privacy issues. Rather, the data is stored
in the second layer, which can be implemented by either a cloud or a
decentralized storage service like Storj [3] or IPFS [119]. The second
subsystem is the [oT layer, which is responsible for sensing and control.
The third subsystem is the communication layer and is typically imple-
mented using messaging middlewares like MQTT [120] or DDS [121].

A new enabling technology for transaction management can be IPFS
(Inter Planetary File System) that is a peer to peer distributed file sys-
tem with the goal of connecting all computing devices through a single
global file system. In IPFS, nodes do not need to trust each other: it uses
a distributed hashtable and a self-certifying namespace, and has no sin-
gle point of failure. IPFS is similar to the web, but it tries to mimic the
exchange of files through a Git type of repository for all devices by pro-
viding a content-addressed block storage model with content-addressed
hyper links. This connection type will form a data structure (Merkle
DAG) that can be used for providing blockchains, versioned file systems,
or a permanent web.

4.2. Blockchain

Blockchains combine the storage of transaction information with ad-
vanced protocols in a way that ensures that there is a consensus on the
operations that were executed. It is a public database where new data are
stored in a container called a block. Each block is added to an immutable
chain that has data added in the past. Data stored in blockchains can
be of any type. The perfect illustration of this technology is inevitably
related to Bitcoins, a cryptocurrency whose transactions are recorded
chronologically and publicly on the database, where each block is a
transaction.

The evolution of blockchain technology ancestors until today is de-
picted in Fig. 2.

Current transactions require that people trust on a third party to
complete the transaction. This third party can be a bank or a national
authority for the case of transactions involving money.

Blockchain technology is radically challenging the current way of
operating transactions. Blockchain relies on the use of mathematical
tools and cryptography to provide an open decentralized database as
a global and decentralized source of trust recording every transaction
that involves value, money, goods, property, work, or even votes. Ev-
ery transaction is recorded on a public and distributed ledger accessible
by anyone who has an Internet connection. It consists of creating and
managing a record whose authenticity can be verified by the entire user
community. Distributed property and trust can, then, be enabled in a
way in which every user with access to the Internet can get involved in
blockchain-based transactions, and third party trust organizations may
no longer be necessary. Blockchain technology can be used in an endless
number of applications: tax collection, money transfers without bank
intervention, or health care management. How it work is explained in
what follows.

When someone requests a transaction, such transaction is broad-
cast to a peer-to-peer network consisting of computation nodes, simply
known as nodes, that form a completely decentralized network. The net-
work of nodes validates the transaction and the user’s status applying
algorithms. When this transaction is verified, it is combined with other
transactions to create a new block of data that is placed in the ledger.
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Fig. 2. Evolution of Blockchain.

After, the new block is added to the existing blockchain permanently
and inmutably.

Social dispersed applications are candidates for using blockchain
technology given their highly distributed nature. Overall, the blockchain
database is stored in a distributed way, and the records it keeps are pub-
lic and easily verifiable. As no centralized version of such information
exists, it is secured from hacker attacks.

4.3. Distributed market platform

As discussed in the earlier examples, there is a need for incentives to
participate as a resource in the social dispersed computing as well as to
be eager to provide information. A market based distributed framework
can provide this foundation: one in which all interactions generated in
the social computing application are safely stored. As mentioned previ-
ously, such interactions are found in other sharing economy driven ap-
plications [135], e.g., ride-sharing [79,94], car-sharing [66] and trans-
active energy systems [31,85,92]. However, these exchange of data and
resource raises the concerns of integrity, trust, and above all the need
for fair and optimal solutions to the problem of resource allocation, mo-
tivating the requirement for a management platform.

Specifically, such a market based platform involves a number of self-
interested agents that interact with each other by submitting offers to
buy or sell the goods, while satisfying one or more of the following
requirements: (1) anonymity of participant identities, i.e., individual
agents shall not have the means to infer the identities of other agents,
or who trades with whom; (2) confidentiality of market information,
which includes individual bids and transaction information, output of
trade verification processes, and finalized trading data that are yet exe-
cuted; (3) market integrity and non-repudiation transactions; (4) avail-
ability and auditability of all events and data which can take the form
of encrypted or non-encrypted data.

Blockchains form a key component of such market based platforms
because they enable participants to reach a consensus on the value of
any state variable in the system, without relying on a trusted third party
or trusting each other. Distributed consensus not only solves the trust is-
sue, but also provides fault-tolerance since consensus is always reached
on the correct state as long as the number of faulty nodes is below a
threshold. Further, blockchains can also enable performing computa-
tion in a distributed and trustworthy manner in the form of smart con-
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tracts. However, while the distributed integrity of a blockchain ledger
presents unique opportunities, it also introduces new assurance chal-
lenges that must be addressed before protocols and implementations
can live up to their potential. For instance, smart contracts deployed
in practice are riddled with bugs and security vulnerabilities. Another
problem with blockchain based implementation is that the computation
is relatively expensive on blockchain-based distributed platforms and
solving the trading problem using a blockchain-based smart contract is
not scalable in practice.

Fig. 3 describes an example of such a market platform called Solid-
Worx [54]. It allows agents to post offers using predefined programming
interfaces. A directory actor provides a mechanism to look up connec-
tion endpoints, including the address of a deployed smart contract. The
smart contract functions check the correctness of each offer and then
stores it within the smart contract. Mixer services can be used to obfus-
cate the identity of the prosumers [31]. By generating new anonymous
addresses at random periodically, prosumers can prevent other entities
from linking the anonymous addresses to their actual identities [31,91],
thereby keeping their activities private. Solver actors, which are pre-
configured with constraints and an objective function, can listen to
smart-contract events, which provide the solvers with information about
offers. Solvers run at pre-configured intervals, compute a resource allo-
cation, and submit the solution allocation to the smart contract. The
directory, acting as a service director, can then finalize a solution by in-
voking a smart-contract function, which chooses the best solution from
all the allocations that have been submitted. Once a solution has been
finalized, the prosumers are notified using smart-contract events. To en-
sure correctness, the smart contract of SolidWorx is generated and ver-
ified using a finite-state machine (FSM) based language called FSolidM
[106].

4.4. Time synchronization

Satisfying time deterministic requirements during code execution on
a node is crucial but not enough for a distributed system like social dis-
persed computing. In these applications, we sometimes need to establish
a common synchronized time base and need to align each node’s local
clock(s) to this global reference. Even slight differences in each node’s
local clock—typically a few tens of parts per million (ppm)—accumulate
fast and become apparent over time. Based on environmental factors



M. Garcia-Valls, A. Dubey and V. Botti

Agent Interface

A A
connection addresses

. -
| Anomaly Detector
T

anomalies close, finalize

resource allocation

™~
|

offers

Journal of Systems Architecture 91 (2018) 83-102

[Solver (Market Mechanism) J

/]

potential offers,
solutions closed

™~ M
Smart Contract " - 7]; 77777 -
(check offer and solution correctness, select best solution) | vents I

Fig. 3. An example of a distributed market platform managing the interaction of the agents in a social computing setting described in [54].

(temperature, humidity, and voltage stability), the frequency differences
are not constant. Thus, to provide an accurate globally synchronized
time base, the supporting services need to periodically measure and
compensate for these differences. The periodic adjustment of the local
time on the node requires careful considerations to avoid disruption of
the local event scheduler [52]. Fortunately, there are two well estab-
lished technologies for solving this problem, both are supported by any
modern Linux kernel.

The Network Time Protocol (NTP) [71] is a ubiquitous time synchro-
nization service using heuristic software algorithms with no special re-
quirements on the networking hardware and communication infrastruc-
ture. The Precision Time Protocol (PTP, IEEE-1588) on the other hand is
built on accurate end-to-end hardware-level timestamping capabilities.
It is no surprise that the attainable accuracy of the two methods differ by
orders of magnitudes: tens of milliseconds with NTP vs. microseconds
with PTP [117]. PTP has also been implemented over wireless [42].

The PTP protocol achieves excellent accuracy if used within a local
area network and/or all network equipment in the packet forwarding
path participate in the protocol. The basic building blocks of the pro-
tocol are: (1) a hierarchical master/slave clock tree strategy supported
by a leader-election (“best master”) protocol, (2) accurate time-of-flight
measurement of network packets with the built-in assumption that these
delays are symmetrical (3) support for measuring and compensating for
intermediate delays across the communication medium (4) using level-
2 LAN frames or IPv4/IPv6 UDP messages as the transport mechanism
(5) support for co-existing independent PTP clock domains on the same
LAN.

At its core, the master-slave clock synchronization mechanism is im-
plemented by periodic beacon frames broadcast by the master and con-
taining the master clock value at the beginning of the beacon message
generation. If the networking hardware is not capable of inserting this
time value during frame transmission, a second non time critical frame
is sent by the master containing this value. With properly maintained
estimates on frame transmission delays, each slave can adjust its local
clock to the master. The delay estimation is based on periodic round-trip
requests from the slaves to the master. The request message is transmit-
timestamped by the slave and received-timestamped by the master. The
server then replies with a non real time message which contains the
received-timestamp for the slave to have a good estimate on the current
network delay.

4.5. Distributed coordination services

Social dispersed computing applications will aggregate large num-
bers of users participating as sensing actors and will also receive and
use data produced by the applications themselves. Interactions across
these users will be possibly made on the basis of user groups that can
change dynamically. Services for grouping/membership management
and distributed coordination and consensus will have to be put in place
to enable consistent interoperation with coherent state management.
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An application may be deployed on a variable number of nodes.
Nodes can be added or removed from the network at any time, either by
a controlling authority or unintentionally due to a fault condition. It is
possible for an application to operate on a subset of nodes (or groups),
while another application operates on another subset of nodes. It is pos-
sible for a node to migrate from one subset to another subset.

A distributed coordination service provides common services for co-
ordination among actors that run on a network of nodes. The distributed
coordination service includes: (1) group membership, (2) leader elec-
tion, (3) distributed consensus, and (4) time-synchronized coordinated
action; these are explained below:

Group membership maintenance: It is a basic building block that main-
tains the logical lists of components (i.e., users) that register with the
service. All the distributed coordination features are available inside
a logical group.

Leader election: Choosing a leader is a process where a single node be-
comes designated as an organizer of tasks among several distributed
nodes.

Distributed consensus: A process where group members form agree-
ment on some data value.

Time-synchronized coordinated action: Time synchronized activities
take the clock value as the trigger for their execution. In a distributed
scenario, several nodes will have to agree on when to schedule a task
of this kind, and for this, their clocks must be synchronized.

More in detail, coordination services are needed to maintain shared
state in a consistent and fault-tolerant manner. Achieving fault tolerance
is done by using replication that is typically based on running a quo-
rum (majority) based protocol such as Paxos [88,89]. Paxos manages
the state updates history with acceptors, and each update is voted by a
quorum of acceptors. The leader that manages the voting process is one
acceptor. Paxos also has learners that are light weight services that get
the notifications of updates after the quorum accepts them; learners do
not participate in the voting. Different technologies have implemented
this protocol; a few selected ones will be presented in the next section.
A major criticism to Paxos is that it is not an easy-to-understand proto-
col. Raft [122] is similar to Paxos, however, according to the authors it
is more understandable, the implementation phase is shorter, and it is
designed to have fewer states.

Often, distributed hash tables are also used to store the information
that can be used for distributed coordination. For example [55] uses
OpenDHT [128] to store, query, and disseminate details of publishers
and subscribers across the network. OpenDHT is a fast, lightweight Dis-
tributed Hash Table (DHT) implementation. The dissemination does not
mean full data replication on all nodes. OpenDHT stores the registered
value locally and forwards it to a maximum of eight neighbors. The dis-
tributed hash table for service discovery does not distinguish the nodes,
i.e. there are no “server” or “client” nodes; nodes are peers and each one
operates with the same rules. If a node disconnects from the network,
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Fig. 4. Looking back at 60 years of virtualization history.

the DHT service on the other nodes is still able to register new services
or run queries.

4.6. Software technologies

4.6.1. Virtualization

Since 1966 when the term “hypervisor” was first used until today,
virtualization technology has undergone a strong revolution (see (Fig. 4)
up to the point in which virtualization technology has been one of the
key enablers of cloud computing [59]; and we believe that it will also
play a major role in social dispersed computing. The partial computa-
tions from user groups will have to happen in servers in their vicinity
that will aggregate the data received from users, possibly maintaining
a state of the group, and communicate back to the users and to other
neighboring servers and the cloud. These servers will have to run other
applications besides the social computing application; in this way, vir-
tualization can be used to isolate the execution of the different applica-
tions in the same physical node, avoiding interference and preserving
performance. In a computer system, virtualization refers to the creation
of a virtual (not actual) version of some other system; that includes pro-
cessor, storage, or network virtualization. There are different types of
virtualization. A few of them are provided in what follows.

Machine virtualization. It provides an abstraction of the real hard-
ware resources or subsystems, mapping the virtual resource to the ac-
tual one, offering applications an abstract view through interfaces of the
hardware platform and resources that are provided underneath. In this
context, the host machine is used for referring to the physical machine
on which virtualization occurs; and guest machine is the virtual machine
that is created on the physical machine. The hypervisor or virtual machine
monitor (VMM) is a program (whether software, firmware, or hardware)
that creates virtual machines on an actual host machine.

Virtualization allows applications to be run in software environments
that are separated from their underlying hardware infrastructure by a
layer of abstraction. This enables different applications to be split into
virtualized machines that can run over different operating systems run-
ning over the same hardware.

A virtual machine (VM) is an execution environment in its own: it is
a software implementation of a physical execution platform, machine,
or computer, capable of running the same programs that the physical
machine can run. Virtual environments can be designed from either a
hardware partitioning or hypervisor design side. Hardware partitioning
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does not support the benefits that resource sharing and emulation of-
fered by hypervisors can provide.

There are two main types of hypervisors. On the one hand, bare metal
(namely type 1) hypervisors execute directly on the physical hardware
platform that virtualizes the critical hardware devices offering several
independent isolated partitions. Examples of these are VMWare ESX,
Xen, or Microsoft Hyper-V; and others such as WindRiver Hypervisor or
XtratuM for real-time systems. These can also include network virtual-
ization models like VMware NSX. On the other hand, type 2 hypervisors
are hosted ones as they run over a host operating system.

Containers. Containers are a different virtualization model in which
different applications and services can run on a single operating system
as a host, instead of virtual machines which allow to run different oper-
ating systems. The idea behind containers was providing software code
in a way that it can be quickly moved around to run on servers using
Linux OS; such software form can even be connected together to run a
distributed application in the cloud. The benefit is, then, maximized by
the possibility of speeding up the building of large cloud applications
that are scalable.

Containerization was originally developed as a way to separate
namespaces in Linux for security reasons for protecting the kernel from
the execution of applications that could have questionable security or
authenticity. After this came the idea of making these “partitions” effi-
cient and portable. LXC [10] was probably the first true container sys-
tem, and it was developed as part of Linux. Additionally, Docker [4] was
then developed as a system capable of deploying LXC containers on a
PaaS environment.

The applications running with containers are virtualized. In the spe-
cific case of Docker’s native environment, there is no hypervisor. There
is a daemon in the kernel that provides the isolation across containers
and connects the existing workloads to the kernel. Modern containers
usually include a minimal operating system (e.g. VMWare’s Photon OS)
with the sole objective of providing basic local services for the hosted
applications.

Microservices. The concept of microservices has a natural fit to con-
tainers, and it provides an alternative to the monolithic architecture pat-
tern that is the traditional architectural style of enterprise applications.
The microservice architecture structures applications as collections of
loosely coupled, small, modular services that provide business capabili-
ties and in which every service runs a unique process and communicates
through well-defined, lightweight mechanisms.
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Microservices are functions that can operate for different applica-
tions like libraries, that contact them via an API to produce a discrete
output. In monolithic applications, these functions would be instanti-
ated redundantly: one per application. Netflix [118] streaming video
service provider uses microservices. Modern containers include only the
basic services needed for a given system. Orchestration services such as
Kubernetes and Mesosphere Marathon manage the replication and re-
moval of container images depending on the traffic patters to/from the
workloads of microservices.

Different protocols are possible for communication across microser-
vices like HTTP; however, DevOps professionals mostly choose REST
(Representational State Transfer) given its lower complexity as com-
pared to other protocols. Microservices support the continuous deliv-
ery/deployment of large, complex applications, that yields agile soft-
ware provisioning. Given its scalability, it is considered a particularly
interesting pattern when it is needed to support a broad range of plat-
forms and devices.

4.6.2. Cloud deployment and management

There are various alternatives to designing and developing a cloud
computing infrastructure and manage it such as Amazon Elastic Com-
pute Cloud (Amazon EC2) [21], Microsoft Azure [110], CloudStack
[22], OpenStack [12], OpenNebula [11], Eucalytus [6], or IBM Cloud
[9]1, among others. They offer compute and storage services on the basis
of an [aaS model, except for Google App Engine [8] and Azure; the latter
offers a PaaS model on which it is possible to deploy web applications
and scalable mobile backends.

The technologies that provide an IaaS model are typically based on
low-level virtual machine monitors (VMMs) that support the construc-
tion of virtual execution environments or virtual machines. Most of the
previous technologies are based on either Xen [15], VMware [14], or
KVM [96] VMMs and have a native Linux host. This is true except for
IBM Cloud that also uses the above virtualization.

On the other hand, the technologies that provide PaaS are based on
lighter weight virtualization models such as application containers in
the case of Google App Engine or OS virtualization for Microsoft Azure.
Among the main benefits of this model is the maintenance cost as users
do not have to configure nor fine tune any backend server. User appli-
cations deployed in this type of environments can use APIs to access a
number of available services just as data base interfacing (through SQL
queries, etc.) or user authentication. In addition, applications availabil-
ity is also managed by the platform, and they are automatically scaled
depending of the amount of incoming traffic, so users only pay for the
amount of resources used.

A number of problems have been addressed over the last decade
for data center management. Precisely, virtual machine placement has
been one of the most popular problems addressed by the scientific com-
munity that has produced many contributions such as [105]. Energy
consumption has also received great attention; some researchers have
contributed algorithms to optimize virtual machine placement and en-
ergy consumption such as [43] through live migration based on values
of usage thresholds considering multiple resources, therefore targeting
two of the greatest problems of data centers.

Another research problem in cloud is QoS-aware data delivery to
users. One of the bottlenecks in a data center that hinders performance is
the networking across servers with kilometers of cables and terabytes of
exchanged data across inhouse servers. Quality of service provisioning
is concerned also with a number of very common activities such as effec-
tive resource management strategies [28] including virtual machine mi-
gration, service scaling, service migration, or on-the-fly hardware con-
figuration changes. These may all affect the quality experienced by data
delivery to users.

One of todays’ open problems in cloud computing management is
managing the complexity introduced by geographically distributed data
centers. Some authors have proposed the design of an integrated control
plane [40] that brings together both computation resources and network
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protocols for managing the distribution of data centers. Timely traffic
delivery is essential to guaranteeing quality of service to applications,
services, and users. Traffic engineering relies on the appropriate net-
working mechanism over LSP (Label Switched Paths) that are set at core
networks and are controlled by the control plane. Path computation is
essential to achieving the goals of traffic engineering. Actually, the IETF
(Internet Engineering Task Force) promoted the Path Computation Ele-
ment (PCE) architecture as a means to overcome the inefficiencies en-
countered by the lack of visibility of some distributed network resources.
The core idea of PCE is a dedicated network entity destined to the path
computation process. A number of initiatives for using the PCE also for
cloud provisioning have been further researched like [124].

Predictable cloud computing technologies. The penetration of virtu-
alization technology has paved the way for the integration of different
functions over the same physical platform. This effect of virtualization
technology has also arrived to the real-time systems area supporting the
integration of a number of functions of heterogeneous criticality levels
over the same physical platform. The design of mixed criticality systems
(MCS) [39] is an important trend that supports the execution of various
applications and functions of different criticality levels.

Real-time research applied to technologies has improved the capac-
ities of hypervisors to ensure full isolation across virtual machines that
are called partitions. Partitions are fully independent and are scheduled
by the hypervisor according to some scheduling policy. To comply with
the real-time requirements, hierarchical scheduling is used most of the
time due to its simplicity that favors timeliness; however, still the most
complex point in this domain is the integration of the communication
and distribution technology into partitioned systems. In [60], it is shown
how a distributed partitioned system can be naturally integrated with
a hierarchical scheduling mechanism to ensure timeliness of the com-
munications when using distribution software under a number of still
severe restrictions.

4.6.3. Messaging middleware

Existing middleware solutions still have much room for improvement
in order to fulfill the requirement interconnecting large numbers of de-
vices in IoT scenarios, as many IoT devices are resource constrained.
To overcome this, a variety of solutions have recently been developed
and new ones are progressively emerging. We survey a few of the most
popular solutions used in connecting IoT devices in what follows.

Message Queuing Telemetry Transport (MQTT). MQTT [70] was
originally developed in 1999 and has recently become an OASIS stan-
dard starting from version 3.1.1. It is a connectivity protocol to support
machine-to-machine (M2M) communications in [oT. Since the goal was
to support the IoT resource-constrained devices, it is designed to be a
lightweight technology. MQTT supports a publish/subscribe messaging
transport. Example use cases include sensors communicating to a bro-
ker via a satellite link, over occasional dial-up connections with health
care providers, and in a range of home automation and small device sce-
narios. Even mobile applications can make use of MQTT because of its
support for small size, low power usage, smaller data packet payloads,
and efficient distribution of information to one or many receivers.

Its publish/subscribe communication model uses the term “client” to
refer to entities that either publish data related to given topics or sub-
scribe to topics to receive their associated data; while the term “server”
refers to mediators/brokers that relay messages between the clients.
MQTT operates over TCP or any other transport protocol that supports
ordered, lossless message communication. MQTT supports three levels
of QoS for message delivery: (a) at-most-once, (b) at-least-once, and (c)
exactly once.

Message Brokers. MQTT is somehow an example of a pub-
lish/subscribe message broker. In addition to MQTT, a number of mes-
sage brokers like Apache Kafka, AMQP (Advanced Message Queue Pro-
tocol), and Active MQ are finding applications in areas of IoT. Apache
Kafka [23] is an open source distributed streaming platform used to
build real-time data pipelines between different systems or applications.
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They provide high throughput, low latency and fault tolerant pipelines
for streaming data with a tradeoff between performance and reliability.
They are deployed as a cluster of servers which handles the messaging
system with the help of four core APIs, namely, producers, consumers,
streams, and connectors. The other important part of the Kafka architec-
ture is the topic, broker, and records. Here, data is divided into topics,
which is further divided into partitions for the brokers to handle them.
Apache Zookeeper is used to provide synchronization between multiple
brokers. In addition, among the most popular data buses is the data-
centric DDS (Data Distribution Service) [72] which has been extended
in a number of ways such as [61] for supporting real-time reconfigura-
tion in dynamic service-oriented applications.

Constrained Application Protocol (CoAP). The CoAP protocol [37],
which is defined as an Internet Standard in RFC 7252, is a web transfer
protocol for use by resource-constrained devices of IoT, e.g., 8-bit micro-
controllers with small ROM and RAM. Like MQTT, CoAP is also meant to
support M2M communications. CoAP provides a request/response inter-
action model in contrast to the publish/subscribe model between appli-
cation endpoints. It provides built-in discovery of services and resources.

CoAP supports key web-related concepts such as URIs (Uniform Re-
source Identifier) and Internet media types. It leverages the REST archi-
tectural pattern that has been highly successful in the traditional HTTP
realm. Thus, in CoAP, servers make their resources available as URLs
and clients can use commands such as GET, PUT, POST, and DELETE to
avail of these resources. Due to the use of the REST architectural pattern,
it is seamless to combine HTTP with CoAP thereby allowing traditional
web clients to access an IoT sensor device.

CoAP uses UDP as its transport layer. Other protocols like DTLS
(Datagram Transport Layer Security) are also applicable. Like HTTP,
CoAP allows payloads of multiple different types, e.g., XML, JavaScript
Object Notation (JSON), or Concise Binary Object Representation
(CBOR).

Node-RED. Node-RED [34] is technically not a middleware but
rather a browser-based model-driven tool to wire the flows between IoT
devices. The tool then allows a one-click approach to deploy the capabil-
ities in the runtime environment. Node-RED uses Node.js (a JavaScript
execution engine) behind the scenes. The flows are stored as JSON ob-
jects. Thus, we can consider Node-RED as a model-driven middleware
capability.

Akka. [1] Akka is an open-source event-driven middleware frame-
work that uses the Actor Model [67] to provide a platform to build scal-
able, resilient, and responsive distributed and concurrent applications.
Akka runs on a Java virtual machine (JVM) and supports actors written
in Java and Scala. Actors in Akka are lightweight event-driven processes
that provide abstractions for concurrency and parallelism. Akka follows
the “let it crash” model for fault-tolerance in order to support applica-
tions that self-heal and never stop.

Distributed applications in Akka are made of multiple actors dis-
tributed amongst a cluster of member nodes. Cluster membership is
maintained using Gossip Protocol, where the current state of a cluster is
randomly propagated through the cluster with preference to members
who have not seen the latest state. Actors within a cluster can commu-
nicate with each other using mediators that facilitate point-to-point as
well as pub/sub interaction patterns. Each node can host a single medi-
ator in which case discovery becomes decentralized, or particular nodes
of a cluster can be designated to host a mediator in which case discov-
ery becomes centralized. Akka’s message delivery semantics facilitates
three different QoS policies — (a) at-most-once, (b) at-least-once, and (c)
exactly-once.

Robot Operating System (ROS). ROS [13] is a framework that pro-
vides a collection of tools, libraries, and conventions to write robust,
general-purpose robot software. It is designed to work with various
robotic platforms. ROS nodes are processes that perform computation,
and these nodes combined together form a network (graph) of nodes
that communicate with each other using pub/sub or request/response
interaction patterns.
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Pub/sub interaction is facilitated via topics. Multiple publishers and
subscribers can be associated with a topic. Request/response interaction,
on the other hand, is done via a service. A node that provides a service,
offers its service under a string name, and a client calls a provided service
by sending the request message and awaiting the reply. Both, topics and
services, are monitored by the ROS Master. Therefore, the master is a
single point of failure that performs the task of matching nodes that need
to communicate with each other, regardless of the interaction pattern.

4.6.4. Complex Event Processing (CEP)

CEP is used in multiple points for IoT analytics (e.g. Edge, Cloud
etc). In general, event processing is a method for tracking and analyz-
ing streams of data and deriving a conclusion from them, while the data
is in motion. A number of CEP engines like Siddhi, Apache flink and Es-
per are available for stream processing. These CEP tools allow the users
to write queries over the arriving stream of data which can be utilized to
determine anomalies, sequences, and patterns of interest. For example,
Siddhi [143] is an open source CEP server with a very powerful SQL
query like language for event stream processing. It allows the users to
integrate the data from any input system like Kafka, MQTT, file, and
websocket with data in different formats like XML, JSON, or plain text.
After the data has been received at the input adapters, queries like pat-
terns, filters, sequences, windows and pass through can be applied on
the data at the even stream to perform some real time event processing.
The data obtained after processing can be published over web-based
analytics dashboard to monitor the meaningful processed data.

4.6.5. Transaction management

During 2016, several open-source platforms for transaction man-
agement for the financial services industry have appeared, e.g. Hyper-
ledger, Chain Core, or Corda, besides other open-source platforms such
as Ethereum and Monax that were released in precedent years.

Among the most relevant transaction management systems we find
Hyperledger*, that is a Linux implementation for blockchain. Hyper-
ledger (or the Hyperledger project) is an umbrella project of open source
blockchains and related tools [53] started in December 2015 by the
Linux Foundation [16]. Hyperledger’s goal is to develop blockchain-
based distributed ledgers following the Linux philosophy of collabora-
tive development.

The Hyperledger project is partitipated by a large number of partners
contributing different tools individually or in collaboration. Burrow® is
a blockchain client that includes a virtual machine (Ethereum). Fabric,®
is an architecture that defines the execution of smart contracts (namely
chaincode in Fabric); the processes for consensus and membership, and
the roles of the participating nodes. Iroha’ is another Hyperledger tool
similar to Fabric but targeted at mobile aplications. Lastly, Sawtooth® is
a tool that provides the Proof of Elapsed Time consensus protocol based
on a lottery-design consensus protocol; this tool is based on trusted ex-
ecution environments such as SGX°.

4.6.6. Service configuration and deployment technologies

One of the most complex problem in distributed computing is remote
management of computation environment and resources. This includes
management, update and configuration of the computation environment
as well as remote deployment of tasks. We highlight a few of the repre-
sentative technologies that provide this functionality.

Kubernetes. It is an open source platform that facilitates the task of
running applications in clouds, whether private or public. It supports the

4 http://www.hyperledger.org

5 Burrow was contributed by Monax.

6 Fabric was originally contributed by IBM and Digital Asset.
7 Contributed by Soramitsu.

8 Contributed by Intel.

9 Software Guard Extensions by Intel.
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automatic deployment and operation of application containers. Applica-
tions can be scaled on the fly, and the usage of hardware can be limited
to required resources only. Whenever an application need be released,
Kubernetes allows generating container images; it can schedule and run
application containers on clusters of physical or virtual machines. One
of the most interesting characteristics is that it supports continuous de-
velopment, integration, and deployment with quick rollbacks. Also, it
raises the level of abstraction as compared to running an operating sys-
tem on a virtualized hardware; in this way, it is an application that is run
on an operating system that uses logical resources. In Kubernetes, ap-
plications are composed of smaller microservices that are independent
pieces of code that can be deployed and managed dynamically.

Paradrop. 1t is a platform that offeres computing and storage re-
sources over the end nodes supporting the development of services [98].
A key element is the WiFi access point as it has all information about
its end devices and manages all the traffic across them. Paradrop pro-
vides an API for third party developers to create and manage their ser-
vices across different access points, that are isolated in containers (called
chutes). Also, it provides a cloud backend to install dynamically the ac-
cess points and the third party containers, and to instantiate and revoke
them. Paradrop uses lightweight Linux containers [97] instead of vir-
tual machines as the virtualization mechanism to deploy services on the
network routers.

The computational requirements of social dispersed computing ap-
plications make it necessary to provide efficient execution over the
nodes. In this way, control over the execution of all nodes, especially
on resource limited ones, needs to be put in place. Following, we de-
scribe one of the technologies that provides such a functionality.

Mesos [68] is a thin software acting as a resource manager that en-
ables fine-grained sharing across different and highly diverse cluster
computing frameworks by providing them with a common interface to
access the cluster resources. Control of task scheduling and execution is
taken by the frameworks; this allows each framework to decide on ex-
ecution of activities according to its specific needs and better supports
the independent evolution of frameworks.

Mesos consists of a master and slave daemons, frameworks, and tasks.
The master process manages the slave daemons running on each cluster
node. Moreover, frameworks run tasks on these slave daemons. Each
framework running on Mesos has two components: a scheduler and a
executor. The scheduler registers with the master in order to be offered
resources; the executor process is launched on the slave daemons to run
the tasks.

Fine-grained resource sharing across the frameworks is implemented
using resource offers, that are lists of free resources on multiple slaves.
The organizational policies (priority or fair sharing) determine how the
master decides on how many resources to offer to each framework.
Mesos defines a plugable allocation module to let organizations define
their own allocation policies.

An important characteristic is that Mesos provides performance iso-
lation between framework executors running on the same slave by lever-
aging existing isolation mechanisms of operating systems.

4.6.7. Service coordination

Distributed systems also need technologies that can ensure that the
related services remain coordinated. We discuss a few state of the art
technologies here.

Zookeeper. It is an open source technology [24] that provides key
services for large scale systems containing large numbers of distributed
processes; these services are configuration, synchronization, group ser-
vices, and naming registry. Typically, these services can be highly com-
plex to design and implement and they are used by the vast majority of
distributed applications.

Zookeeper has a simple architecture in the form of a shared hierar-
chical namespace to facilitate process coordination. Also, it is a reliable
system that can continue to run in the presence of a node failure; it
provides redundant services for ensuring high availability.
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Data storage is performed in a hierarchical name space such as a
file system or a tree data structure. It supports data updates in a totally
ordered manner as in an atomic broadcast system.

Fault tolerance and security is an important characteristic in co-
ordination services that must be well supported not only considering
simple faults (crashes) or attacks (invalid access). DeepSpace [33] is a
distributed coordination service that provides Byzantine fault tolerance
[90] in a tuple space abstraction. It provides secure, reliable, and avail-
able operation in the presence of less than a third of faulty service repli-
cas. Also, it has a content-addressable confidentiality scheme that allows
to store critical data. The maturity level, community, services, and pen-
etration of Zookeeper is, however, not comparable.

Girafe. It is a scalable coordination service [137] for cloud ser-
vices. It organizes the coordination of servers by means of interior-
node-disjoint trees; it uses a Paxos protocol for strong consistency and
fault tolerance; and it supports hierarchical data organization for high
throughput and low latency.

ZooNet. It is a coordination service [93] that addresses the problems
of coordination of applications running in multiple geographic regions;
these applications need to trade-off between performance and consis-
tency, and ZooNet provides a modular composition design for this pur-
pose.

Consul. Consul is a system that enables service discovery and con-
figuration in a distributed infrastructure [2]. Consul clients provide ser-
vices (e.g. MySQL) and other clients can discover the providers of such
given service. Health checks for services are also enabled with respect
to specific characteristics such as if a service is up and running or if it is
using a certain memory size. Health checks can be used to route traffic
avoiding unhealthy hosts. It also provides multi-region datacenters.

Consul is based on agents. Each node that is part of Consul (i.e., that
provides services to it) runs a Consul agent that is responsible for health
checking the services on the node as well as the node itself. Agents in-
teract with Consul servers that store data and replicate it. Servers elect
a leader. Components that need to locate a service query any of the
servers or any of the agents; agents automatically forward requests to
the servers. Location of services residing in remote data centers is per-
formed by the local servers that forward the queries to the remote data
center.

Etcd. Etcd is a key value store [112] which internally uses raft
[123] consensus algorithm. Etcd can be used to build a discovery ser-
vice. However, it is primarily used to store information across a set of
nodes. Kubernetes uses etcd for managing the configuration data across
the cluster.

4.6.8. Networking technologies

Networking is a concept that is critical for distributed computing, in-
cluding edge computing. The recent avdances in software defined net-
working have provided mechanisms to increase the flexibility of this
crucial layer. We provide a brief overview here.

Software defined networks (SDN). Social dispersed computing appli-
cations require flexible network connections to support the dynamic
geographic distribution of end users and fine tune the parameters of
the communication. Although the advances in network technology and
bandwidth increase have been impressive, still IP networks have until
recently been structured in an manner that did not achieve sufficient
flexibility.

Actually, the boost of Internet has occurred over IP networks that are
vertically integrated [134] in which control and data planes are bundled
together [58] inside the network devices. However, this design makes it
hard to reconfigure in the event of adverse load conditions, faults, etc.
The control plane is the logic that decides how to handle the network
packets; whereas the data plane is the logic in charge of forwarding the
packets as indicated by the control plane. Network operators configure
each network device individually using low-level (and sometimes ven-
dor specific) logic; all data packets are treated the same by the switch
that starts sending every packet going to the same destination along the
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same path. Originally, SDN focused exclusively on the separation of the
control and data planes.

Software defined networking brings in the promise for solving the
above limitations in a flexible way by providing the needed mechanisms
for a network that will be programmable.

Kreutz et al.[83] provide a comprehensive survey of the technologies
towards SDN and its adoption. It presents the main differences of the
conventional networking as compared to SDN, describing the role of
the SDN controller over which a number of network applications (like
MAC learning, routing algorithms, intrusion detection system, and load
balancer) run.

The above is the classic SDN scenario in which a controller (that is an
application running somewhere on some server) sends the rules for han-
dling the packets to the switch; then, switches that are the data plane
devices request guidance to the controller whenever needed and pro-
vide the controller with information about the traffic that they handle.
The communication between the controllers and the switches happens
through well defined interfaces. The interface that enables communica-
tion between the SDN controller and the network nodes (that are phys-
ical and virtual switches and routers) is called the controller’s south-
bound interface, and it is typically the OpenFlow [107] specification.
OpenFlow has become the most important architecture for managing
large scale complex networks and has, therefore, become the major bet
for SDN. This is a specification that need be applied in matured sys-
tems through implementations. Hu et al. [69] provide a survey of the
target applications, the language abstraction, the controller functions
and inner workings, the virtualization that is achieved, quality of ser-
vice properties, security issues and its integration in different networks.
OpenFlow security issues are very relevant especially in large scale de-
ployments. Kandoi and Antikainen [76] describe the two types of denial
of service (DoS) attacks that are specific to OpenFlow SDN networks dis-
covering some key configurations (like the timeout value of a flow rule
and the control plane bandwidth) that directly affect the capability of a
switch and it identifies mitigation actions for them.

The research in SDN proceeds in parallel with the improvement of
the control plane algorithms searching for better and more efficient
ways to route traffic. Especially cloud services with soft real-time re-
quirements experience the delays of wide area IP network interconnects
across geographically distributed locations. To address this problem,
Bessani et al. [32] propose a routing mechanism for providing latency
and reliability assurances for control traffic in wide-area IP networks
with a just in time routing that routes deadline constrained messages
that are control messages at the application layer with the goal of achiev-
ing a non-intrusive solution for timely and reliable communication.

5. Challenges in social dispersed computing

Having explained the different computation technologies that cover
the range from utility cloud computing to edge computing, we can now
revisit the concept of social dispersed computing and identify the key
challenges that still exist. For researchers, these points also serve as a
summary of current research interests and opportunities for the commu-
nity.

The primary challenge of social dispersed computing is mobility.
Consider that nodes in the social routing application described earlier
are mobile, the system must be cognizant of intermittent connectivity
caused due to high mobility. Thus, new mechanisms have to be built
for implementing handover strategies that account for multi-tenancy on
a local cloud in which multiple service providers can be present to en-
sure backup. Additionally, given the high mobility of users, managing
volatile group formation may play a key role in the efficient collection
of data and in the transmission of only the needed data that are relevant
for particular groups. For this, it will be needed to incorporate dynamic
transaction management functionality.

The second challenge emanates from the resource constraints of the
system, which suggests that only required applications should be run-
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ning on the computation platforms. However, this leads to an interest-
ing question of what are the required applications. In the past, “goal-
driven” computing has been used in high criticality, but mostly static
systems [127]. However, a social dispersed application implies that the
end nodes or user nodes act in a social way; they will exchange infor-
mation, sharing part of their computations among the participant users,
the local fog nodes, and partly with the cloud nodes. A number of dif-
ferent services may run at these three layers: user/end and fog, edge,
and cloud. Also, some services may be split across the different layers.
As all participant nodes are driven by a shared goal, they will have to
share part of their data and computations in a synchronized way and
the exchanged data will have to be appropriately tagged in the tempo-
ral domain to meet the global goal. Thus goal-driven service orchestration
is a third challenge in these systems.

Another challenge includes service synchronization and orchestration.
In the cloud model, services are provided to clients in a client-server type
of interaction. In social dispersed computing, end nodes come into play,
requiring interaction not only with the cloud servers. End nodes will in-
teract with other end nodes for fast information exchange; with the fog
nodes for data bulk exchange and for low latency gathering of informa-
tion derived from heavy processing; and with the cloud servers for ob-
taining results derived from more complex data intensive computations
like machine learning services for longer term prediction. Social dis-
persed computing applications will need that supporting architectures
add an abstraction layer that meets the coordination and orchestration
requirements by providing smooth cooperation through the end nodes.
This layer will contain the required logic to orchestrate the interaction
between fog servers and the central cloud, as well as the interaction
across fogs.

Timely operation and stringent quality of service demands is yet another
challenge. Some social dispersed applications need to provide real-time
services to users. This requires to put in place a number of physical
resource management policies that ensure time bounded operation. Fog
servers will have high consolidation, so virtualization techniques will
have to be properly applied in conjunction with scheduling policies that
ensure timely operation for those real-time services and avoidance of
execution interference among applications in the presence of possibly
computationally greedy functions.

Understanding that failures will be more common in social dispersed
computing applications is important. Thus, the soft state of applications
must be properly managed. End nodes may interact heavily in social
dispersed applications, and these interactions may not assume that data
nor the infrastructure are available at all times. There is a noticeable
difference with respect to the cloud model that handles hard state and
persistent data. Considering soft state brings in much more complex sce-
narios in which fall back operations will need to be considered for the
end nodes to run recovery actions.

In social dispersed computing, the focus shifts towards the service and
the data, and other characteristics such as the location become less impor-
tant. A service may reside on a number of fog servers as well as partly
in the cloud. Then, the traditional client-server structure falls short as
IP based operations become inappropriate for handling service and data
centric interactions across nodes (mainly the fog and end nodes). A ser-
vice centric design that relies on data centric interaction and informa-
tion exchange better adjusts to this level of complexity.

As a result, service offloading strategies and selection of target infras-
tructure processing point are going to be a difficult problem. In a social
dispersed applications, it will be beneficial to draw a clever server pro-
cessing hierarchy. Where to process, whether at the cloud, at the edge,
or at the fog, and why are decisions that will have to be taken based on
a per application basis. We believe that the target point for running a
specific service should be selected according to the computational com-
plexity of the service itself (e.g. online video streaming probably at the
edge servers, face recognition probably at the fog). There is strong need
for designing efficient service partitioning schemes that make use of the
end, fog, edge, and cloud infrastructures as a complementary overall ex-
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ecution platform that will speed up the dispersed computations for the
social interactions.

Lastly, autonomy, interaction, mobility and openness are the char-
acteristics that the Multi Agent System (MAS) paradigm covers from a
theoretical and practical perspective. MAS technology provides models,
frameworks, methods and algorithms for constructing large-scale open
distributed computer systems and allows to cope with the (high) dynam-
icity of the systems topology and with semantic mismatches in the in-
teraction, both natural consequences of the distributed and autonomous
nature of the components. Open distributed systems are going to be the
norm in the software development industry of the future, and the in-
teroperation of the software entities will need to rely on a declarative
concept of agreement that is autonomously signed and executed by the
entities themselves. The generation of agreements between entities will
need to integrate semantic, normative, organization, negotiation and trust
techniques.

As evidenced by the partial list of technical problems given above,
there is a complex technical challenge in the design and development of
social dispersed computing applications that is multi-faceted. Address-
ing some of these problems simultaneously may result in the appearance
of emerging problems that have still not been envisioned.

6. Discussion and conclusions

A number of computing paradigms have appeared through the years
that, currently, put in practice in the development of a number of sys-
tems across different application domains. Newer computing paradigms
coexist with the more classical ones and each has brought into scene
their accompanying set of tools and technologies in their support. This
large number of computation design options allows us to implement
systems of a complexity that was not previously imagined and that in-
creases day by day. Some of the more recent paradigms have still not
been sufficiently applied in practice and even create confusion as to
what they mean to different scientific communities. This paper situates
the computing paradigms from the times where they were used as a util-
ity to provide practical solutions to given problems that could be solved
in a faster and more efficient manner; up to today where users are pro-
gressively accustomed to having commodity solutions at reach which go
some steps beyond the mere practicality of automating tasks to a point
in which they even consent to share information and knowledge online
to ease their lives in some way or to obtain some other non primary
benefit in exchange.

In this paper, we presented a review of core computing paradigms
that have appeared in the distributed system community in the last two
decades, focusing on cloud computing, edge computing, and fog com-
puting; and we have analyzed how they are refered to across the litera-
ture to disambiguate their definition. We identify a new paradigm, social
dispersed computing, that borrows from some existing paradigms and is
essentially enabled by powerful technology and tools that are available
today. Then, we described such a set of current computing technologies
or services, which when augmented with the computing paradigms can
enable interesting social dispersed computing applications. We exemplify
this new paradigm by describing three example applications, two from
the transportation domain and one from the energy domain. These ap-
plications can run successfully on both edge and fog computing devices.
However, as we imagine more complex and integrated applications, we
must start considering the challenges we mentioned in Section 5. Cur-
rent computing technologies only partially meet these challenges, giving
the community a great opportunity to explore this broad research space.

References

[1]
[2]
[3]
[4]
[5]

Akka, (https://www.akka.io). Last accessed January 2018.

Consul, (https://www.consul.io). Last accessed February 2018.

Distributed Cloud Storage, (https://www.storj.io). Last accessed February 2018.
Docker, (https://www.docker.com). Last accessed February 2018.

Ethereum Block chain app platform, (https://www.ethereum.org/). Last accessed
February 2018.

99

[6]

[71

(8]

[91
[10]
[11]
[12]
[13]
[14]
[15]
[16]

[17]

[18]
[19]

[20]

[21]
[22]
[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

371

[38]

[39]

[40]

[41]

Journal of Systems Architecture 91 (2018) 83-102

Eucalyptus cloud computing platform, (https://github.com/eucalyptus/eucalyptus).
Last accessed January 2018.

Foghorn, (https://www.foghorn.io). Last accessed February 2018.

Google cloud platform — App Engine, (https://cloud.google.com/appengine/). Last
accessed January 2018.

IBM Cloud, (https://www.ibm.com/cloud/). Last accessed January 2018.

LinuX Containers, (https://www.linuxcontainers.org). Last accessed January 2018.
Opennebula, (http://www.opennebula.orga). Last accessed January 2018.
OpenStack, (https://www.openstack.org/b). Last accessed January 2018.

ROS, (http://www.ros.org). Last accessed January 2018.

VMWare, (http://www.vmware.com). Last accessed January 2018.

The Xen project 4.8.1 version April 2017, (http://www.xenproject.org). Last ac-
cessed January 2018.

The Linux Foundation. Linux Foundation unites industry leaders to advance
Blockchain technology, 2015. Last accessed December 2017.

Brooklyn microgrid, (https://medium.com/thebeammagazine/can-the-brooklyn-
microgrid-project-revolutionise-the-energy-market-ae2c13ec0341). Last accessed
June 2018.

DARPA Defense Advanced Research Projects Agency, Dispersed Computing, 2017,
Last accessed on October 2017.

R. Al Mallah, A. Quintero, B. Farooq, Distributed classification of urban congestion
using VANET, IEEE Trans. Intell. Transp. Syst. (2017).

A. Alzahrani, A. Alalwan, M. Sarrab, Mobile cloud computing: advantage, disadvan-
tage and open challenge, in: Proceedings of the Seventh Euro American on Telem-
atics and Information Systems, (EATIS 2014), Valparaiso, Chile, 2014, pp. 1-4,
doi:10.1145/2590651.2590670.

Amazon, Amazon Elastic Compute Cloud (Amazon EC2),
(https://aws.amazon.com/es/ec2/). Last accessed January 2018.
Apache Software Foundation, Apache CloudStack,

(https://cloudstack.apache.org/). Last accessed January 2018.

Apache Software Foundation, Apache Kafka - A distributed streaming platform,
v0.8.2.0, 2015, (https://kafka.apache.org). Last accessed December 2017.
Apache  Software  Foundation, = Apache  Zookeeper  v3.5.3,
(https://zookeeper.apache.org). Last accessed December 2017.

A. Artikis, J. Pitt, A formal model of open agent societies, in: Proceedings of the
Fifth International Conference on Autonomous Agents, AGENTS ’01, ACM, 2001,
pp. 192-193, doi:10.1145/375735.376108. New York, NY, USA

A. Azaria, A. Ekblaw, T. Vieira, A. Lippman, Medrec: using blockchain for medi-
cal data access and permission management, in: Proceedings of the International
Conference on Open and Big Data (OBD), IEEE, 2016, pp. 25-30.

M. Beck, M. Werner, S. Feld, S. Schimper, Mobile edge computing: taxonomy, in:
Proceedings of the Sixth International Conference on Advances in Future Internet,
2014.

A. Beloglazov, R. Buyya, Managing overloaded hosts for dynamic consoli-
dation of virtual machines in cloud data centers under quality of service
constraints, IEEE Trans. Parallel Distrib. Syst. 24 (7) (2013) 1366-1379,
doi:10.1109/TPDS.2012.240.

J. Benet, IPFS - content addressed, versioned, P2P file system (draft 3),
(https://www.ipfs.io). Last accessed February 2018.

K. Benson, C. Fracchia, G. Wang, Q. Zhu, S. Almomen, J. Cohn, L. D’arcy, D. Hoff-
man, M. Makai, J. Stamatakis, N. Venkatasubramanian, Scale: safe community
awareness and alerting leveraging the internet of things, IEEE Commun. Mag. 53
(12) (2015) 27-34, doi:10.1109/MCOM.2015.7355581.

J. Bergquist, A. Laszka, M. Sturm, A. Dubey, On the design of communication and
transaction anonymity in Blockchain-based transactive microgrids, in: Proceed-
ings of the First Workshop on Scalable and Resilient Infrastructures for Distributed
Ledgers (SERIAL), ACM, 2017, pp. 3:1-3:6, doi:10.1145/3152824.3152827.

A. Bessani, N.F. Neves, P. Verissimo, W. Dantas, A. Fonseca, R. Silva, P. Luz, M. Cor-
reia, Jiter: just-in-time application-layer routing, Comput. Netw. 104 (2016) 122—
136, doi:10.1016/j.comnet.2016.05.010.

A.N. Bessani, E.P. Alchieri, M. Correia, J.S. Fraga, Depspace: a byzantine fault-
tolerant coordination service, SIGOPS Oper. Syst. Rev. 42 (4) (2008) 163-176,
doi:10.1145/1357010.1352610.

M. Blackstock, R. Lea, Toward a distributed data flow platform for the web of things
(distributed node-red), in: Proceedings of the Fifth International Workshop on Web
of Things, ACM, 2014, pp. 34-39.

O. Boissier, R.H. Bordini, J.F. Hiibner, A. Ricci, A. Santi, Multi-agent oriented
programming with Jacamo, Sci. Comput. Program. 78 (6) (2013) 747-761,
d0i:10.1016/j.scic0.2011.10.004.

F. Bonomi, R. Milito, J. Zhu, S. Addepalli, Fog computing and its role in the In-
ternet of Things, in: Proceedings of the First Edition of the MCC Workshop on
Mobile Cloud Computing, MCC’'12, ACM, New York, NY, USA, 2012, pp. 13-16,
doi:10.1145/2342509.2342513.

C. Bormann, A.P. Castellani, Z. Shelby, COAP: an application protocol for billions
of tiny Internet nodes, IEEE Internet Comput. 16 (2) (2012) 62-67.

A. Botta, W. De Donato, V. Persico, A. Pescapé, On the integration of cloud comput-
ing and Internet of Things, in: Proceedings of the 2014 International Conference
on Future Internet of Things and Cloud (FiCloud), IEEE, 2014, pp. 23-30.

A. Burns, R. Davis, Mixed criticality systems — a review, 2016, Report. University
of York.

J. Buysse, M.D. Leenheer, L.M. Contreras, J.I. Aznar, J.R. Martinez, G. Landi, C. De-
velder, NCP +: an integrated network and its control plane for cloud computing,
Opt. Switch. Netw. 11 (2014) 137-152.

C. Chen, J. Fu, T. Sung, P. Wang, E. Jou, M. Feng, Complex event processing for
the Internet of Things and its applications, in: Proceedings of the IEEE International
Conference on Automation Science and Engineering, 2014.

2017,


https://www.akka.io
https://www.consul.io
https://www.storj.io
https://www.docker.com
https://www.ethereum.org/
https://www.github.com/eucalyptus/eucalyptus
https://www.foghorn.io
https://cloud.google.com/appengine/
https://www.ibm.com/cloud/
https://www.linuxcontainers.org
http://www.opennebula.org
https://www.openstack.org/
http://www.ros.org
http://www.vmware.com
http://www.xenproject.org
https://medium.com/thebeammagazine/can-the-brooklyn-microgrid-project-revolutionise-the-energy-market-ae2c13ec0341
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0001
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0001
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0001
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0001
https://doi.org/10.1145/2590651.2590670
https://aws.amazon.com/es/ec2/
https://cloudstack.apache.org/
https://kafka.apache.org
https://zookeeper.apache.org
https://doi.org/10.1145/375735.376108
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0004
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0004
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0004
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0004
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0004
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0005
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0005
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0005
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0005
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0005
https://doi.org/10.1109/TPDS.2012.240
https://www.ipfs.io
https://doi.org/10.1109/MCOM.2015.7355581
https://doi.org/10.1145/3152824.3152827
https://doi.org/10.1016/j.comnet.2016.05.010
https://doi.org/10.1145/1357010.1352610
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0012
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0012
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0012
https://doi.org/10.1016/j.scico.2011.10.004
https://doi.org/10.1145/2342509.2342513
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0015
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0015
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0015
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0015
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0016
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0016
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0016
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0016
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0016
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0017
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0017
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0017
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0017
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0017
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0017
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0017
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0017
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0018
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0018
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0018
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0018
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0018
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0018
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0018

M. Garcia-Valls, A. Dubey and V. Botti

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

H. Cho, J. Jung, B. Cho, Y. Jin, S.W. Lee, Y. Baek, Precision time synchronization
using IEEE 1588 for wireless sensor networks, in: Proceedings of the 2009 Inter-
national Conference on Computational Science and Engineering, 2, 2009, pp. 579-
586, doi:10.1109/CSE.2009.264.

A. Choudhary, S. Rana, K.J. Matahai, A critical analysis of energy efficient virtual
machine placement techniques and its optimization in a cloud computing environ-
ment, Procedia Comput. Sci. 78 (2016) 132-138.

A.H. Chow, A. Santacreu, I. Tsapakis, G. Tanasaranond, T. Cheng, Empirical assess-
ment of urban traffic congestion, J. Adv. Transp. 48 (8) (2014) 1000-1016.

W. Cox, T. Considine, Structured energy: microgrids and autonomous transactive
operation, in: Proceedings of the 2013 IEEE PES Innovative Smart Grid Technolo-
gies (ISGT), IEEE, 2013, pp. 1-6.

G. Cugola, A. Margara, Processing flows of information: from data stream to com-
plex event processing, ACM Comput. Surv. (CSUR) 44 (3) (2012) 15.

0. Dag, B. Mirafzal, On stability of islanded low-inertia microgrids, in: Proceedings
of the of 2016 Clemson University Power Systems Conference (PSC), 2016, pp. 1-7.
E. Denti, A. Omicini, A. Ricci, Coordination tools for MAS development and de-
ployment, Appl. Artif. Intell. 16 (2002) 721-752.

Compensating transactions: when ACID is too much, JBoss Developer. (devel-
oper.jboss.org). Last accessed February 2018.

R. Dewri, P. Annadata, W. Eltarjaman, R. Thurimella, Inferring trip destinations
from driving habits data, in: Proceedings of the Twelfth ACM Workshop on Work-
shop on Privacy in the Electronic Society, WPES 13, ACM, New York, NY, USA,
2013, pp. 267-272, doi:10.1145/2517840.2517871.

K. Dolui, S.K. Datta, Comparison of edge computing implementations: fog comput-
ing, cloudlet and mobile edge computing, in: Proceedings of the Global Internet of
Things Summit, Geneva, Switzerland, 2017, pp. 1-6.

A. Dubey, G. Karsai, S. Abdelwahed, Compensating for timing jitter in comput-
ing systems with general-purpose operating systems, in: Proceedings of the 2009
IEEE International Symposium on Object/Component/Service-Oriented Real-Time
Distributed Computing, 2009, pp. 55-62, doi:10.1109/ISORC.2009.28.

F. Ehsani, Blockchain in finance: from buzzword to watchword in 2016,
(www.coindesk.com). 2016.

S. Eisele, A. Laszka, A. Mavridou, A. Dubey, Solidworx: a resilient and trustworthy
transactive platform for smart and connected communities, ArXiv e-prints, 2018.
S. Eisele, I. Mardari, A. Dubey, G. Karsai, Riaps: Resilient information architec-
ture platform for decentralized smart systems, in: Proceedings of the 2017 IEEE
20" International Symposium on Real-Time Distributed Computing (ISORC), 2017,
pp. 125-132, doi:10.1109/ISORC.2017.22.

K. Gai, M. Qiu, H. Zhao, L. Tao, Z. Zong, Dynamic energy-aware cloudlet-based
mobile cloud computing model for green computing, J. Netw. Comput. Appl. 59
(Supplement C) (2016) 46-54, doi:10.1016/j.jnca.2015.05.016.

A. Garcia-Fornes, J.F. Hiibner, A. Omicini, J.A. Rodriguez-Aguilar, V.J. Botti,
Infrastructures and tools for multiagent systems for the new genera-
tion of distributed systems, Eng. Appl. Al 24 (7) (2011) 1095-1097,
doi:10.1016/j.engappai.2011.06.012.

M. Garcia-Valls, R. Baldoni, Adaptive middleware design for CPS: Considerations
on the OS, resource managers, and the network run-time, in: Proceedings of the
Fourteenth International Workshop on Adaptive and Reflective Middleware, ARM
2015, 2015, pp. 3:1-3:6.

M. Garcia-Valls, T. Cucinotta, C. Lu, Challenges in real-time virtualization
and predictable cloud computing, J. Syst. Archit. 60 (9) (2014) 726-740,
doi:10.1016/j.sysarc.2014.07.004.

M. Garcfa-Valls, J. Dominguez-Poblete, L.E. Touahria, C. Lu, Integration of Data
Distribution Service and distributed partitioned systems, J. Syst. Archit. 83 (2018)
23-31, doi:10.1016/j.sysarc.2017.11.001.

M. Garcia-Valls, LR. Lopez, L. Fernandez-Villar, iLAND: an enhanced middleware
for real-time reconfiguration of service oriented distributed real-time systems, IEEE
Trans. Indust. Inf. 9 (1) (2013) 228-236, d0i:10.1109/TI1.2012.2198662.

A. Ghafouri, A. Laszka, A. Dubey, X. Koutsoukos, Optimal detection of faulty traffic
sensors used in route planning, in: Proceedings of the Second International Work-
shop on Science of Smart City Operations and Platforms Engineering, ACM, 2017,
pp- 1-6.

R. Ghosh, Y. Simmbhan, Distributed scheduling of event analytics across edge and
cloud, CoRR (2016). 1608.01537

OpenFog architecture overview, White Paper, The OpenFog Consortium Architec-
ture Working Group, 2016.

R.W. Hall, Non-recurrent congestion: how big is the problem? Are traveler infor-
mation systems the solution? Transp. Res. Part C Emerg. Technol. 1 (1) (1993)
89-103.

Y. Hara, E. Hato, A car sharing auction with temporal-spatial OD connection con-
ditions, Transp. Res. Part B Methodol. (2017).

C. Hewitt, P. Bishop, R. Steiger, A universal modular actor formalism for artificial
intelligence, in: Proceedings of the 3" International Joint Conference on Artificial
Intelligence, Morgan Kaufmann Publishers Inc., 1973, pp. 235-245.

B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A.D. Joseph, R. Katz, S. Shenker,
I. Stoica, MESOS: a platform for fine-grained resource sharing in the data cen-
ter, in: Proceedings of the Eighth USENIX Conference on Networked Systems De-
sign and Implementation, NSDI’11, USENIX Association, Berkeley, CA, USA, 2011,
pp. 295-308.

F. Hu, Q. Hao, K. Bao, A survey on Software-Defined Network and Openflow: from
concept to implementation, IEEE Commun. Surv. Tutor. 16 (4) (2014) 2181-2206,
doi:10.1109/COMST.2014.2326417.

U. Hunkeler, H.L. Truong, A. Stanford-Clark, MQTT-S—a publish/subscribe proto-
col for wireless sensor networks, in: Proceedings of the 3™ International Confer-

100

[71]
[72]
[73]

[74]

[75]

[76]

[771

[78]

[791

[80]

[81]

[82]

[83]

[84]

[85]

[86]

871

[88]

[89]
[90]
[91]

[92]

[931]

[94]

[95]

[96]
[971

[98]

[99]

[100]

[101]

Journal of Systems Architecture 91 (2018) 83-102

ence on Communication Systems Software and Middleware and workshops, 2008.
COMSWARE 2008, IEEE, 2008, pp. 791-798.

IETF, RFC 5905. Network Time Protocol (NTP) version 4, 2018,
(https://www.ietf.org/rfc/rfc5905.txt).
Real-Time Innovations, Data Distribution Service,

(http://www.rti.com/products/dds/index.html). Last accessed January 2018.
Intellinium, Fog, edge, cloud and mist computing, (https://intellinium.io). Last ac-
cessed November 2017.

Y. Jararweh, L. Tawalbeh, F. Ababneh, F. Dosari, Resource efficient mobile com-
puting using cloudlet infrastructure, in: Proceedings of the IEEE 9 International
Conference on Mobile Ad-hoc and Sensor Networks (MSN), 2013, pp. 373-377.

S. Kamijo, Y. Matsushita, K. Ikeuchi, M. Sakauchi, Traffic monitoring and accident
detection at intersections, IEEE Trans. Intell. Transp. Syst. 1 (2) (2000) 108-118.
R. Kandoi, M. Antikainen, Denial-of-service attacks in Openflow SDN networks, in:
Proceedings of the 2015 IFIP/IEEE International Symposium on Integrated Network
Management (IM), 2015, pp. 1322-1326, doi:10.1109/INM.2015.7140489.

A.R. Khan, M. Othman, S.A. Madani, S.U. Khan, A survey of mobile cloud com-
puting application models, IEEE Commun. Surv. Tutor. 16 (1) (2014) 393-413,
doi:10.1109/SURV.2013.062613.00160.

I. King, J. Li, K.T. Chan, A brief survey of computational approaches in social com-
puting, in: Proceedings of the 2009 International Joint Conference on Neural Net-
works, 2009, pp. 2699-2706.

A. Kleiner, B. Nebel, V.A. Ziparo, A mechanism for dynamic ride sharing based on
parallel auctions, in: Proceedings of the International Joint Conference on Artificial
Intelligence, IJCAI, 11, 2011, pp. 266-272.

K. Kok, S. Widergren, A society of devices: integrating intelligent distributed re-
sources with transactive energy, IEEE Power Energy Mag. 14 (3) (2016) 34-45.
X. Kong, X. Song, F. Xia, H. Guo, J. Wang, A. Tolba, LOTAD: long-term traffic
anomaly detection based on crowdsourced bus trajectory data, World Wide Web
(2017) 1-23.

F. Koufogiannis and G. J. Pappas, Diffusing Private Data over Net-
works, in IEEE Transactions on Control of Network Systems, 2017, 1-11.
https://doi.org/10.1109/TCNS.2017.2673414.

D. Kreutz, F.M.V. Ramos, P.J.E. Verissimo, C.E. Rothenberg, S. Azodolmolky, S. Uh-
lig, Software-defined networking: a comprehensive survey, Proc. IEEE 103 (1)
(2015) 14-76, doi:10.1109/JPROC.2014.2371999.

S. Kr¢o, B. Pokri¢, F. Carrez, Designing IoT architecture(s): a European perspective,
in: Proceedings of the 2014 IEEE World Forum on Internet of Things (WF-IoT),
2014, pp. 79-84, do0i:10.1109/WF-10T.2014.6803124.

K. Kvaternik, A. Laszka, M. Walker, D.C. Schmidt, M. Sturm, M. Lehofer, A. Dubey,
Privacy-preserving platform for transactive energy systems, CORR abs/1709.09597
(2017).

S. Kwoczek, S. Di Martino, W. Nejdl, Predicting and visualizing traffic congestion
in the presence of planned special events, J. Vis. Lang. Comput. 25 (6) (2014)
973-980.

S. Kwoczek, S. Di Martino, W. Nejdl, Stuck around the stadium? An approach to
identify road segments affected by planned special events, in: Proceedings of the
2015 IEEE Eighteenth International Conference on Intelligent Transportation Sys-
tems (ITSC), IEEE, 2015, pp. 1255-1260.

L. Lamport, The Part-Time Parliament, ACM Trans. Comput. Syst. 16 (2) (1998)
133-169, doi:10.1145/279227.279229.

L. Lamport, Paxos made simple, ACM Sigact News 32 (4) (2001) 18-25.

L. Lamport, R. Shostak, M. Pease, The byzantine generals problem, ACM Trans.
Program. Lang. Syst. 4 (3) (1982) 382-401.

A. Laszka, A. Dubey, M. Walker, D.C. Schmidt, Providing privacy, safety, and se-
curity in IoT-based transactive energy systems using distributed ledgers, CoRR
abs/1709.09614 (2017).

Online verification in cyber-physical systems: Practical bounds for meaningful tem-
poral costs. Journal of Software: Evolution and Process, vol. 30(3). March 2018.
K. Lev-Ari, E. Bortnikov, I. Keidar, A. Shraer, Modular composition of coordina-
tion services, in: Proceedings of the 2016 USENIX Conference on Usenix Annual
Technical Conference, USENIX ATC ’16, Berkeley, CA, USA, 2016, pp. 251-264.
M.W. Levin, K.M. Kockelman, S.D. Boyles, T. Li, A general framework for modeling
shared autonomous vehicles with dynamic network-loading and dynamic ride-shar-
ing application, Comput. Environ. Urban Syst. 64 (2017) 373-383.

H. Li, G. Shou, Y. Hu, Z. Guo, Mobile edge computing: progress and challenges, in:
Proceedings of the 2016 Fourteenth IEEE International Conference onMobile Cloud
Computing, Services, and Engineering (MobileCloud), IEEE, 2016, pp. 83-84.
Linux, KVM - Kernel based Virtual Machine, (http://www.linux-kvm.com). Last
accessed January 2018.

Linux Containers, Infrastructure for container
(http://www.linuxcontainers.org). Last accessed February 2018.

P. Liu, D. Willis, S. Banerjee, Paradrop: enabling lightweight multi-tenancy at the
network’s extreme edge, in: Proceedings of the 2016 IEEE/ACM Symposium on
Edge Computing (SEC), 2016, pp. 1-13.

W. Liu, Y. Zheng, S. Chawla, J. Yuan, X. Xing, Discovering spatio-temporal causal
interactions in traffic data streams, in: Proceedings of the Seventeenth ACM
SIGKDD International Conference on Knowledge Discovery and data Mining, ACM,
2011, pp. 1010-1018.

S. Lockwood, The 21°t century operation oriented state dots, 2006. NCHRP project
20-24

X.-Y. Lu, P. Varaiya, R. Horowitz, J. Palen, Faulty loop data analysis/correction and
loop fault detection, in: Proceedings of the Fifteenth World Congress on Intelligent
Transport Systems and ITS America’s 2008 Annual Meeting, 2008.

projects,


https://doi.org/10.1109/CSE.2009.264
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0020
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0020
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0020
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0020
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0021
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0021
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0021
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0021
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0021
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0021
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0022
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0022
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0022
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0023
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0023
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0023
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0024
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0024
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0024
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0025
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0025
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0025
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0025
https://doi.org/10.1145/2517840.2517871
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0027
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0027
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0027
https://doi.org/10.1109/ISORC.2009.28
http://www.coindesk.com
https://doi.org/10.1109/ISORC.2017.22
https://doi.org/10.1016/j.jnca.2015.05.016
https://doi.org/10.1016/j.engappai.2011.06.012
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0032
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0032
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0032
https://doi.org/10.1016/j.sysarc.2014.07.004
https://doi.org/10.1016/j.sysarc.2017.11.001
https://doi.org/10.1109/TII.2012.2198662
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0036
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0036
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0036
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0036
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0036
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0038
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0038
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0038
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0038
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0039
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0039
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0040
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0040
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0040
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0041
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0041
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0041
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0041
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0042
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0042
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0042
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0042
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0042
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0042
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0042
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0042
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0042
https://doi.org/10.1109/COMST.2014.2326417
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0044
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0044
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0044
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0044
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0044
https://www.ietf.org/rfc/rfc5905.txt
http://www.rti.com/products/dds/index.html
https://intellinium.io
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0045
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0045
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0045
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0045
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0045
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0046
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0046
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0046
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0046
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0046
https://doi.org/10.1109/INM.2015.7140489
https://doi.org/10.1109/SURV.2013.062613.00160
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0049
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0049
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0049
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0049
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0050
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0050
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0050
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0050
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0051
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0051
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0051
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0052
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0052
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0052
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0052
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0052
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0052
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0052
https://doi.org/10.1109/TCNS.2017.2673414
https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1109/WF-IoT.2014.6803124
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0055
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0055
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0055
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0055
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0055
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0055
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0055
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0055
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0056
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0056
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0056
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0056
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0057
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0057
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0057
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0057
https://doi.org/10.1145/279227.279229
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0059
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0059
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0060
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0060
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0060
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0060
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0061
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0061
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0061
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0061
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0061
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0063
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0063
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0063
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0063
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0063
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0064
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0064
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0064
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0064
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0064
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0065
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0065
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0065
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0065
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0065
http://www.linux-kvm.com
http://www.linuxcontainers.org
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0066
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0066
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0066
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0066
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0067
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0067
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0067
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0067
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0067
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0067
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0068
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0068
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0068
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0069
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0069
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0069
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0069
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0069

M. Garcia-Valls, A. Dubey and V. Botti

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]
[111]
[112]
[113]
[114]
[115]

[116]

[117]

[118]
[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

M. Luck, P. McBurney, Computing as interaction: agent and agreement technolo-
gies, Proceedings of the IEEE SMC conference on distributed human-machine sys-
tems, pp 1-6, 2008.

M. Luck, P. McBurney, O. Shehory, S. Willmott, Agent Technology: Computing as
Interaction (A Roadmap for Agent Based Computing), AgentLink, 2005.

Y. Mao, C. You, J. Zhang, K. Huang, K.B. Letaief, A survey on mo-
bile edge computing: the communication perspective, in: Proceedings of
the IEEE Communications Surveys and Tutorials, 19, 2017, pp. 2322-2358,
doi:10.1109/COMST.2017.2745201.

M. Masdari, S.S. Nabavi, V. Ahmadi, An overview of virtual machine placement
schemes in cloud computing., J. Netw. Comput. Appl. 66 (2016) 106-127.

A. Mavridou, A. Laszka, Designing secure Ethereum smart contracts: a finite state
machine based approach, in: Proceedings of the Twenty-second International Con-
ference on Financial Cryptography and Data Security (FC), 2018.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
Openflow: enabling innovation in campus networks, in: Proceedings of the ACM
SIGCOMM Computer Communication Review, 2008, pp. 69-74.

P. Mell, T. Grance, The NIST Definition of Cloud Computing,v15, NIST, 2009.
R.B. Melton, Gridwise transactive energy framework (draft version), Technical Re-
port, Pacific Northwest National Laboratory, Richland, WA, 2013.

Microsoft, Microsoft Azure, (http://www.azure.microsoft.com/Azure). Last ac-
cessed January 2018.

Sun Microsystems. Java Transaction API JTA),
(http://www.java.sun.com:80/javaee/technologies/jta/). Last accessed February
2018.

R. Mocevicius, CoreOS Essentials, Packt Publishing Ltd, 2015.

M.B. Mollah, M.A.K. Azad, A. Vasilakos, Security and privacy challenges in mobile
cloud computing: Survey and way ahead, J. Netw. Comput. Appl. 84 (2017) 38-54.
M.A. Morsy, J. Grundy, 1. Miiller, An analysis of the cloud computing security prob-
lem, in: Proceedings of APSEC 2010 Cloud Workshop, Sydney, Australia, 2010.

K. Mueffelmann, Uber’s Privacy Woes Should Serve as a Cautionary Tale for All
Companies, Wired Magazine, 2015.

M. Mukherjee, R. Matam, L. Shu, L. Maglaras, M.A. Ferrag, N. Choudhury, V. Ku-
mar, Security and privacy in fog computing: challenges, in: Proceedings of IEEE
Access, 5, 2017, pp. 19293-19304, doi:10.1109/ACCESS.2017.2749422.

T. Neagoe, V. Cristea, L. Banica, NTP versus PTP in com puter networks clock
synchronization, in: Proceedings of the 2006 IEEE International Symposium on
Industrial Electronics, 1, 2006, pp. 317-362, doi:10.1109/ISIE.2006.295613.
Netflix, Netflix video streaming, (https://www.netflix.com/). Last accessed Jan-
uary 2017.

P.B. Nichols, The permanent web for healthcare with IPFS and Blockchain, 2017,

[132]

[133]

[134]

[135]
[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

Journal of Systems Architecture 91 (2018) 83-102

M. Satyanarayanan, P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha, W. Hu, B. Amos,
Edge analytics in the Internet of Things, IEEE Pervasive Comput. 14 (2015),
doi:10.1109/MPRV.2015.32.

D. Schrank, B. Eisele, T. Lomax, J. Bak, 2015 Urban Mobility Scorecard (2015).
https://static.tti.tamu.edu/tti.tamu.edu/documents/mobility-scorecard-2015.pdf.
Last accessed June 2018.

S. Shenker, The future of networking and the past of network protocols, 2011,
(http://www.opennetsummit.org/archives/oct11/shenker-tue.pd). Open Network
Summit.

A. Sheth, P. Anantharam, C. Henson, Physical-cyber-social computing: an early 21
century approach, IEEE Intell. Syst. 28 (1) (2013) 78-82.

W. Shi, J. Cao, Q. Zhang, Y. Li, L. Xu, Edge computing: vision and challenges, IEEE
Internet Things J. 3 (2016) 637-646.

X. Shi, H. Lin, H. Jin, B.B. Zhou, Z. Yin, S. Di, S. Wu, Giraffe: a scalable dis-
tributed coordination service for large-scale systems, in: Proceedings of the 2014
IEEE International Conference on Cluster Computing (CLUSTER), 2014, pp. 38-47,
do0i:10.1109/CLUSTER.2014.6968766.

C. Sierra, V. Botti, S. Ossowski, Agreement computing, Knstl. Intell. 25 (2011)
57-61.

Y. Simmhan, S. Aman, A. Kumbhare, R. Liu, S. Stevens, Q. Zhou, V. Prasanna,
Cloud-based software platform for big data analytics in smart grids, Comput. Sci.
Eng. 15 (4) (2013) 38-47, doi:10.1109/MCSE.2013.39.

J. Spillner, A. Schill, Towards dispersed cloud computing, in: Proceedings of the
2014 IEEE International Black Sea Conference on Communications and Networking
(BlackSeaCom), 2014, pp. 170-174, doi:10.1109/BlackSeaCom.2014.6849032.

1. Stojmenovic, S. Wen, The fog computing paradigm: Scenarios and security
issues, in: Proceedings of the 2014 Federated Conference on Computer Sci-
ence and Information Systems (FedCSIS), 2, Warsaw, Poland, 2014, pp. 1-8,
doi:10.15439/2014F503.

H.L. Storey, Implementing an integrated centralized model-based distribution man-
agement system, in: Proceedings of the 2011 IEEE Power and Energy Society Gen-
eral Meeting, 2011, pp. 1-2, doi:10.1109/PES.2011.6038994.

S. Suhothayan, K. Gajasinghe, ILL. Narangoda, S. Chaturanga, S. Perera,
V. Nanayakkara, SIDDHI: a second look at complex event processing architectures,
in: Proceedings of the ACM Workshop on Gateway Computing Environments, 2011,
do0i:10.1145/2110486.2110493.

E. del Val, M. Rebollo, V. Botti, Enhancing decentralized service discovery in open
service-oriented multi-agent systems, Auton. Agent Multi Agent Syst. 28 (2014)
1-30.

B. Varghese, N. Wang, S. Barbhuiya, P. Kilpatrick, D.S. Nikolopoulos, Chal-
lenges and opportunities in edge computing, in: Proceedings of the 2016

(https://www.cio.com/article/3174144/innovation/the-permanent-web-for-healthcare-with-iplEEEdIhterhiatioiah @ol)ference on Smart Cloud (SmartCloud), 2016, pp. 20-26,

OASIS, Message Queue Telemetry Transport (MQTT) v3.1.1,
(http://www.docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html). Last
accessed Feb 2018.

OMG, The Data Distribution Service specification, v1.2, 2007,

(http://www.omg.org/spec/DDS/1.2).

D. Ongaro, J. Ousterhout, In search of an understandable consensus algorithm, in:
Proceedings of the 2014 USENIX Conference on USENIX Annual Technical Confer-
ence, USENIX ATC’14, USENIX Association, Berkeley, CA, USA, 2014, pp. 305-320.
D. Ongaro, J. Ousterhout, In search of an understandable consensus algorithm, in:
Proceedings of the USENIX Annual Technical Conference, 2014, pp. 305-320.

F. Paolucci, F. Cugini, A. Giorgetti, P.C. N. Sambo, A survey on the Path Com-
putation Element (PCE) architecture, IEEE Commun. Surv. Tutor. 15 (4) (2013)
1819-1841.

J.S. Preden, K. Tammemde, A. Jantsch, M. Leier, A. Riid, E. Calis, The benefits of
self-awareness and attention in fog and mist computing, Computer (Long Beach
Calif) 48 (7) (2015) 37-45, doi:10.1109/MC.2015.207.

M. Garcia-Valls, D. Perez-Palacin, R. Mirandola, Time-Sensitive Adaptation in CPS
through Run-Time Configuration Generation and Verification, in: 38th Annual
Computer Software and Applications Conference (COMPSAC), IEEE, 2014.

R.D. Rasmussen, Goal-based fault tolerance for space systems using the mission
data system, in: Proceedings of the IEEE Aerospace Conference, 2001, 5, IEEE,
2001, pp. 2401-2410.

S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker, I. Stoica,
H. Yu, OpenDHT: a public DHT service and its uses, in: Proceedings of the ACM
SIGCOMM Computer Communication Review, 35, ACM, 2005, pp. 73-84.

S.P. Robinson, The development and application of an urban link travel time model
using data derived from inductive loop detectors, University of London, 2006 Ph.D.
thesis.

C. Samal, L. Zheng, F. Sun, L.J. Ratliff, A. Dubey, Towards a socially optimal multi-
modal routing platform, ArXiv e-prints (2018). https://arxiv.org/abs/1802.10140.
M. Sapienza, E. Guardo, M. Cavallo, G.L. Torre, G. Leombruno, O. Tomarchio, Solv-
ing critical events through mobile edge computing: An approach for smart cities,
in: Proceedings of the 2016 IEEE International Conference on Smart Computing
(SMARTCOMP), 2016, pp. 1-5, doi:10.1109/SMARTCOMP.2016.7501719.

101

[146]

[147]

[148]

[149]
[150]
[151]

[152]

[153]

[154]

[155]

[156]

doi:10.1109/SmartCloud.2016.18.

H. Veeraraghavan, P. Schrater, N. Papanikolopoulos, Switching Kalman filter-based
approach for tracking and event detection at traffic intersections, in: Proceedings
of the 2005 IEEE International Symposium on, Mediterrean Conference on Control
and Automation Intelligent Control, 2005, IEEE, 2005, pp. 1167-1172.

T. Verbelen, P. Simoens, F. Turck, B. Dhoedt, Cloudlets: bringing the cloud
to the mobile user, in: Proceedings of the 3 ACM Workshop on Mo-
bile Cloud Computing and Services, Low Wood Bay, UK, 2012, pp. 29-36,
doi:10.1145/2307849.2307858.

D. Willis, A. Dasgupta, S. Banerjee, ParaDrop: a multi-tenant platform to dynami-
cally install third party services on wireless gateways, in: Proceedings of the Ninth
ACM Workshop on Mobility in the Evolving Internet Architecture, ACM, 2014,
pp. 43-48.

M. Wooldridge, An Introduction to Multiagent Systems, second ed., Wiley Publish-
ing, 2009.

M. Wooldridge, N.R. Jennings, Intelligent agents: theory and practice, Knowl. Eng.
Rev. 10 (1995) 115-152.

L. Xu, Y. Yue, Q. Li, Identifying urban traffic congestion pattern from historical
floating car data, Procedia-Soc. Behav. Sci. 96 (2013) 2084-2095.

S. Yang, K. Kalpakis, A. Biem, Detecting road traffic events by coupling multiple
timeseries with a nonparametric Bayesian method, IEEE Trans. Intell. Transp. Syst.
15 (5) (2014) 1936-1946.

S.Yi, C. Li, Q. Li, A survey of fog computing: Concepts, applications and issues, in:
Proceedings of the 2015 Workshop on Mobile Big Data, Mobidata 15, ACM, New
York, NY, USA, 2015, pp. 37-42, doi:10.1145/2757384.2757397.

S.Yi, C. Li, Q. Li, A survey of fog computing: concepts, applications and issues, in:
Proceedings of the 2015 Workshop on Mobile Big Data, ACM, 2015.

Y. Yuan, F.-Y. Wang, Towards blockchain-based intelligent transportation systems,
in: Proceedings of the Intelligent Transportation Systems (ITSC), 2016 IEEE 19th
International Conference on, IEEE, 2016, pp. 2663-2668.

N. Zygouras, N. Panagiotou, N. Zacheilas, I. Boutsis, V. Kalogeraki, I. Katakis,
D. Gunopulos, Towards detection of faulty traffic sensors in real-time., in: MUD@
ICML, 2015, pp. 53-62.


http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0070
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0070
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0070
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0070
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0070
https://doi.org/10.1109/COMST.2017.2745201
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0072
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0072
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0072
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0072
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0073
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0073
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0073
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0074
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0074
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0074
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0074
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0074
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0074
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0074
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0075
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0075
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0075
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0076
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0076
http://www.azure.microsoft.com/Azure
http://www.java.sun.com:80/javaee/technologies/jta/
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0077
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0077
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0078
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0078
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0078
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0078
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0079
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0079
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0079
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0079
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0080
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0080
https://doi.org/10.1109/ACCESS.2017.2749422
https://doi.org/10.1109/ISIE.2006.295613
https://www.netflix.com/
https://www.cio.com/article/3174144/innovation/the-permanent-web-for-healthcare-with-ipfs-and-blockchain.html
http://www.docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://www.omg.org/spec/DDS/1.2
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0083
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0083
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0083
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0084
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0084
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0084
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0085
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0085
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0085
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0085
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0085
https://doi.org/10.1109/MC.2015.207
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0088a
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0088a
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0088a
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0088a
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0088
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0088
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0089
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0089
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0089
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0089
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0089
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0089
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0089
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0089
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0089
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0090
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0090
https://arxiv.org/abs/1802.10140
https://doi.org/10.1109/SMARTCOMP.2016.7501719
https://doi.org/10.1109/MPRV.2015.32
https://static.tti.tamu.edu/tti.tamu.edu/documents/mobility-scorecard-2015.pdf
http://www.opennetsummit.org/archives/oct11/shenker-tue.pd
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0093
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0093
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0093
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0093
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0094
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0094
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0094
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0094
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0094
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0094
https://doi.org/10.1109/CLUSTER.2014.6968766
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0096
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0096
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0096
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0096
https://doi.org/10.1109/MCSE.2013.39
https://doi.org/10.1109/BlackSeaCom.2014.6849032
https://doi.org/10.15439/2014F503
https://doi.org/10.1109/PES.2011.6038994
https://doi.org/10.1145/2110486.2110493
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0102
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0102
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0102
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0102
https://doi.org/10.1109/SmartCloud.2016.18
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0104
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0104
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0104
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0104
https://doi.org/10.1145/2307849.2307858
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0106
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0106
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0106
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0106
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0107
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0107
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0108
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0108
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0108
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0109
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0109
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0109
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0109
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0110
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0110
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0110
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0110
https://doi.org/10.1145/2757384.2757397
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0112
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0112
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0112
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0112
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0113
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0113
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0113
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0114
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0114
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0114
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0114
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0114
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0114
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0114
http://refhub.elsevier.com/S1383-7621(18)30103-6/sbref0114

M. Garcia-Valls, A. Dubey and V. Botti

Marisol Garcia Valls is Associate Professor in the Department
of Telematics Engineering of Universidad Carlos Il de Madrid,
Spain, where she has led the Distributed Real Time Systems
Lab for more than 10 years. Her research interests focus on the
design of efficient, timely, and secure execution and interoper-
ation mechanisms for time-sensitive distributed systems, IoT,
and cyber-physical systems. http://www.it.uc3m.es/mvalls/.

Abhishek Dubey is an Assistant Professor of Electrical Engi-
neering and Computer Science at Vanderbilt University, Se-
nior Research Scientist at the Institute for Software-Integrated
Systems and co-lead for the Vanderbilt Initiative for Smart
Cities Operations and Research (VISOR). He directs the Smart
computing laboratory (http://scope.isis.vanderbilt.edu/) at
the university. His research interests are resilient cyber-
physical systems, fault-tolerant distributed systems and ap-
plied machine learning. https://my.vanderbilt.edu/dabhishe.

102

Journal of Systems Architecture 91 (2018) 83-102

Vicent Botti is full professor of computer systems at Univer-
sitat Politécnica de Valéncia, Spain. His current research ac-
tivities include the following interdisciplinary areas: agree-
ment technologies; virtual organizations, automatic negoti-
ation, argumentation, trust, reputation and privacy; multi
agent systems; architectures and platforms; development tech-
nologies, agent based social simulation, agent based in-
telligent manufacturing systems, multiagent adaptive sys-
tems, agreement networks, decentralized services manage-
ment. http://www.users.dsic.upv.es/vbotti/.


http://www.it.uc3m.es/mvalls/
http://scope.isis.vanderbilt.edu/
https://my.vanderbilt.edu/dabhishe
http://www.users.dsic.upv.es/vbotti/

	Introducing the new paradigm of Social Dispersed Computing: Applications, Technologies and Challenges
	1 Introduction
	2 Computing paradigms: definitions and evolution
	2.1 Cloud computing
	2.2 Mobile cloud computing
	2.3 Cloudlet
	2.4 Internet of Things
	2.5 Cyber-Physical Systems
	2.6 Fog computing
	2.7 Edge computing
	2.8 Mobile edge computing
	2.9 Mist computing
	2.10 Social computing
	2.11 Dispersed computing

	3 Social dispersed computing
	3.1 Multi agent systems
	3.2 Social dispersed computing illustration
	3.2.1 Next generation electrical energy systems
	3.2.2 Social mobility
	3.2.3 Distributed traffic congestion analysis


	4 Enabling social dispersed computing
	4.1 Distributed transaction management
	4.2 Blockchain
	4.3 Distributed market platform
	4.4 Time synchronization
	4.5 Distributed coordination services
	4.6 Software technologies
	4.6.1 Virtualization
	4.6.2 Cloud deployment and management
	4.6.3 Messaging middleware
	4.6.4 Complex Event Processing (CEP)
	4.6.5 Transaction management
	4.6.6 Service configuration and deployment technologies
	4.6.7 Service coordination
	4.6.8  Networking technologies 


	5 Challenges in social dispersed computing
	6 Discussion and conclusions
	 References


